
  

  

Abstract—Preparations for possible disasters should be made 

to minimize the damage caused by events such as fires and 

earthquakes. Several kinds of disaster simulations have been 

developed for this reason. Many evacuation simulation methods 

are based on multi-agent systems. These are considered to be 

useful and powerful methods of dealing with complex systems 

containing several elements, and have been proposed for safely 

guiding evacuees. The social force model is one approach that 

considers the influences and interactions between evacuees. 

When aiming to improve the precision of social force model 

simulations, the model parameters should be appropriately 

determined. In this paper, a method for determining the 

parameters used in the social force model is proposed by 

applying an evolutionary computing method to collect evacuee 

flow data. 

 
Index Terms—Evacuation simulation, social force model, 

pedestrian model, genetic algorithm.  

 

I. INTRODUCTION 

To ensure the structural reliability and safety of 

architecture, not only should structural performance be 

considered during events such as earthquakes, but also other 

elements of the system such as software and human occupants. 

In recent years, buildings have been designed with multiple 

floors and with greater underground area with the aim of using 

urban space more efficiently. However, as a result of this, 

evacuation from buildings with more complicated layouts can 

take more time in the event of a disaster. A range of options 

have been discussed to reduce the danger posed by disasters 

from various viewpoints. It is thought that huge disasters in 

tectonically unstable areas, such as the Nankai Trough in the 

south of Japan, will occur with a high probability in near 

future. Therefore, preparatory planning for large natural 

disasters is an urgent and important issue. 

Considering the many victims of disasters such as fires and 

earthquakes that have already occurred, the importance of 

evacuation countermeasures has been highlighted in addition 

to that of structural building resilience. Computer simulations 

are powerful and efficient tools for estimating the temporal 

and spatial patterns of events that occur during a disaster, a 

many simulation models of pedestrian behavior have been 

proposed to identify the laws underlying crowd dynamics and 

to predict the level of danger and confusion that occurs during 

s evacuation [1]–[6]. In addition, these evacuation simulation 
are carried out at the building design stage with the aim of 
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improving evacuation efficiency of, for example, 

underground shopping areas.  

Several kinds of disaster simulations have been developed 

to determine the effect of damage using assumed situations 

such as influence of smoke and passage blockage. In 

particular, evacuation simulation methods using multi-agent 

systems have been proposed for guiding evacuees, in which 

multiple evacuees are represented using autonomous agents, 

and the temporal and spatial dynamics of evacuation are 

estimated by the simulation. The social force model is one 

evacuation simulation model that considers the influence of 

multiple evacuees [2], [4], [5].  

It is pointed out that there is no International standard on 

the methods and tests to assess the verification and validation 

(V&V) of building fire evacuation models and the 

uncertainties associated with evacuation modelling are 

discussed [7].  Some methods to decide a set of parameters 

appropriately have been proposed to guarantee the accuracy 

and reliability of the simulation results. Johansson et al. have 

proposed an evolutionary optimization algorithm to 

determine optimal parameter specifications for the social 

force model using the suitable video recordings of interactive 

pedestrian [8]. Nonaka et al. have proposed a walking 

velocity model for accurate pedestrian simulations, in which 

presents the relation between pedestrian density and velocity 

distribution that was generated through analyzing flows 

observed from actual pedestrian movement in evacuation [9].  

In aiming to improve the precision of the simulation, the 

parameters included in this model should be appropriately 

determined. 

In this paper, we propose a method for determining the 

parameters of the social force evacuation model using the 
evolutionary computation. The method is used to represent 

the flow of evacuees during an emergency, which is evaluated 

through a comparison with actual evacuees. For this purpose, 

we carried out several experiments to gather flow data for real 

subjects under several walking conditions and applied the 

proposed method to determine the parameters of the model 

from the flow data. We discuss the performance of the method 

and compare group flow dynamics in the experiments with 

corresponding real-life evacuation simulations.   

Section II summarizes the construction method of the 

evacuation simulation. In Section III, we summarize the 

experimental methods used for the model evaluation, and 

summarize the experimental results in Section IV. In Section 

V, we propose a method for estimating the parameters of the 

simulation model from the measurement data using an 

evolutionary computation algorithm, and we evaluate the 

estimation result. Finally, Section VI summarizes the key 

findings of the research. 
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Fig. 1. Forces acting on each agent from the model configuration. 

