
 

 

 

Abstract—Traffic congestion has become a major concern, 

aroused as a result of increased population and urbanization. 

Hence, novel and innovative methods for controlling ever-

increasing traffic volumes are essential. Conventional traffic 

light schemes are the most popular method of controlling traffic, 

and it is logical and economical to make research endeavors to 

optimize their existing performance. Despite numerous studies, 

the aforementioned problem has not been optimally and 

sufficiently solved. In this research, we introduce an adaptive 

traffic signaling scheme based on vehicle density to facilitate 

optimal traffic signal control as well as effective traffic 

management. We also propose effective coordination of the 

traffic amongst the junctions. Here, the live video is utilized as an 

input provided to a deep Q network to provide adaptive phase 

timings as the output. In the proposed scheme, we introduced 

per car unit (PCU) as a novel parameter to represent the effect 

of each vehicle type on traffic conditions. Numerous filed trials 

on real-time data amply prove that the proposed scheme 

enhances the average speed of traffic up to 5.597 km/h. The 

proposed scheme shows an average increment of 175.71% in 

average mean speed compared to the existing static schemes. 

Except for the high traffic scenario, for both mid traffic and low 

traffic scenarios, the proposed scheme shows a considerable 

improvement in both average densities and maximum densities. 

In the mid-traffic scenario, the average speed shows an 

improvement of 3.85 km/h, while in the low traffic scenario, the 

average mean speed shows an improvement of 7.96 km/h. A 

reduction in fuel consumption and average delay were also 

observed, which will lead to a greener Transport 4.0. 
 

Index Terms—Traffic control, video processing, Q-learning, 

adaptive, coordinated traffic signaling, Per Car Unit (PCU), 

Transport 4.0 

 

I. INTRODUCTION 

One inevitable outcome of increased population and 

urbanization is traffic congestion. Both the average traffic 

delay and fuel consumption have a considerable impact on 

the economy. As both of these factors are dependent on traffic 

congestion, it is imperative to reduce traffic. Hence, novel 

and innovative methods of controlling ever-increasing traffic 

volumes are needed. The traffic light scheme is the 

conventional and most popular method of controlling traffic, 

and it is logical and economical to make research endeavors 

to optimize the performance, as proposed in [1], and 

improved version in [2]. The outcomes of this paper are an 

extension of previously published work [2], which is  
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presently an ongoing research project. Reference [3] lists 

insufficient capacity, unrestrained demand, and non-

optimized traffic light delays as the most prominent factors 

that lead to traffic congestion. This arises because most 

conventional traffic lighting schemes are based upon a static 

timing scheme for their operation. Phase timing values are 

typically an outcome of the study of traffic volumes over a 

certain time duration utilizing sensor systems. However, due 

to obvious reasons, the resulting scheme performance is not 

only inefficient but also does not respond to traffic volume 

fluctuations. Several works [3]-[6] have endeavored to 

address the aforementioned problem; however, the author felt 

that the problem is not yet optimally solved. Here, we propose 

an adaptive and coordinated traffic light scheme built upon a 

deep Q–network that can be optimized as per the local traffic 

environments. The proposed scheme considers the following 

parameters, namely, the vehicle density, vehicle speed, and 

the effect of each vehicle type on the traffic in the form of 

PCU values [7]. 

The rest of the paper is organized as follows: SECTION II 

briefly reviews the existing traffic control schemes. 

SECTION III explains the proposed adaptive and 

coordinated scheme, followed by SECTION IV, which 

analyzes the results and performance of the proposed scheme 

concerning existing schemes, and finally, SECTION V 

presents the conclusion. 

 

II. RELATED WORK 

Even though considerable attention has been given to the 

optimization of traffic signaling schemes, thus far, only 

limited attention has been given to developing practical 

mechanisms with sufficient performance that are adaptive to 

local traffic fluctuations. In the following, we briefly review 

the existing schemes in the literature as per the methods of 

traffic detection, traffic control, and traffic simulation. 

A. Traffic Detection Methods 

Regarding sensors for the detection of vehicle traffic, the 

existing works have utilized proximity sensors [6], [8] and 

induction loops [9], [10]. In [9], the loop detector occupancy 

factor was used to gauge the vehicle speed. The utilization of 

a piezoelectric sensor incorporated with induction loops was 

carried out for vehicle classification in [10]. An ultrasonic 

sensor was utilized to calculate traffic rates in [6], [8]. 

