
 Abstract—The paper aims to find whether friction values 

namely skid numbers obtained by the Locked Wheel Skid 

Trailer (LWST) device can be predicted using values obtained 

by the Dynamic Friction Tester (DFT) and the Circular 

Texture Meter (CTM). The last two measure the coefficient of 

dynamic friction (called DFTx) at different speeds (labeled x) 

and the Mean Profile Depth (MPD), they also measure the 

International Friction Index (IFI) parameters F60 and Sp. 

Artificial Neural Network (ANN) software was used to 

investigate the relationships. Twelve (12) different models were 

proposed with different input parameters and the best model 

giving the highest coefficient of determination (R2) was 

discussed in this paper. The results show that the most 

influential factors on LWST friction values are MPD, DFT0, 

DFT50, and DFT64 and MPD was the strongest among them. 

In addition, results show that the ANN approach is very 

efficient in predicting the LWST friction values for both 

training and validation sets with R2 values of 79% and 83%, 

respectively. It was also shown that the IFI parameters were 

relatively less influential on LWST values than DFT and MPD 

measurements. 

 
Index Terms—Artificial Neural Network, prediction, LWST, 

DFT, CTM, IFI, friction, texture. 

 

I. INTRODUCTION 

Pavement skid resistance is the property that plays a 

major role in highway design, maintenance, safety and 

accidents analysis [1], [2]. It is the ability of the pavement 

surface to prevent the loss of traction with the vehicle tire. 

We always aim for a pavement surface with friction that is 

adequate enough to prevent slipping of the vehicle, but at the 

same time, the surface must not be very rough to decrease 

tire wearing due to friction. 

Many factors affect the pavement surface friction, like 

wetting conditions, bleeding, particles angularity, and one of 

the most influencing factors is the surface texture which is 

the feature of the road surface that relates to most tire-

pavement interactions, including wet friction, noise, splash 

and spray, rolling resistance and tire wear [3], [4]. 

Pavement texture has been categorized into four ranges 

based on the wavelength of its components: micro-texture, 

macro-texture, mega-texture, and roughness or evenness. 

However, wet friction is influenced by the micro-texture and 

macrotexture range of properties [5]-[10]. 
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Different devices are used to measure friction values, such 

as Locked Wheel Skid Trailer (LWST), Dynamic Friction 

Tester (DFT) and Circular Texture Meter (CTM), British 

Pendulum Tester (BPT), California Skid Test (CST), etc. 

Our focus here will be on the first three (LWST, DFT and 

CTM). 

Many studies have been conducted to study the 

correlation between different friction values obtained by 

different devices or to find the friction values using 

pavement surface characteristics. In addition, many studies 

have been carried out using the Artificial Neural Network 

(ANN) approach in pavement engineering; some of these 

studies are reviewed in this section. 

Khasawneh and co-workers studied the correlation 

between LWST skid numbers at 64 km/h, DFT friction 

numbers at 64 km/h, DFT friction numbers at 20 km/h and 

MPD measured using the CTM using simple, multiple linear 

and nonlinear regression techniques [11]-[13]. DFT64 was 

used to account for macrotexture effect while DFT20 was 

used to account for micro-texture effect since micro-texture 

effect is measured using low speed friction measuring 

devices. Author of these studies also investigated the 

International Friction Index (IFI) parameters F60 and Sp. It 

was also found that the IFI parameters are good estimators 

in predicting LWST values. Finally, using non-linear 

regression had provided even better prediction power to 

LWST values. Along the same lines, Bustos and research 

group stated that the inclusion of texture measurements 

when estimating skid resistance values significantly 

enhanced the predictive power of the developed models [14]. 

Meegoda et al., 2015 studied the correlation between skid 

number values obtained by LWST and the mean profile 

depth MPD using a vehicle mounted laser [15]. A positive 

correlation between Skid Number (SN) values and MPD for 

MPD values less than 0.75 mm was found, then there was a 

negative correlation as the MPD increases to 1.1 mm and 

beyond the MPD value of 1.1 mm to the maximum value of 

1.4 mm, SN values remained almost constant. 

