
 

Abstract—Measurement uncertainty is one of the most 

important concepts. The ISO IEC 17025:2005 standard: 

describes harmonized policies and procedures for testing and 

calibration laboratories. Guide to the expression of uncertainty 

in measurement (GUM) is a direct uncertainty analysis method, 

which calculates the combined standard uncertainty and 

expanded uncertainty by law of propagation of uncertainty. 

Monte Carlo Method (MCM) as presented by the (GUM S1) 

involves the propagation of the distributions of the input sources 

of uncertainty by using a model to provide the distribution of 

the output. By random sampling, the probability density 

function of the input quantities. In this paper, present 

measurement uncertainty to circular runout error. By use shaft 

standard with a diameter of 32 mm., length 100 mm. From the 

experiment results, Comparison of GUM and MCM showed no 

differences. The cases the estimated uncertainty using the GUM 

approach slightly overestimated the results obtained with the 

MCM. However, the use of numerical methods such MCM as a 

valuable alternative to the GUM approach. The practical use of 

MCM it has proven to be a fundamental tool, being able to 

address more complex measurement problems that were limited 

by the GUM approximations. 

 
Index Terms—Circular runout error, Guide to the expression 

of Uncertainty in Measurement (GUM), Monte Carlo Method 

(MCM), measurement uncertainty. 

 

I.  INTRODUCTION 

Metrology is the science that covers theoretical and 

practical concepts involved in a measurement, which when 

applied are able to provide results with appropriate accuracy 

and metrological reliability to a given measurement process. 

The ISO IEC 17025:2005 standard [1], describes 

harmonized policies and procedures for testing and 

calibration laboratories. The GUM (JCGM 100) provides 

guidelines on the estimation of uncertainty in measurement 

[2], [3]. The GUM S1 (JCGM 101) is responsible to give 

practical guidance on the application of MCM to the 

estimation of uncertainty [4]. 

Measurement uncertainty is a quantitative indication of the 

quality of measurement results, without which they could not 

be compared between themselves, with specified reference 

values or to a standard. This document provides a full set of 

tools to treat different situations and processes of 

measurement. Estimation of uncertainty, as presented by the  

 
Manuscript received May 10, 2022; revised July 18, 2022. 

Pornpawit Ounjutturaporn, Ramil Kesvarakul, Pipitanon Poonsawat are 

with the Department of Production Engineering, Faculty of Engineering, 

King Mongkut’s University of Technology North Bangkok, Thailand (email: 

Pornpawit.boom@gmail.com, Ramil.k@eng.kmutnb.ac.th, 

Pipitanon.p@eng.kmutnb.ac.th). 

Khompee Limpadapun is with the School of Engineering, Eastern Asia 

University, Thailand (e-mail: Khompee.lim@gmail.com). 

GUM, is based on the law of propagation of uncertainty. 

Due to these limitations of the GUM, the use of MCM for 

the propagation of the full probability distributions has been 

addressed in the GUM S1 provides on the application of 

MCM to metrological situations [5]. 

There are many researches on the circular runout, 

roundness error, error of spindle rotation and tilt error of the 

installation axis. Mao et al. [6], use uncertainty evaluation 

method based on GUM. Although GUM is the standard for 

the evaluation of the measurement uncertainty in metrology, 

it is mainly applicable to the linear models. GUM S1 provides 

a general numerical approach implemented by MCM, and it 

is consistent with the broad principles of GUM. Cox et al. [7], 

define the GUM as an approximation method for the 

evaluation of uncertainty and explain that an MCM is an 

effective. Matus [8], use MCM to evaluate the measurement 

uncertainty of gauge blocks, whereas GUM cannot be applied 

to this problem. Moschioni et al. [9], proposed a method that 

combined the factorial design of experiments and MCM to 

guide the instrument designer in the instrument configuration 

optimization. Kruth et al. [10], presented a method to 

determine measurement uncertainties for feature 

measurements on CMM based on MCM and a profile 

database of realistic form profiles. Lian and Chen [11], 

proposed the uncertainty evaluation of roundness 

measurement based on MCM, but the simulation trials need 

to be set in advance. Couto et al. [5], described four cases 

with this method and recommended it for more complex 

measurement problems that could not be solved by GUM. 