However, all the aforementioned works cannot detect the 

type of vehicles unless specific further arrangements are 

utilized. Furthermore, the determination of typical incidents 

such as traffic accidents and certain priorities such as 

ambulances are almost impossible with the sensors utilized in 

the aforementioned works [6], [8]-[10]. Hence, the authors 
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envisaged that utilization of already available CCTV systems 

may be the best option to obtain a detailed scenario of the 

traffic condition. Subsequent video processing was used for 

vehicle detection in [3], [11]-[13]. The work [11] introduced 

3 methods for improving the relevance and quality of training 

samples, taken for testing and validating deep learning 

models. The local features of objects were selected as 

positive samples to train the classifier, also considering 

positive samples with high color contrast between object and 

background. Care was taken to select samples to exclusively 

include targeting objects. Filtering was utilized in [12] to 

isolate the vehicular data from the background noise in turn to 

determine the vehicle counting data and relevant 

classification of vehicles. 

B. Traffic Control Methods 

The controlling mode can be of three types depending on 

the type of phase timing values utilized including predefined, 

vehicle actuated, and adaptive [14]. Considering traffic 

management systems, TRANSYT (Traffic Network Study 

Tool) is a fully predefined system that uses offline 

optimization. Comparatively, SCOOT (Split Cycle and Offset 

Optimization Technique) and SCATS (Sydney Coordinated 

Adaptive Traffic System) are fully adaptive systems [15]. An 

adaptive-type controlling scheme was introduced in [16], 

utilizing unprocessed high-dimensional sensory information 

as input to a deep neural network to determine queue length 

through a continuous reinforcement learning-based agent. In 

[6], real traffic data were used with a reinforcement learning-

based neural network to devise an adaptive controller. 

However, no categorization was considered for numerous 

vehicle types; hence, the effect of different vehicle types on 

traffic density has been neglected. 

C. Traffic Simulation Methods 

The available testing platforms are numerous and popular, 

as the creation of real-life scenarios is not economical in 

practice. This is because the latter may cause traffic accidents 

and may aggravate traffic congestion. The works [4], [6], [14], 

[17] selected SUMO [18] selected Paramic [16] selected PTV 

and [19]-[21] selected VISSIM as the testing platforms. The 

work in [22] cites the SUMO platform as an open-source 

traffic simulation platform with net import and demand 

modeling components. The same was observed to be used to 

procedurally generate vehicles, routes, traffic light 

algorithms, and traffic surveillance sensors. When comparing 

various simulation tools, considering properties such as 

microscopic/macroscopic model, scaling, user and mode 

characteristics, statistics output, Intermodality, calibration, 

API, and source code access [23] show that the SUMO 

simulator is most suitable for this use case. 

D. Traffic Simulation Methods 

The passenger car unit (PCU) [7] is a metric that is used in 

transportation to evaluate the traffic-flow rate on a road or an 

intersection. The PCU values were calculated according to 

Eqn. (1), 

PCUi = ((Vcar / Vi) / (Acar / A car)            (1) 

where 𝑃𝐶𝑈𝑖 is the ith vehicle PCU value, 𝑉𝑐𝑎𝑟 is the passenger car 

speed, 𝑉𝑖 is the ith vehicle speed, 𝐴𝑐𝑎𝑟 is the passenger car 

projected area and 𝐴𝑖 is the ith vehicle projected area. 

When considering inputs, using the existing vehicle count 

would offset set the impact each vehicle type has on traffic. 

Using the PCU value, we numerically represented the effect 

of different vehicles on traffic. 

E. Comparison with Related Works 

Research 
Simulation 

Method 
Type of vehicles 

Real-time 

strategies 
Objectives Constraints 

Proposed 

Solution 

Multiple Q-learning 

Models 

Passenger Car, 

Motorcycles, 

Three wheelers, 

bicycles, Heavy 

goods vehicles, 

large goods 

vehicles 

Adaptive 

Increasing average vehicle 

speed, Mean queue length 

minimization 

Fixed cycle length, Fixed phase 

sequence 

Wang et al. 