 

   
 (a) Single direction          (b) Opposite direction  

Fig. 2. Configuration of walking experiments. 

 

II. EVACUATION SIMULATION MODEL 

A. Experiment Configuration  

Firstly, this section describes a model for carrying out the 

evacuation simulation, in which evacuees are represented by 

autonomous and interrelated agents. The original dynamic 

model of the agents is defined by assuming a range of 

socio-psychological and physical forces that influence crowd 

behavior according to the literature [2]. In crowds, 

pedestrians’ movements depend on various external 

influences and internal motivations. In this model, agents tend 

to keep a velocity-dependent distance from other agents, walls, 

and other obstructions such as display shelves and desks, and 

these repulsive forces are defined as the interaction forces 

between elements [2]: 
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       (1) 

 

where mi is the mass of agents, v0
i is a certain desired velocity 

and vi(t) is a current velocity vector of agent I, respectively, 

and e0
i is a desired direction vector. The second term in Eq. 

(1) is the applied force, defined from the repulsive force and 

the frictional force acting between agents I and j, which is 

called the interaction force fij. The third term fiw represents the 

reaction force from the walls (see Fig. 1). 

During an evacuation, evacuees interact with each other; 

they keep a distance (personal space) and furthermore they 

may be pushed by others when they are stranded in closed 

range. Thus, agent I in the evacuation simulation experiences 

several interaction forces from agent j, as follows: 

𝑓𝑖𝑗 =  𝑎1𝑖  exp
𝑟𝑖𝑗 − 𝑑𝑖𝑗

𝑏1𝑖
+ 𝑘𝑔 𝑟𝑖𝑗 − 𝑑𝑖𝑗   𝒏𝑖𝑗

+ 𝑢𝑔 𝑟𝑖𝑗 − 𝑑𝑖𝑗  ∆𝑣𝑖𝑗
𝑡  𝒕𝑖𝑗          (2) 

 

The total interaction force from other agents can be 

summarized as the second term in Eq. (1). 

In calculating the reaction force from walls and obstacles 

(expressed by the third term of Eq. (1)), several nodes are set 

on walls and obstacles at intervals that are smaller than the 

size of the agent. Then, the magnitude of the applied force to 

the agent was determined by the positional relationship of the 

nearest neighbor node to the agent. The reaction force from 

the wall [2] was defined as follow: 

 

𝑓𝑖𝑤 =  𝑎2𝑖  exp
𝑟𝑖𝑤 − 𝑑𝑖𝑤

𝑏2𝑖
𝑘𝑔 𝑟𝑖𝑤 − 𝑑𝑖𝑤  𝒏𝑖𝑤

+ 𝑢𝑔 𝑟𝑖𝑤 − 𝑑𝑖𝑤 ∆𝑣𝑖𝑤
𝑡  𝒕𝑖𝑤  (3) 

 

The time sequence of the flow of agents was defined by the 

dynamic system of Eq. (1), Eq. (2), and Eq. (3), which 

depended on the parameters in the model.  

 

III. MEASUREMENT OF PEDESTRIAN FLOW 

A. Procedure of Experiments  

In this research, the two kinds of experiments were carried 

out to measure the flow of real subjects to generate the dataset 

from which the model parameters were estimated. The first 

experiment was conducted to specify the walking speed of the 

subjects. For this, all subjects were asked to walk in a 

clockwise direction along a passage in a lecture room, as 

shown as Fig. 2. The width of the passage was 1 m. In the 

second experiment, half of subjects walked in a clockwise 

direction and the other half walked in an anti-clockwise 

direction, using the same room configuration as the first 

experiment. We recorded the flow of the subjects in both 

experiments using a 360-degree omnidirectional camera (SP 

360, Kodak Ltd.). As the subjects walked in opposite 

directions in the second experiment, they sometimes met and, 

as a result, walked with stronger interaction force than 

subjects in the first experiment. 

B. Condition of Agent Movement  

In each experiment, to control the speed at which each 

subject moved, we played a double-beat sound using 

metronome. According to [6], it is reported that a correlation 

is generally observed between the speed of played sound and 

the walking speed of healthy listeners; in the case of 100 steps 

per minutes, walking speed is approximately 4 km per hour. In 

this research, it was assumed that during an emergency 

evacuation, walking speed would be much faster; experiments 

were carried out by setting the metronome at three different 

speeds: (1) 120 steps per min; (2) 150 steps per min; and (3) 

180 steps per min. In addition, even if congestion occurred 

(due to an evacuation route becoming a bottleneck, for 

example). We ensured that the walking pace of the subjects 

was maintained relatively constant. 