Zahir et al., 2017 used Laser Crack Measurement System 

(LCMS) Three-Dimensional laser profile and LWST to 

calculate the texture depth and the skid number and to find 

whether there is a correlation between them in order to use 

LCMS as a supplement to LWST for monitoring [16]. A 

good correlation between the two measurements in the range 

of 0.5 to 1.5mm depths was reported. Liu et al., 2017 also 

used three-dimensional micro- and macro texture 

measurements using a line laser scanner [17]. Results 

confirmed that the relationship between 3D mean texture 

depth and 3D root mean square height is significant. In 

addition, Lu et al., 1971 showed that there is a correlation 

between the skid number and the stopping distance, a 
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significant one-to-one correlation was obtained [18]. Further, 

Fernando et al., 2013 studied the relationship between skid 

numbers obtained by LWST and variable-slip and fixed-slip 

devices where a reasonable relationship was found [19]. 

The use of Artificial Neural Network (ANN) technique in 

pavement engineering and modeling is also considerable as 

can be seen in several relevant studies such as [20]-[22]. 

The LWST operates at high speeds and interferes with 

traffic and consequently requires quite long time, unlike the 

DFT and CTM, which can be used at low operating speeds 

and less traffic interruptions and time. Therefore, it becomes 

handy to use the values obtained by the DFT and CTM 

devices to predict LWST friction values. Furthermore, since 

the DFT and CTM devices are used to calculate the IFI 

parameters (F60 and Sp); it is intended to use these values 

predict the LWST measurements to explore the presence of 

any potential correlation. In this study, ANN approach was 

utilized. 

 

II. METHODOLOGY  

The data was collected using actual pavement sections in 

five (5) different locations in the state of Ohio. Along the 

left wheel path two runs were made and the average of the 

two runs was recorded. Data was collected at the same time 

of the year to decrease the environmental and traffic effects 

and for two consecutive years. Also lack of skid resistance 

in the collected data could be due to the time data was taken 

in the summer, which might have caused bleeding of asphalt, 

so friction values could be lower than expected [13]. The 

three devices used for this task are the LWST as per ASTM 

E-274 [23], DFT as per ASTM E-1911 [24] and CTM in 

accordance with ASTM E-2157 [25]. IFI values were also 

computed based on friction and texture measurements. In 

this study, the ANN software called Visual Gene Developer 

was used. Besides, IFI parameters Sp and F60 were utilized to 

predict LWST friction values. A comparison was made 

between different ANN networks and another set of 

comparisons with previously developed statistical models 

[13] were carried out as well. 

The experience of using ANN analysis in transportation-

related studies is extracted from Semeida. In his research, 

the Multilayer Perceptron (MLP) neural network models 

provided the best performance of all models. In addition, 

due to the variety in available learning algorithms, this 

network is usually preferred in engineering applications. 

Moreover, hyperbolic tangent and sigmoidal functions are 

the most commonly used transfer functions in ANN 

applications [26], [27]. Many trials were run to confirm that 

the hyperbolic tangent and sigmoidal functions are the most 

suitable transfer functions for this study. Keep in mind that 

the major difference between these two functions is the 

range they cover; the hyperbolic tangent range is from zero 

to one whereas the range of sigmoidal function is from 

minus one to one. 

 

III. RESULTS AND DISCUSSION  

Visual Gene Developer as an ANN program was used for 

the prediction of LWST measurements using different 

combinations of DFT, MPD, and IFI parameters (F60 and Sp). 

In this study twelve (12) models were generated using 

different combinations and analysis parameters. Results are 

summarized in Fig. 1. 

In general, ANN consists of three layers, namely, the 

input, the hidden, and the output layers. In statistical terms, 

the input layer contains the independent variables and the 

output layer contains the dependent variables. ANN 

typically starts out with randomized weights for all their 

neurons. When a satisfactory level of performance is 

reached, the training is ended and the network uses these 

weights to make a decision. The neural network computing 

system is made up of a number of simple and highly 

interconnected nodes or processing elements called neurons.  

Among the different kinds of transfer functions that can 

be used, a hyperbolic tangent and sigmoidal functions were 

adopted in this study. 

 

 
Fig. 1. ANN results summary. 
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As shown in Fig. 1, the highest coefficient of 

determination (R²) was obtained when using MPD, DFT0, 

DFT10, DFT20, DFT30, DFT40, DFT50, and DFT64 as 

independent variables. It is worthy to be mentioned here that 

the numbers following the abbreviation DFT represent the 

speed at which friction was recorded. This model was 

developed using hyperbolic tangent transfer function while 

outliers are kept and twenty (20) nodes in the hidden layer 

were used. This resulted in R² of 79%. 