Chew and Walczyk [12], demonstrated that a standard 

spreadsheet software program, such as Microsoft Excel, 

could be used to estimate measurement uncertainty by the 

MCM. Yang et al. [13], estimate the uncertainty of task-

specific laser tracker measurements by using the GUM and 

MCM, a case study involving the uncertainty estimation of a 

cylindrical measurement process was illustrated. The results 

indicate that the MCM is a practical tool for applying the 

principle of propagation of distributions and does not depend 

on the assumptions and limitations required by the law of 

propagation of uncertainty [14]. 
In this paper, we present a comparative study of 

measurement uncertainty to circular runout error. The first 

method uses the universal GUM approach. That has been 

developed according to the guidelines which takes into 

account information of uncertainty, while the second method 

uses MCM numerical data to examine the factors affecting 

measurement uncertainty. 

 

II. CIRCULAR RUNOUT ERROR METHODOLOGY 

Circular runout value is the number of attributes or 

Comparison of GUM and Monte Carlo Methods for the 

Measurement Uncertainty Circular Runout Error of Shafts 

Pornpawit Ounjutturaporn, Ramil Kesvarakul, Pipitanon Poonsawat, and Khompee Limpadapun 

International Journal of Engineering and Technology, Vol. 14, No. 3, August 2022

38DOI: 10.7763/IJET.2022.V14.1199



attributes referenced as shown in Fig. 1(a), which vary to 

each datum when the part rotated 360° around the datum axis. 

It is a basically controlling the circular feature and spindle 

variation. Measurement Circular runout is measured by using 

a simple dial gauge on the reference surfaces. The datum axis 

is controlled by all fixing datum points and rotating the 

central datum axis. The part is usually constrained with V-

blocks, or spindle, on each datum that required to be 

controlled. The part is then rotated around this axis, and the 

variation measured by using the dial gauge perpendicular to 

the part surface as shown in Fig. 1(b). 

 

 

Fig. 1. (a) circular runout; (b) A circular runout in measurement system. 

 

III. THE METHODS OF GUM AND MCM 

A Uncertainty Evaluation by GUM 

GUM is a direct uncertainty analysis method, which 

calculates the combined standard uncertainty and expanded 

uncertainty by law of propagation of uncertainty. It is a 

reasoning-based method. It is firstly analyzing the source of 

measurement uncertainty, which depends on the 

measurement method, condition, equipment and the 

understanding of the measured quantity value, and then 

evaluates the standard uncertainty components [5]. The steps 

are as follows: 

1) Definition of the measured and input sources 

Measured y as a function of four different input 

sources: x1, x2 and x3 equation shown in (1).  

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3)   (1) 

2) Modeling 

The measurement procedure should be modeled in order to 

have the measured as a result of all the input sources equation 

shown in (2). 

𝑦 =
𝑥1+𝑥2+𝑥3

𝑛
   (2) 

3) Estimation of the uncertainties of input sources 

Type A uncertainties from repeatability studies are 

estimated by the GUM as the standard deviation of the mean 

obtained from the repeated measurements equation shown in 

(3 and 4). 

𝑠(𝑥) = √
∑(𝑥𝑖−𝑥̅)2

𝑛−1
   (3) 

𝑈𝑎 = 𝑠(𝑥̅) =
𝑠(𝑥)

√𝑛
   (4) 

where (𝑥̅) is the mean value of the repeated measurements, 

𝑠(𝑥)  is its standard deviation, and 𝑠(𝑥̅)  is the standard 

deviation of the mean. 