[24] 
Genetic Algorithm 

Passenger cars, 

bicycles 
Actuated 

Delay Minimization, Safety 

Maximization 

Limit on minimum cycle 

length, Limit on maximum 

cycle length, Limit on 

minimum green phase duration, 

Phase sequence is selected 

among phase groups 

Li et al. [25] Heuristic Passenger Car Actuated Delay Minimization 

Limit on minimum cycle 

length, Limit on maximum 

cycle length, Limit on 

minimum green phase duration, 

Limit on maximum green phase 

duration, Fixed phase sequence 

Aslani et al. 

[26] 

Simulation, 

Reinforcement 

Learning 

Passenger Car, 

Pedestrians 
Actuated 

Total travel time minimization, 

Total vehicle stops 

minimization, Emission 

minimization, Fuel 

consumption minimization 

cycle length is not limited, 

green phase duration is not 

limited, Fixed phase sequence 

Jin and Ma 

[27] 

Simulation, Multi-

Agent System, 

Reinforcement 

Learning 

Passenger Car Actuated 
Delay minimization, 

Throughput maximization 

cycle length is not limited, 

Limit on minimum green phase 

duration, Limit on maximum 

green phase duration, Phase 

sequence is selected among 

phase groups 
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Lee et al. 

[28] 

Simulation, 

Heuristic 
Passenger Car Actuated 

Delay minimization, 

Throughput maximization 

Limit on minimum cycle 

length, Limit on maximum 

cycle length, Limit on 

minimum green phase duration, 

Limit on maximum green phase 

duration, Phase sequence is 

selected among phase groups 

Chandan et 

al. [29] 

Simulation, Rule-

based 

Passenger Car, 

Transit vehicles, 

Heavy goods 

vehicles 

Actuated 
Delay minimization, Total 

vehicle stops minimization 

cycle length is not limited, 

Limit on minimum green phase 

duration, Limit on maximum 

green phase duration, Fixed 

phase sequence 

Portilla et 

al. [30] 

Model predictive 

control 

Passenger Car, 

Bicycles 
Actuated 

Total travel time minimization, 

Mean queue length 

minimization 

cycle length is not limited, 

green phase duration is not 

limited, Fixed phase sequence 

Choi et al. 

[31] 

Simulation, 

Heuristic 
Passenger Car Adaptive 

Delay minimization, 

Throughput maximization, 

Total travel time minimization, 

Emission minimization, Fuel 

consumption minimization, 

Increasing average vehicle 

speed 

cycle length is not limited, 

green phase duration is not 

limited, Fixed phase sequence 

Le et al. [32] 
Simulation, 

Heuristic 
Passenger Car Actuated Throughput maximization 

Fixed cycle length, green phase 

duration is not limited, Fixed 

phase sequence 

Feng et al. 

[32] 

Simulation, 

Recursive algorithm 
Passenger Car Adaptive 

Delay minimization, Mean 

queue length minimization 

Limit on minimum cycle 

length, Limit on maximum 

cycle length, Limit on 

minimum green phase duration, 

Limit on maximum green phase 

duration, Phase sequence is 

selected among phase groups 

 

III.  PROPOSED ADAPTIVE AND COORDINATED 

SCHEME 

A. Location Selection 

For this research, a case study was performed in the 

Horton Plains junction in Colombo, Sri Lanka 

(6.911472922759695, 79.87734081653434), as shown in 

Fig. 1 and Fig. 2. 

This junction was selected as a case study due to the 

high level of congestion observed daily and the presence of 

a variety of traffic flow patterns. Although the junction is 

a four-way junction, in the presence of a roundabout, a 

complex traffic light system was implemented. 

 

Fig. 1. Horton plains junction. 
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Fig. 2. Horton plains junction AutoCAD design. 

 

TABLE I: STATICAL TIMINGS 

Horton Place/C W W Kannangara Mw - Time Allocation for Several Periods 

 

Time slots 

Entry to Exit from Entry & Exit from 

Horton Pl from Horton Pl to Green C W W Kannangara 

Public Library side path & R/T Mw 

0600–0700 12 20 20 

0700–0930 20 40 25 

0930–1145 15 40 20 

1145–1430 15 45 25 

1430–1630 15 45 40 

1630–1930 20 50 60 

1930–2100 12 25 25 

2100–0600 10 15 20 

 

B. Data Collection 

The data for the research were sourced from both primary 

and secondary means sourced from research papers, journals, 

websites [33]-[37], and standard archives such as State 

Development, Construction Corporation (SD & CC) and 

Municipal Council, Colombo (CMC), Sri Lanka and field 

surveys. The research team obtained access to live CCTV 

feeds from 4 CCTV cameras located at the Horton Plains 

junction. Manual counting and image processing were 

utilized to obtain the vehicle density data of each lane. Data 

were collected for four days per week, selecting two 

weekdays and weekends, for a total duration of 3 consecutive 

weeks. 