C. Subjects  

The subjects were 27 healthy adults (17 males and 10 

females). We explained the purpose of the experiment and the 
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experimental procedure to the subjects, and their approval to 

take part was then confirmed.  

D. Experimental Configuration  

The flow of subjects along the passage were recorded under 

the different walking speeds. From this video stream, we 

captured images and computed the positions of the subjects in 

the room during the experiments using the convenient method 

of calculating physical coordinates. A sample captured image 

from the video recording is shown in Fig. 3(a). 

Fig.  3(b) indicates a subject’s spatial position (X, Y) and 

angle (θH) relative to a line of origin from the position of the 

video camera. The position of the subject (x, y) in the room as 

computed from the image is indicated in Fig. 3(c). However, 

the coordinate position of a subject on the floor could not be 

directly estimated from the captured images because the 

subjects’ legs were obscured. The recorded positions in the 

images (X, Y) therefore reflected the tops of the subject’s 

heads and actual standing positions were calculated based on 

subject height. 

Prior to the evacuation gait experiment, in order to specify 

the numerical relationship among the pixel coordinates (X, Y) 

on the camera images, the heights of the subjects, and the 

room position coordinates (x, y), the spatial coordinates of  

sampling points in the physical experimental were gathered. 

These coordinates consisted of horizontal and vertical 

coordinates representing the position in the room and height 

within the physical space. Specifically, we select the sampling 

points at every 0.5 m above the radiation centering on the 

position of the camera and measured the pixel coordinates (X, 

Y) at the every 0.1m vertical height. Due to the physical 

limitations of the experiment space, the number of 

measurement points was 170. The mapping function from 

both the camera coordinates and the coordinates for the 

vertical upper from the floor were obtained by nonlinear 

regression based on the gathered dataset. The obtained 

mapping function is shown in Fig. 4. The error in the 

coordinates for the experiment space as converted by this 

mapping function was 1.03% on average. In the 360-degree 

omnidirectional images, each study object was radially taken 

from the center of the camera, but the shooting distortion to 

the depth was close to zero by the radiation angle θH. 

 

IV. RESULT OF EXPERIMENT 

A. Result of the First Experiment 

In the first experiment, the subjects were instructed to walk 

all in a clockwise direction at a pace of 120, 150, and 180 

steps per minute. The flow of subjects walking along the 

passage was recorded and images were then captured at each 

500 ms intervals from the video stream. The positions of 

subjects were specified on the captured image and the 

position of the real environment was calculated by the method 

described in Section III D. Fig. 5 shows the movement 

trajectory of subject 1 under the first speed condition (120 

steps per minute) and the third condition (180 steps per 

minute). The origin for the room coordinates was set to the 

bottom left point as shown in Fig. 2. The average velocities of 

five subjects randomly selected for speed conditions 1 and 3 

were 0.91 m/s and 1.02 m/s, respectively. Nevertheless the 

subjects were instructed to keep walking pace, the averages of 

velocities with two conditions are different from the expected 

value. This result is because there was a strong tendency to 

keep a certain distance between the subjects, and when the 

length of the row became long, the first subject followed the 

last subject of the row. In these cases, walking pace was 

restricted and the subjects could not walk at the designated 

pace. 
 

 
(a) Captured image by the omnidirectional camera 
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Fig. 3. Definition of variables. 
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Fig. 4. Relationship between captured distance on the experimental pictures 

and actual distance. 

 

 
a) Speed configuration 1       b) Speed configuration 3 

(120 steps/s)              (180 steps/s) 

Fig. 5. Trajectory of subject 1 during Experiment 1 (sampling time was 500 

ms). 
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Fig. 6. Trajectory of subject 1 and 2 during Experiment 2 (sampling time is 

500 ms). 

