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Abstract — The subject of multiphase flow encompasses a vast 

field hosting different technological contexts, wide spectrum of 

different scales and broad range of engineering disciplines along 

with multitude of different analytical approaches.  

A persistent theme throughout the study of multiphase flow is 

the need to model and predict the detailed behavior of such flow 

and the phenomenon it manifests. In general, there are three 

ways to explore the models of multiphase flow: 

(1) Develop laboratory-sized models through conducting lab 

experiments with good data acquisition systems; 

(2) Advance theoretical simulations by using mathematical 

equations and models for the flow; and 

(3) Build computer models through utilization of power and 

size of modern computers to address the complexity of the flow. 

While full-scale laboratory models are essential to mimic 

multiphase flow to better understand its boundaries, the 

predictive capability and physical understanding must depend 

on theoretical and computational models. Such a combination 

has always been a major impediment in the industry and 

academia. 

Different numerical methods and models with dissimilar 

concepts are being conveniently used to simulate multiphase 

flow systems depending on different concepts. Some of these 

methods do not respect the balance while others damp down 

strong gradients. The degree of complexity of these models 

makes the solution practically not reachable by numerical 

computations despite the fact that many rigorous and systematic 

studies have been undertaken so far. The essential difficulty is to 

describe the turbulent interfacial geometry between the multiple 

phases and take into account steep gradients of the variables 

across the interface in order to determine the mass, momentum 

and energy transfers. 

NASA-VOF 3D is a transient free surface fluid dynamics code 

developed to calculate confined flows in a low gravity 

environment using the Volume of Fluid (VOF) algorithm. In this 

study, theoretical investigation has been carried out to better 

understand the impact of a horizontal bend on incompressible 

two-phase flow phenomenon. NASA-VOF 3D has been 

considered as the CFD platform for major modifications carried 

out to the main two governing equations; namely the Continuity 

(Mass Conservation) and the Momentum (Navier-Stokes) 

equations using the Volume of Fluid (VOF) algorithm. The 

modifications consisted of deriving and developing the 

governing equations needed to reflect the impact of the bend on 

the transition. Numerical operators have also been developed to 

gain better convergence during calculations. This paper 

presents the details of this theoretical and numerical study and 

the derivations of the modified governing equations.  

 
Index Terms—CFD, VOF, multiphase flow, horizontal bends, 

continuity equation, momentum equation. 
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I. INTRODUCTION 

Hydrocarbons production systems face many challenges 

from the design to production and decommissioning phases. 

One of the key challenges is the transport of multiphase 

streams from the reservoir to the delivery point. Such streams 

involve phase mixing, rapid changes of flow patterns, mass 

transfer and phase changes making the systems’ 

hydrodynamic very complex. Modeling multiphase flow 

processes is a complex and still developing subject. It is often 

an iterative process requiring multiple modeling frameworks 

to understand different aspects of the flow problem. The 

underlying physics is still inadequately known and a 

production engineer modeling complex multiphase flow 

processes often has to complement detailed modeling efforts 

with validation experiments and field data analysis. It is 

indeed essential to use a hierarchy of models with an 

appreciation of “learning” versus “simulation” models to 

represent multiphase flow processes accurately. An 

appropriate methodology needs to be developed to 

systematically interpret the results obtained using different 

modeling frameworks. Ultimately, there is no substitute for 

the engineering judgement and creativity of a production 

engineer to develop a tractable computational model to 

simulate complex field multiphase flow processes. 

All this complexity and chaotic state could lead to 

operational issues in the production and processing facilities; 

thus, it is very critical to understand what the expected 

behavior of the system is and how it would affect the 

production. From a mathematical point of view, multiphase 

flow problems are notoriously difficult and much of what we 

know has been obtained by experimentation and scaling 

analysis. Not only are the equations, governing the fluid flow 

in both phases, highly nonlinear, but the position of the phase 

boundary must generally be found as a part of the solution. 

There have been many methods developed in the past few 

decades to predict multiphase flow behavior in pipes and 

thousands of papers were published on experiments and 

modeling of this phenomenon. In most of these cases, models 

work well for their specific data only.  