 
TABLE II: VEHICLE COUNTS IN FOUR DAYS OVER ONE WEEK 

 

 

Date 
06/01/2021 

Wednesday 

Vehicle Counts 

 

08/01/2021 Friday 

Vehicle Counts 

09/01/2021 

Saturday Vehicle 

Counts 

10/01/2021 

Sunday Vehicle 

Counts 

From Public 

Library Road 

Outgoing 5260 6006 3072 2916 

Incoming 5478 6254 2082 2268 

From Town 

Hall Road 

Outgoing 6242 7022 3204 3456 

Incoming 7270 7722 3948 3846 

From Horton 

Place Road 

Outgoing 6080 5916 1968 1794 

Incoming 6812 7474 3162 3054 

From 

Museum 

Outgoing 6752 6276 3600 3456 

Incoming 5774 5864 2652 2454 
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Fig. 3. CCTV feed. 

 

C. Procedure 

The overall process consists of two phases: vehicle 

detection and traffic analysis. 

1) Vehicle detection: For vehicle detection, we used 

CCTV inputs as our methods of observation. When using the 

video feed to detect and extract traffic information, we tested 

several machine learning models. From the CCTV footage, 

we extracted different frames and manually labeled different 

vehicle classes to create a dataset of local vehicles. We 

trained several popular machine learning architectures using 

the datasets depicted in Table III. 

 
TABLE III: TRAINING PARAMETERS 

Model Training time Accuracy Prediction 

time 

Yolo_v4_conv 11 h 33 

m 13 s 

96.3665 1.1 

ssd_inception_v2_coco 12 h 40 

m 11 s 

83.2187 1.6 

Ssd_mobilenet_v2_coco 13 h 12 

m 51 s 

81.4452 1.7 

Faster_rcnn_inception_v

2_coco 

14 h 03 

m 36 s 

89.4781 1.9 

 

The above models were pretrained initially with COCO 

datasets, and then using transfer learning, the final layers 

were trained using the local vehicle datasets. The models 

were tested on a live CCTV stream. From the above results, 

the YOLOv4 architecture shows superior performance 

among the models that we tested. For the vehicle detection 

model, we used the YOLOv4 architecture and retrained the 

model completely using the local datasets. Finally, the trained 

model was tested with a live CCTV stream, and the following 

results were obtained, as presented in Table IV. 

 
TABLE IV: TEST RESULTS FOR THE LIVE CCTV DATA 

Model 
Yolo_v4_emp

ty 

Training time 23 h 18 m 42 s 

Accuracy 99.4329 

Prediction time 1.2 

 

The dataset consisted of 5 classes, namely, buses, three-

wheeler, motorcycles, cars, and vans. Each category 

consisted of 300 to 500 images. Using the vehicle detection 

model, traffic information such as vehicle count, vehicle 

speed, and vehicle density was obtained for each lane. These 

data were passed into traffic analysis models. 

 

 

 

Fig. 4. Image labeling. 
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2) Traffic control: For traffic control, we used the Horton 

Place junction, Colombo, Sri Lanka (6.911472922759695, 

79.87734081653434), as an experimental setup. A model of 

the Horton Place junction was built using the obtained, 

blueprints within SUMO and simulated the traffic using 

obtained vehicle counts and existing traffic light phase 

timings. 

 

 

Fig. 5. Simulation of the Horton plains junction. 

 

The traffic analysis model consists of two main parts. They 

are three Q-learning models and a phase separator. We were 

able to observe three distinct traffic patterns at three different 

ranges of traffic density, as in Table V. 