 

B. Result of Second Experiment 

In the second experiment, three walking paces were set 

with 13 subjects walking in a clockwise direction and the 
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other 14 subjects walking in an anti-clockwise direction. The 

subjects were instructed to walk on the left-hand side of the 

passage. Therefore, the subjects walking in the clockwise 

direct walked on the inside of the passage and the others 

walked on the outside. Fig. 6 shows the movement trajectories 

of subject 1 and subject 2 under velocity condition 1. It can be 

seen from this figure that the subjects walked on the left side 

of passage as instructed. The average speed by speed 

condition was 1.01 m/s and 1.33 m/s, and the average speed is 

the ratio of the number of steps. Since the number of subjects 

in both groups was not large (unlike the first experiment), the 

subjects could maintain their walking speed. 

 

V. ESTIMATION OF AGENT MODEL PARAMETERS USING EC 

A. Procedure of Parameter Estimation Using EC 

The simulation model consists of the following parameters: 

the target speed used in the evacuee model; the reaction force 

and the frictional force acting between the agents; the reaction 

force with fixtures such as a wall; and the frictional force used 

the evacuee model. All of these parameters need to be set 

correctly. In order to express the flow of subjects in the 

experiments using the simulation model (as calculated from 

the captured images described in the previous section), 

appropriate parameters should be included in the agent 

model. 

We describe the estimation procedure for parameters 

included in the evacuee model from measured agent flow data. 

Considering the differences in personal characteristics such as 

sex, age, and physical characteristics of agents in general, the 

parameters included in the evacuee model are not 

homogeneous but vary. In the evacuation simulations, it is 

difficult to optimize each parameter at the same time since the 

position of an agent is determined as the time integration of 

the evacuee model with the interaction among evacuees. 

Therefore, considering that evacuation models are 

represented by combinations of individual parameters for 

multiple agents, the determination of appropriate parameters 

is a problem involving the approximation of human flow data. 

B. Evaluation Function and Genetic Structure in 

Evolutionary Optimization 

Assuming that I is the number of agents included in the 

simulation, the actual measured position and the position in 

the simulation at time t of agent i(i = 1,...,I) is xe
i(t) = (xe

1i(t), 

xe
2i(t)) and xs

1i(t) = (xs
1i(t), xs

2i(t)), respectively. The average 

distance of each agent (at each time step) between the 

experimental data and the simulated data is defined as an 

index of appropriateness of the parameters (I.A.): 

𝐸 =    𝒙𝑖
𝑠 𝑗∆𝑡 − 𝒙𝑖

𝑒 𝑗∆𝑡  

𝐽

𝑗

𝐼

𝑖

 

               (4) 

 

 In calculating I.A., however, both the measured position of 

the agent and the position in the simulation were discretized 

into errors for each sampling time Δt and tabulated. The 

distance between two points was defined with the Euclidean 

norm. J represents the sampling number at this time. The I.A. 

value calculated using Eq. (4) indicates the degree of 

conformity of the evacuation simulation to the actual data; the 

smaller the evaluation function value, the better the 

simulation model was parameterized to represent the 

experimental flow data.  

 
TABLE I: PARAMETER VALUES 

Parameter Values 

v0 Integer from 7 to 23 

a1 50, 100, 200, 300, 400, 500, 600, 700, 800 

b1 0.2, 0.3, 0.4,0.5,0.6,0.7 

a2 50, 100, 200, 300, 400, 500, 600, 700, 800 

b2 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 

 

TABLE II: MINIMUM VALUES OF EVALUATION FUNCTION FOR EACH 

CONDITION 

(A) FIRST EXPERIMENT 

Walking 
speed 

Number of 
generation 

Minimum value 
of I.A. 

Reference 
value 

Condition 1 12 1.197 1.204 

Condition 2 17 0.586 0.929 

Condition 3 14 0.881 0.860 

 

(B) SECOND EXPERIMENT 

Walking 
speed 

Number of 
generation 

Minimum value 
of I.A. 

Reference 
value 

Condition 1 42 0.755 3.79 

Condition 2 46 0.732 2.01 

Condition 3 47 1.193 3.27 

 

The parameter vectors included in the simulation model, the 

target velocity, saliency, and range parameters that define the 

reaction force between the agents or between agents and walls 

and other obstructions, were denoted respectively by: v0 = 

{v01, v02,…, v0I}, a1 = {a11, a12,…, a1I}, b1 = {b11, b12,…, b1I}, 

a2 = {a21, a22,…, a2I}, and b2 = {b21, b22,…,b2I}. In the flow 

experiments conducted as described in previous sections, 

because the number of subjects was relatively small and the 

subjects were not so close together, the parameters ge = 

{v0,a1,b1,a2,b2} would be optimized omitting the parameter to 

specify the friction. Since the position of an agent in the 

simulation xs
i(t) is determined by the value of each agent 

parameter, the parameters for each agent are optimized by an 

evolutionary computation algorithm that expresses these 

parameters in terms of genes. The gene structure used was a 

vector connecting the parameters. 