The key parameters in multiphase flow are flow patterns, 

pressure gradient, liquid holdup and corrosion related 

parameters. Due to the dynamic nature of the multiphase flow 

and the rapid transition among different flow patterns, it is a 

challenging task to precisely predict these parameters based 

on extrapolating the base data.  

Increasingly sophisticated multiphase flow simulation 

models have been developed to meet the needs of the 
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operators as they open new frontiers. These models are vital 

well established tools by which engineers approximate the 

multiphase flow behavior in wells, piping and flowlines. 

Using mathematical models built into specialized software 

programs, flow simulations yield representation of the fluids 

behavior that might be encountered in a real world of network 

of wells, flowlines, pipelines and process equipment. The 

output of these simulations play a prominent role in guiding 

the operators on the optimum way needed to operate their 

facilities.  

The evolving technique of the CFD (Computational Fluid 

Dynamics) has gained good advancement as a modelling tool 

proved to offer good insights on the above issues. CFD is a 

branch of fluid mechanics that uses numerical analysis and 

data structures to solve and analyze problems that involve 

fluid flows. Codes are structured around the numerical 

algorithms that can tackle fluid flow problems.  

They typical procedure to solve a problem using the CFD 

techniques consists of the following steps: 

1. Preparation of the flow data and definition of geometry 

(Pre-processing); 

2. Development of iterative calculation of the flow field by 

CFD solver; 

3. Definition of boundary conditions (definition of property 

data of fluids and selection of the suitable model); 

4. Analysis of calculated results (Post-processing); and 

5. Validation of outcomes (compare with experimental data, 

draw conclusions, re-design and improve process). 

   CFD solvers are coupled algorithms developed to solve 

for both continuity and momentum equations at the same time. 

There are two solution methods for finite volume. These are 

either with using segregated or coupled solutions. The main 

difference is that for segregated methods (Lagrangian), one 

equation for a certain variable is solved for all cells followed 

by solving the equation for the next variable for all cells and 

so on. The couple solution methods depends on solving 

equations for all parameters and variables in a given cell 

(Eulerian). The segregated solution method is the default 

method in most commercial finite volume codes. It is best 

suited for incompressible flows or compressible flows. 

There are several numerical techniques in the literature 

being used to solve the governing equations of simultaneous 

gas-liquid flow. One of them is the Volume of Fluid (VOF) 

tracking model. It is a simple, but powerful, free surface 

modelling numerical technique that is based on the concept of 

a fractional volume of fluid in a selected cell. The VOF model 

can model two or more immiscible fluids by solving a single 

set of momentum equations and tracking the volume fraction 

of each of the fluids throughout the domain. In other words, 

VOF is characterized by a mesh that is either stationary or is 

moving in a certain prescribed manner to accommodate the 

evolving shape of the interface (Mahady et al. (2015)). This 

method is proved to be more flexible and efficient than other 

methods for treating complicated free boundary 

configurations. The governing equations describing the fluid 

behaviors, i.e continuity and momentum equations, have to be 

solved separately and the VOF is not a standalone flow 

solving algorithm (the same applies for all other advection 

algorithms). Several recent studies have been carried out by 

different researchers in the past few years using commercial 

packages to deploy the CFD in oil and gas industry (Tocci et 

al. (2017); Gharaibah et al. (2015) and Khaksarfard et al. 

(2013)). VOF has been considered in some of these works and 

the outcomes showed good agreements between measured 

and calculated values. Lo et al (2010) focused on utilizing two 

approaches for the turbulence treatment at the gas-liquid 

interface. Dabirian et al (2015) used the VOF to track the 

two-phase interface in their work to simulate turbulent flow 

structure in stratified gas-liquid flow. Yi et al. (2013) used 

VOF approach to model all the flow regimes, as it allows 

selective use of surface tension and interface sharpening 

schemes in an Eulerian framework. Alwazzan (2006 and 2017) 

presented detailed literature review on the progress of the 

numerical modeling of the free surfaces and the outcomes of 

the modified code. 

 

II. GOVERNING EQUATIONS 

In solving most of the fluid dynamics problems, two 

important equations are used; namely the continuity and 

momentum equations. NASA-VOF 3D program used VOF to 

solve these two governing equations in one-dimensional 

linear Cartesian coordinates ((Nichols & Hirt (1980); Hirt & 

Nichols (1981); Torrey et al. (1985 & 1987) and Mahady et al. 