 
TABLE V: TRAFFIC DENSITY LEVELS 

Traffic Density Level Average Traffic Density of Lanes in 30 s 

High Level 29 + 

Medium Level 14–29 

Low Level 0–14 

 

At each of the ranges of traffic density (0–14, 14 – 29, 29+), 

a distinct change in traffic flow was observed that needed 

separate traffic light patterns for each traffic density level. 

Therefore, each level needed a separate action space that 

became too complex for a single DQN. Therefore, we trained 

separate DQNs for each traffic level to simplify the process. 

The phase separator identifies the traffic patterns and 

allocates one of the three Q-learning models. Each Q learning 

model takes an input vector to consist of several parameters, 

including vehicle count, vehicle density, vehicle speed, 

vehicle queue length, vehicle delay times, and PCU values as 

the state of the environment. The Q-learning models were 

each trained using very high traffic densities, middle-level 

traffic densities, and low-level traffic densities. The phase 

separator model uses a buffer to collect traffic density counts 

and plots a graph of traffic density vs. time for low, medium, 

and high traffic scenarios, as depicted in Fig. 6. The graphs 

were collected and manually labeled as high density, medium 

density, or low density. Using a dataset of these graphs, a 

CNN classifier was trained to classify the graphs accordingly. 

When the model identifies the graph as one of the levels of 

densities, the scheme will choose the relevant Q-learning 

model to be deployed. 

 

Fig. 6. Traffic density vs. time. 

 

The agents were given a set of possible traffic light phase 

templates to choose as their actions. In the scheme, we trained 

the deep Q network with the data collected in SECTION III-

A for 300 iterations, and the outcomes for low, medium, and 

high traffic scenarios are depicted in Fig. 7 below. 

 

Fig. 7. Loss function response for 300 iterations. 
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The resultant trained model was connected with the vehicle 

detection module to create the overall scheme. The data 

obtained in the vehicle detection module were sent to the 

trained module, and the resultant traffic light phases 

generated by the model were fed to the traffic light scheme. 

The vehicle detection module observes the changes in the 

environment and sends the new vehicle traffic data to the 

trained model repeating the loop. 

Here in this system, we separately trained three distinct 

models to compensate lack of information with regard to 

vehicle queues outside the range of CCTV observation.  

In the low Traffic density scenario, only the observable 

vehicle count will be simulated to give an output. In the 

medium traffic density scenario, traffic is considered to be 

extended throughout the simulated lane length beyond the 

observational range. Finally, In the high traffic scenario, 

traffic beyond the observational range is considered to extend 

infinitely till the scenario changes. 

3) System architecture: The system initially takes input 

from a CCTV feed and observes for 30 s. from the video feed, 

using a convolutional neural network (CNN), vehicles were 

identified and categorized into various types. Each vehicle is 

assigned a PCU value according to its type, and a weighted 

count (PCU value x vehicle count) is taken as the vehicle 

density. By defining a region of space (RoS) for each lane 

and identifying vehicles at each end of the RoS and by 

calculating the average time taken to travel the RoS, a mean 

speed is obtained. By plotting Vehicle Count vs. Time graph 

for the 30 s. Traffic Level estimation can be obtained. A 

vehicle count graph will be sent to a CNN that will identify 

the traffic phase (Low, Medium, High) and assign a DQN that 

has the correct action space. The DQN will take vehicle 

density and mean speed as inputs. Each DQN consists of an 

agent, action space, and environment. The functionality of 

agents and environments are identical, while each DQN has 

a different action space. The DQN will choose a traffic signal 

pattern to be implemented in the next 30 s. 

 

Fig. 8. System architecture. 

 

IV. RESULTS AND PERFORMANCE ANALYSIS 

A. Results 

As discussed above, the proposed scheme is both adaptive 

and coordinated. Using the test data obtained in SECTION 

III-B, the simulation outcomes are as follows. 

1) Comparison with existing static schemes: The 

proposed adaptive scheme showed enhancements in the 

following aspects, as presented in “Table VI.” 

a) Table VI shows that the average speed increased up to 

5.597 km/h. The proposed scheme shows an average 

increment of 175.71% in average mean speed compared to 

the static schemes. 

b) As shown in “Table VI,” except for the high traffic 

scenario, for both mid traffic and low traffic scenarios, the 

proposed scheme shows a considerable improvement in both 

average densities and maximum densities. 