C. Evolutionary Optimization Algorithm 

A representative example of an evolutionary optimization 

algorithm is the genetic algorithm (GA). This efficiently 

searches for many combinations by the following procedure: 

1) Coding of a target problem into a gene; 

2) Calculation of evaluation value for a gene; 

3) Selection of genes with good evaluation values; 

4) Crossover between selected genes; 

5) Mutation to avoid local search. 

After step (1), (2) to (5) are repeated as one generation until 

the desired evaluation value is reached. By overlapping 

generations, combinations of parameters that make the 

evaluation function better are passed on to the next generation 

and, as a result, a better combination of parameters can be 

calculated. 

Generations 
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Fig. 7. Values (I.A.) of the evaluation function with three conditions of 

walking speed in each generation. 

 

Various modification methods have been proposed for 

gene selection in step (3), step (4), and step (5), but in this 

research, gene selection was via a basic elite strategy and gene 

crossover was via a single point crossover. However, since 

genes are composed of many kinds of parameters, gene 

crossing should be performed in each of v0, a1, b1, a2, and b2, 

so that crossover between v0 and a1, or a1 and b1, is not 

conducted. 

Before the optimization process using EC, the range of 

parameters were determined as follows. The experimental 

flow data were applied to the simulation model without a 

subject, and the corresponding parameters for the subject 

were estimated to minimize the mean of the difference 

between their actual position and simulated position. This 

optimization process was carried out for each subject. In the 

results, variation of the parameters was confirmed and 

summarized in Table II. We selected the initial parameter 

values from the range of those of the GA optimization 

process. 

D. Results of Parameter Estimation Using EC 

1) Parameter estimation for experimental (actual) flow 

data 

It is described the estimation results for the evacuation 

agent model parameters for the flow of 27 subjects as 

measured in the first and second experiments using GA. The 

size of each parameter vector v0, a1, b1, a2, and b2 was 27, and 

the size of the gene that is a combination of these was 135. 

Initial values for parameters that were elements of genes were 

randomly set from Table I. For gene selection, crossover 

operations were performed on 10 genes in total, with six genes 

each {3, 2, 2, 1, 1, 1} in descending order of the value of the 

evaluation function. 87 new genes were generated as a result 

of all combinations of 10 genes, and the elements after 

crossover were varied with a mutation probability of 1%. The 

whole optimization was done by using the GA. The update 

time of one generation was 10 min and 20 s (Windows 10, 

CPU: Intel Core i7-4770, 3.4 GHz, memory 8 GB). 

2) Results of parameter estimation 

The results of the model parameter estimation for the flow 

data of the 27 subjects in the second experiment (opposing 

movement) are shown in this section. The estimation method 

was the same as that used for the flow data of the first 

experiment. The calculation time required for one generation 

was also the same. The parameters of the evacuation model 

were estimated for the data under walking speed conditions 1, 

2, and 3 in the second experiment. The minimum values of the 

evaluation function (I.A.) used for the optimization process 

using GA, and the generation to minimize the I.A. are shown 

in Table II.  
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●locations of agents in simulation 

〇 locations of subjects in the experiment 

Fig. 8. Comparisons of locations of between agent in simulation and subjects 

in the experiments in three conditions (1st experiment). 

 

The results of the estimation procedure are summarized in 

Table II, in which the generation number and the minimum 

value of the evaluation function Eq. (4) were shown. The 

minimum evaluation values calculated using Eq. (4) are 

shown in the last column of Table II as the reference value, 

assuming that the parameters v0, a1, b1, a2, and b2 have the 

same values for all agents, i.e., the parameters were set to a 

common value among all agents. Since the evaluation values 

were smaller than the reference values, the models with the 

optimized parameters were able to reproduce the observations 

well.  