Type B which are determined from any other source of 

information, such as instrument specification, calibration 

certificate, material certificate, accuracy, etc. In the 

uncertainty form Type B evaluations, it is required to choose 

a probability distribution that models each source of 

variability.  The most common probability distributions used 

in uncertainty analysis. You should be able to identify which 

probability distributions you should use and how to reduce 

your uncertainty contributors to standard deviation 

equivalents. The most commonly used probability 

distributions for estimating measurement uncertainty are [15]; 

The Normal distribution is a function that represents the 

distribution of many random variables as a symmetrical bell-

shaped graph where the peak is centered about the mean and 

is symmetrically distributed in accordance with the standard 

deviation, such as: Repeatability or Calibration Certificate as 

shown in Fig. 2(a). The Rectangular Distribution is a function 

that represents a continuous uniform distribution and 

constant probability. In a rectangular distribution, all 

outcomes are equally likely to occur, such as: Drift, 

Resolution or Accuracy as shown in Fig. 2 (b). The U-shaped 

Distribution is a function that represents outcomes that are 

most likely to occur at the extremes of the range. The 

distribution forms the shape of the letter ‘U,’ but does not 

necessarily have to be symmetrical. The U-shaped 

distribution is helpful where events frequently occur at the 

extremes of the range, such as: Electricity, Energy or 

Frequency as shown in Fig. 2 (c). The Triangle Distribution 

is a function that represents a known minimum, maximum, 

and estimated central value such as Temperature as shown in 

as shown in Fig. 2 (d). 

 

 

Fig. 2. Sources of variability (a) Normal Distribution, (b) Rectangular 

Distribution, (c) U-Shaped Distribution and (d) Triangle Distribution. 

 

4) Combined standard uncertainty 

The GUM uncertainty is based on the law of propagation 

of uncertainties. This methodology is derived from a set of 

approximations to simplify the calculations and is valid for a 

wide range of model equation shown in (5). 
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𝑈𝑐 = √𝑈𝑎
2 + 𝑈𝑏1

2 + 𝑈𝑏2
2 + ⋯ + 𝑈𝑏𝑛

2   (5) 

where Uc is the combined standard uncertainty for the 

measured Ua and Ubi is the uncertainty for the i input quantity. 

5) Expanded uncertainty (𝑈𝐸) 

The result provided by Equation 4 corresponds to an 

interval that contains only one standard deviation. In order to 

have a better level of confidence for the result, the GUM 

approach expands this interval by assuming t-distribution for 

the measured. The effective degrees of freedom νeff for the t-

distribution can be estimated by using the Welch-

Satterthwaite equation shown in (6). 

𝑣𝑒𝑓𝑓 =
𝑈𝑐

4

∑
𝑈𝑥𝑖

4

𝑣𝑥𝑖

𝑁
𝑖=1

   (6) 

The expanded uncertainty is then evaluated by multiplying 

the combined standard uncertainty by a coverage factor k that 

expands it to a coverage interval delimited by a t-distribution 

with a chosen level of confidence equation shown in (7). 

𝑈𝐸 = 𝑘 ∗ 𝑈𝑐   (7) 

Report of measurement results. The circular runout, 

measurement quantities and extended uncertainty are 

reported in y±UE terms, followed by the confidence level. 

B Uncertainty Evaluation by Monte Carlo 

The Monte Carlo methodology as presented by the GUM 

S1 involves the propagation of the distributions of the input 

sources of uncertainty by using the model to provide the 

distribution of the output. By random sampling, the 

probability density function of the input quantities [5]. MCM 

is applicable to a measurement model with multiple input 

quantities or single output quantity. In order to achieve 

random sampling of the probability density function. This 

method can be used as a guide to verify the distribution of 

uncertainty by comparing the results. The step for MCM to 

evaluate uncertainty are as follows: 

Step 1: Definition of the measured and input quantities. 

Step 2:  Modeling. 

Step 3: The selection of the most appropriate probability 

density functions for each of the input quantities. 