In the mid-traffic scenario, the average mean speed shows 

an improvement of 3.85 km/h, while in the low-traffic 

scenario, the average mean speed shows an improvement of 

7.96 km/h. 

TABLE VI: COMPARISON BETWEEN PREVIOUS ADAPTIVE 

SCHEME AND NEW SCHEME 

 

 Average 

Mean 

Speed 

of a 

Lane 
(km/h) 

Average 

Density 

of a Lane 

(#Veh) 

Average Max 

Density of a 

Lane (#Veh) 

 

Static Scheme 

 

2.005 
 

27.75 
 

40 

 

Previous Adaptive 

Scheme 

3.79 22 38.75 

 
 

Adaptive 

Scheme 

High 

Traffic 

0.98 29.3416 59 

Mid 

Traffic 

5.85 14.61 37 

Low 
Traffic 

9.96 1.19 6 

 

2) Compared to the previously proposed scheme 

a) The scheme was trained via 3 neural networks, each 

trained separately for different vehicle densities. Each traffic 

scenario, namely, high traffic density scenarios, mid traffic 

density scenarios, and low traffic density scenarios, was 
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handled with uniquely optimized rules. Therefore, the overall 

results have been improved considerably. 

b) In “Table VI,” it is shown that the proposed scheme 

shows an improvement of 2.06 km/h. In the mid traffic 

scenario and a 6.17 km/h improvement in the low traffic 

scenario over the previous adaptive scheme [1]. 

In total, a 46.9% improvement in mean speed could be 

observed overall in the proposed scheme compared to the 

previously proposed adaptive scheme [1]. 

B. Performance Analysis 

A comparison of traffic densities between the static 

scheme and the proposed scheme is plotted below. 

 

   

Fig. 9. Low traffic scenario with the proposed scheme and with the static scheme. 

 

In the low traffic scenario, the average density of the static 

scheme shows a value of 1.89, while in the proposed scheme, 

the value has been improved up to 1.19. 

For medium traffic scenarios, 

   

Fig. 10. Medium traffic scenario with the proposed scheme and with the static scheme. 

 

In the medium traffic scenario, the average density of the 

static scheme shows a value of 18.35, while in the proposed 

scheme, the value has been improved up to 14.61. 

For high traffic scenarios, 

   

Fig. 11. High traffic scenario with the proposed scheme and with the static scheme. 

 

In the high traffic scenario, the average density of the static 

scheme shows a value of 44.99, while in the proposed scheme, 

the value has been improved up to 29.34. 

When comparing the theoretical output of our proposed 

system with established systems such as INSYNC (where 

fuel consumption has been reduced up to 33% [34]), our 

proposed system shows a 3.68% greater fuel consumption 

reduction. Compared to SCOOT (where fuel consumption 

has been reduced up to 5.7% [34]), our proposed system 

shows an approximately 31% greater fuel consumption 

reduction. 

 

V. CONCLUSION 

In this research, we introduced an adaptive traffic signaling 

scheme based on road traffic density to facilitate optimal 

traffic signal control as well as effective traffic management. 

We also proposed effective coordination of the traffic. The 

proposed scheme used live video as an input provided to a 

deep Q network to give adaptive phase timings as the output. 

Compared to the existing works, we introduced per car unit 

(PCU) as a novel input to represent the effect of each vehicle 

type on the traffic condition. Extensive tests on real-time data 

amply prove that the proposed scheme enhances the average 

speed of traffic up to 5.597 km/h. The proposed scheme 

shows an average increment of 175.71% in average mean 

speed compared to the existing static schemes. Except for the 

high traffic scenario, for both mid traffic and low traffic 

scenarios, the proposed scheme shows a considerable 

improvement in both average densities and maximum 

densities. In the mid-traffic scenario, the average mean speed 

shows an improvement of 3.85 km/h, while in the low-traffic 
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scenario, the average mean speed shows an improvement of 

7.96 km/h. The test results also indicate that our proposed 

solution, compared to the previously proposed scheme [1], 

provides a 46.9% improvement. From the calculations 

performed according to the AASHTO guidelines [48], daily 

fuel loss in the junction was reduced by 36.38%, and the 

average delay was reduced by 36.71%. Thus, the outcome of 

our research duly fulfills the objective of Transport 4.0, being 

more efficient and greener while optimizing the travel 

timings and minimizing costs for passengers overall. 
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