The dataset consists of one hundred and seventy-four (174) 

LWST values and was divided into a training dataset and a 

validation dataset. The training dataset consisted of 90% of 

the sample size and the validation dataset had the 

remaining10 %. Model performance measures are 

Summation of Error (SoE), average error per single data 

output and R2 for both training and validation datasets. 

Numerous trials were performed to reach the proper 

percentage between training and testing datasets that provide 

the best performance in predicting LWST as the dependent 

variable. The architecture of the ANN model structure is 

shown in Fig. 2 below. 

 

 
Fig. 2. Architecture of the ANN. 

 

 
Fig. 3. Analyzed network diagram. 

 

The results from the ANN analysis include the analysis of 

the architecture of the ANN structure in terms of the weights 

since Visual Gene Developer, the adopted software used in 

the analysis, provides graphical visualization of trained 

network. In the analyzed network diagram in Fig. 3, lines 

represent weight factors and circles (nodes) indicate 

threshold values. Thus, the color is a function of the weight 

factor in terms of its direction while the line width 

represents the magnitude of the weight factors, in other 

terms, it is the absolute weight factor multiplied by two. 

It can be noticed from Fig. 3 that the most influencing 

factors on LWST values are MPD, DFT0, DFT30, DFT50, 

and DFT64 based on the line color, while MPD, DFT0, and 

DFT64 are the most influential based on the line width. 

As can be observed from the ternary map shown in Fig. 4, 

the most influencing factor is the MPD, which is plotted as 

the third variable. The ternary map indicates that the higher 

normalized value of the MPD leads to higher values of the 

LWST. In addition, the effect of the other two variables 

(DFT0 and DFT64) is quite marginal with a slight 

preference for the first variable up to a certain extent. Hence, 

it can be noticed from the ternary map that the inclination of 

higher predicted LWST friction values is toward the higher 

values of normalized DFT64 variable, which is plotted as a 

second variable in the above ternary prediction map. 

 

 
Fig. 4. ANN ternary map. 

 

The analysis results showed a significant enhancement 

over all of the performance measures indicators compared 

with the regression analysis outcomes. The observed R2 

values for both training and validation datasets were 79% 

and 83%, respectively, whereas the summation of the errors 

and the average error for the normalized training set were 

0.379 and 0.0021, respectively. The interception and slope 

degrees are shown in Table I. The relationships between 

training and validation actual and predicted data are shown 

in Fig. 5 and Fig. 6, respectively. 

 
TABLE I: TRAINING AND VALIDATION SETS REGRESSION ANALYSIS 

RESULTS 

Category Variable 
Coefficient of 

Determination (R²) 
Slope y-intercept 

Training Out 1 0.79 0.78 0.15 

Validation Out 1 0.83 0.86 0.09 

 

 
Fig. 5. Training actual vs. predicted data. 
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Fig. 6. Validation actual vs. predicted data. 

 

Overfitting represents the difference between the training 

and validation coefficient of determination (R²). Overfitting 

has two major types as shown in Fig. 7. The first type is 

called “strong overfitting”, which occurs when the 

difference in R² exceeds 10%. The second type is called 

“little overfitting”, which occurs when the difference is less 

than 10%. Strong overfitting can be solved by collecting 

more data, and increasing the number of independent 

variables (meaning the model capacity is not high enough). 

In this study, the strong overfitting problem was found in 

three models and was solved by using eight (8) independent 

variables together. 

 

 
Fig. 7. Overfitting types. 

 

IV. CONCLUSION 

Based on the ANN results obtained in this study, the 

following conclusions can be made: 

1) The most influential factors on LWST friction values 

are MPD, DFT0, DFT30, DFT50, and DFT64. 

2) The ANN modeling provided better results than 

conventional regression modeling. 

3) ANN analysis concluded that MPD has the highest 

influence on the values of LWST followed by DFT64. 

4) In this study, there is no difference between the 

results obtained using the hyperbolic and sigmoidal transfer 

functions. 

5) Increasing number of nodes in the hidden layer leads 

to an increase in the overall accuracy of the predicted values 

and the overall R² of the model. 

6) The use of DFT and MPD values to predict LWST 

friction values was more significant than the use of the IFI 

parameters (F60 and Sp). 
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