Step 4: Setup and run the MCM the greater the number of 

simulation trials, the greater the MCM Applied to 

Uncertainty in Measurement convergence of the results. This 

number can be chosen a priori or by using an adaptive 

methodology. When choosing a priori trials, the GUM S1 

recommends the selection of a number M of trials, according 

to the following general rule, in order to provide a reasonable 

representation of the expected result equation shown in (8). 

𝑀 >  
104

1−𝑝
    (8) 

The numerical tolerance of an uncertainty, or standard 

deviation, can be obtained by expressing the standard 

uncertainty as c × 10l, where c is an integer with a number of 

digits equal to the number of significant digits of the standard 

uncertainty and l is an integer. Then the numerical tolerance 

δ is expressed equation shown in (9). 

𝛿 =
1

2
10𝑙    (9) 

Step 5. The last stage is to summarize and express the 

results. According to the GUM S1, the following parameters 

should be reported as results: 

• An estimate of the output quantity, taken as the 
average of the values generated for it 

• The standard uncertainty, taken as the standard 
deviation of these generated values 

• The chosen coverage probability (usually 95%) 

• The endpoints corresponding to the selected coverage 
interval  

C Validation of the GUM by MCM 

GUM S1 put forward the MCM to give a method to 

validate the applicability of GUM method, that is, when 

MCM and GUM use the confidence interval at the same 

coverage probability [14]. This indicates that GUM has 

passed validation. Its execution steps are as follows: 

Step 1: The left and right endpoints values y - UE and y + 

UE of the confidence interval (coverage probability p) by 

GUM. 

Step 2: The left and right endpoints values dlow and dhigh of 

the confidence interval (coverage probability p) by MCM. 

Step 3: Calculate the deviations dlow and dhigh at the 

endpoints of the confidence interval. dlow is the absolute value 

of the difference between the left endpoints of the coverage 

intervals provided. And dhigh is the absolute value of the 

difference between the right endpoints of the coverage 

intervals provided. By the GUM uncertainty and an MCM. 

Step 4: Determine the values of dlow and dhigh with the 

numerical appropriate tolerance value, if the value is less, the 

validation is respected equation shown in (10 ) ⁓ (11). 

𝑑𝑙𝑜𝑤   = |𝑦 − 𝑈𝐸 − 𝑦𝑙𝑜𝑤 |  (10) 

𝑑ℎ𝑖𝑔ℎ = |𝑦 + 𝑈𝐸 − 𝑦ℎ𝑖𝑔ℎ|  (11) 

where y is the measured estimate, UE is the expanded 

uncertainty obtained by the GUM approach and ylow and yhigh 

are the low and high endpoints obtained by the MCM for a 

given coverage probability. 

 

IV.  RESULTS AND DISCUSSION 

In experiment, Shaft standard with a diameter of 32 mm., 

length 100 mm. Holding the shaft to the reference plane, then 

measured many times with dial gauge in the same 

environment condition. Rotate the shaft to find out the runout 

of the different errors.  As shown in Table I. (testing runout 

40 times). 

 
TABLE I. EVALUATION RESULTS OF FORTY TIMES MEASUREMENT DATA 

number 
rotation 

angles 

measurement 

error [mm] 
number 

rotation 

angles 

measurement 

error [mm] 

1 0 0.000 21 180 -0.014 

2 9 0.001 22 189 -0.003 

3 18 0.007 23 198 0.000 

4 27 0.007 24 207 0.001 

5 36 0.005 25 216 0.001 

6 45 0.003 26 225 -0.001 

7 54 0.001 27 234 -0.006 

8 63 -0.001 28 243 -0.006 

9 72 0.005 29 252 0.005 

10 81 0.007 30 261 0.003 

11 90 0.009 31 270 0.005 

12 99 0.009 32 279 0.005 

13 108 0.007 33 288 -0.005 
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14 117 -0.001 34 297 0.003 

15 126 -0.002 35 306 0.007 

16 135 0.001 36 315 0.011 

17 144 0.005 37 324 0.013 

18 153 0.005 38 333 0.015 

19 162 0.005 39 342 0.017 

20 171 0.002 40 351 0.009 

A. Uncertainty of GUM 

• Results analysis of measurements  

Average deviation Eq. (2) 

𝑥̅ = 0.0034 𝑚𝑚.  