Fig. 7 shows the change in the value of the evaluation 

function for each generation for the three walking speeds in 

the two experiments. It can be seen that the evaluation 

function values converge. Comparing the parameter 

estimation time (number of generations) for the flow data of 

Experiment 1 and Experiment 2, it took a longer time to 

estimate the parameters of Experiment 2. 

In order to compare the flow in the simulation with 

experimental flow data, plots of the positions of all subjects 

and agents in 10s and 35s from the start are shown in Fig. 8 

and Fig. 9, respectively. In Fig. 8, the agent position in the 

simulation is indicated by ●, and the subject position is 

indicated by ○. Also in Fig. 9, the agent positions moving in a 

clockwise direction and anti-clockwise direction are indicated 

by ● and ▲, respectively. The positions of the subjects are 

indicated by ○ and △. These plots show that the positions of 

agents in the simulations approximate the experimental data. 

Next, to verify the stationarity in the obtained simulation 

model, the average value of the evaluation function for all 

agents with respect to the progression of the simulation time is 

shown in Fig. 10. Although the degree of deviation between 

flow data in the two experiments and flow data in the 

simulation increases and decreases over time, it can be seen 

that the error is consistent, but does not show increasing trend. 
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This indicates that the global flow characteristics of 

pedestrians can be represented by the obtained parameters. 

On the other hand, it is suggested that the dynamic 

characteristics of human flow may change with time, but it is 

necessary to continue verifying change in the degree of 

divergence over time. 

 

-1

0

1

2

3

4

5

6

0 2 4 6 8 10 12
0

1

2

3

4

5

6

0 2 4 6 8 10 12  
(a) In 10 s and 35 s after start (walking condition 1) 

-1

0

1

2

3

4

5

6

0 2 4 6 8 10 12
-1

0

1

2

3

4

5

6

0 2 4 6 8 10

 
(b) In 10 s and 35 s after start (walking condition 2) 

-1

0

1

2

3

4

5

6

0 2 4 6 8 10 12
-1

0

1

2

3

4

5

6

0 2 4 6 8 10 12

 
(c) In 10 s and 35 s after start (walking condition 3) 

●clockwise, ▲anti-clockwise location of agent in simulation 

〇 clockwise, △anti-clockwise location of subjects in the experiment 

Fig. 9. Comparisons of location of agent between experiments and 

evacuation simulations.in three conditions (1st experiment). 
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Fig. 10. Change of value of the cost function over time (first experiment). 

 

3) Evaluation of the estimated parameters and discussion  

A histogram of the target velocity v0, which is a parameter 

obtained by the GA method, is shown in Fig. 11. Comparing 

the parameters estimated for the flow data of the two 

experiments, the estimated values for v0 in the second 

experiment distributed in the larger value area than one in the 

first experiment, reflecting the experimental situation. As the 

walking speed condition increased, the speed parameter was 

also distributed in a larger area.  

Comparing the results of the second experiment with the 

first, it is suggested that parameter estimation can be 

effectively performed by GA based on the I.A., which 

represents the degree of conformity of the evacuation 

simulation with the actual data. However, it took longer to 

minimize the value of the evaluation function in the case of 

second experiment. This result suggests that the optimization 

process was more complicated in the case dealing the flow 

data of the second experiment.  
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Fig. 11. Distribution of parameter v0 of the simulators for the data of 1st and 

2nd experiments. 

 

From a qualitative evaluation of the parameters obtained, 

and the extent of the deviation from the measured flow data of 

the subjects, the divergence after the lapse of time, the 

parameter estimation method using GA is appropriate. Whilst 

the model parameters could be estimated, it is necessary to 

continue verifying the reasons for differences between the 

simulation and actual measurement data. 

The models with the optimized parameters were able to 

reproduce some of the observations well in some cases, but 

large divergence between the actual experimental flow and 

simulated flow also occurred. This result highlights the 

difficulty of representing crowd behaviors in one single 

model. 

 

VI. CONCLUSION AND FUTURE WORK 

In this research, we aimed to improve the accuracy of 

evacuation simulation and proposed a method to grasp the 

dynamical characteristics of evacuees using experiments and 

estimates based on the evolutionary computation method. 

Although the number subjects was small, some numerical 

examples showed the possibility of the proposed method 

(using GA) to determine model parameters to reproduce the 

dynamic flow of crowds. In the future, we will apply the 

method to more complicated situations, such as when the 

density of subjects is higher and when a larger number of 

participants attend the experiments. 
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