Standard deviation Eq. (3) 

𝑠𝑑 = 0.005952 𝑚𝑚. 

• Contributions from Type A Evaluations Eq. (4) 

𝑈1 = 0.000941 mm. 

• Contributions from Type B Evaluations Eq. (4) 

Dial gauge Accuracy ±0.001 mm 

𝑈2 = 0.000577 mm. 

Dial gauge Resolution ± 0.001 mm. 

𝑈3 = 0.000866 𝑚𝑚. 

• The Combined Standard Uncertainty Eq. (5) 

𝑈𝑐 = 0.001403 𝑚𝑚. 

• The Expanded Uncertainty Eq. (7) 

𝑈𝐸 = 1.96 ∗ 0.001403 = 0.002739 𝑚𝑚. 

• Report of measurement results. 

The uncertainty of the circular runout a shaft is 

32.0034±0.002749 mm. at Confidence 95%. 

B. Uncertainty of MCM 

MCM was set to run 200,000 trials of the proposed model, 

using the described input sources. The final histogram 

representing the possible values for the real efficiency of the 

cell, as shown on Fig. 3. Table II shows the statistical 

parameters obtained corresponding to the histogram. The low 

and high endpoints represent the 95% coverage interval for 

the final efficiency result of 32.0001 mm. 

 

 

Fig. 3. The frequency distribution of circular runout error from the MCM. 

TABLE II: STATISTICAL PARAMETERS OBTAINED FOR THE MONTE CARLO 

SIMULATION OF THE CIRCULAR RUNOUT MEASUREMENT MODEL 

Parameter Value 

Mean 32.000100 

Standard deviation 0.001402 

dLow 31.998698 

dHigh 32.001502 

 

Once more a comparison with the GUM approach is done 

and the results obtained by this methodology are shown on 

Table III, for a coverage probability of 95%. 

 
TABLE III: RESULTS OBTAINED FOR THE CIRCULAR RUNOUT MODEL 

USING THE GUM UNCERTAINTY APPROACH, WITH A COVERAGE 

PROBABILITY OF 95% 

Parameter Value 

Combined standard uncertainty 0.001403 

Effective degrees of freedom (Veff) ∞ 

Coverage factor (k) 1.96 

Expanded uncertainty 0.002739 

 

In this situation, dlow = 1.3 × 10-3 mm. and dhigh = 1.3 × 10-

3 mm., and the standard uncertainty 0.001403 mm. can be 

written as 1.4 × 10-3 mm., considering two significant digits, 

then δ = 1 / 2 × 10-3 mm. = 5 × 10-4 mm. As both dlow and 

dhigh are higher than δ, the GUM approach is not validated. 

But considering two significant digits, using a less rigid 

criterion, δ=1/2×10−2 mm. =5×10−3 mm. and the GUM 

approach is validated. 

 

V.   CONCLUSION 

The entire measurement process has a certain degree of 

uncertainty, and it is imperative to report the uncertainty 

associated with the measurement. From this research article, 

it was concluded that: 

- The GUM use combined standard uncertainty is 

0.001403 mm. The MCM use standard deviation is 0.001402. 

From the results by the two methods are then compared. The 

circular runout error found by the two methods is nearly 

identical and produced no significant differences. 

- The result analysis shows that the MCM has many 

advantages over the GUM in the estimation of uncertainty, 

especially that of complex systems of measurements. There 

is no need for complex mathematics to calculating coefficient. 

The GUM uncertainty is still the most often used method 

in metrology for estimating measurement uncertainty. It 

works well on a wide range of measurement systems. The 

GUM uncertainty is relatively compatible with the MCM in 

a conventional uncertainty estimation method of linear 

systems and systems that have small uncertainties. 
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