(2015)). It is a well-structured code such that individual 

components can be modified to fit specific problem 

requirements and/or to accept subsequent code upgrades. 

Rudman (1997) and Rider & Kothe (1998) presented a 

comprehensive literature review of the earlier VOF advection 

methods.  This platform has been considered to probe the 

impact of a horizontal pipe fitting (bend) on the flow pattern 

transition and pressure variation of incompressible two-phase 

incompressible flow through major modifications to its 

governing equations and solving scheme. The conduit 

description has been considered in the derivation of the 

governing equations and numerical operators have been 

developed and introduced to simplify the process.   

A. Continuity Equation (Mass Conservation)   

The application of conservation of mass to a steady flow in 

an element results in the equation of continuity, which 

describes the continuity of the flow from boundary to 

boundary of the element. 

1) Two-dimensional continuity equation – general form 

The derivation uses a control volume and the fluid system, 

which just fills the volume at a particular time t, as shown in 

Fig. (1) below: 
 

 
Fig. 1. Two-dimensional infinitesimal element that filled with fluid. 

Consider an infinitesimal two-dimensional fluid element. 
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The control volume is defined as the volume of the full cell. 

The total mass flow rate stored the fluid element is 

represented by: 
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where u and v are the velocities in the x and y directions, 

respectively. For incompressible fluid, Equation 1 becomes:  
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                       (2) 

To convert Equation 2 to cylindrical coordinates, an 

operator ( ) has been developed for simplicity of conversion 

control as follows: 
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2) Cylindrical coordinates of a horizontal bend 

   Cylindrical coordinates are combination of polar and 

Cartesian coordinates. The cross section is polar coordinates, 

while the axial is Cartesian coordinates, as shown in Fig. 2 

below: 

 

 

(a) 

 

(b) 

Fig. 2. (a) Polar coordinate system for a horizontal bend (b) 

Cross-section showing tilt of the liquid flowing through a horizontal 

bend. 

 

 where: 

 

zz,sinry,cosrx                (4) 

Introducing the functions f and g as: 
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Using Jacobian’s matrix and determinant transformation 

yields: 
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Similarly;  
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while, 
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3) Derivation of the operator of conversion from the 

cartesian to cylindrical coordinates ( ) 

In this study, the  operator has been developed and 

introduced to convert from Cartesian coordinates to 

cylindrical coordinates. In Cartesian coordinates, vector units 

are defined as: 

z
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                          (11) 

while in cylindrical coordinates, the vector units are defined  

as:- 
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r

r
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For briefness, let cosC  and sinS . Using the 
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chain differentiation: 
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Recalling Equations (6) to (10) and using the identity 

12sin2cos   , Equation (13) could be reduced to: 
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Using the cylindrical  operator, it gives the gradient of a 

scalar field u : 
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Given the cylindrical vector products: 
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(16)  

 

And the cylindrical vector differentiation identities are: 
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By then, the divergence    and Laplacian  2  can be 

worked out for a given field. For a given vector field  
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Recalling Equations (16) and (17), we get: 
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or expressed in more compactly as: 
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while for Laplacian, (2
) operator takes the following form:  
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By the same way and from Equations (16) and (17): 
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Thus, 
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For a given scalar field, u : 
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4) Three-dimensional continuity equation 

Following the same approach, Equation (3) could be 

developed to a three-dimensional one as follows: 
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where u, v and w are the velocities in the x, y and z directions, 

respectively. For cylindrical coordinates, the following 

conversion applies: 
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where u, v and w are the velocities in the radial, azimuthal and 

axial directions, respectively. The partial cell treatment factor, 

, could be introduced into Equation (19) resulting:  

 

 
     

0















z

w

y

v

x

u
u            (27) 

 
     

0
11

















z

wv

rr

ur

r
u


        (28) 

 

International Journal of Engineering and Technology, Vol. 11, No. 2, April 2019

135



  

5) Introducing the partial cell treatment factor, , into 

the Continuity and Navier-Stokes equations 

   The partial cell parameter is treated as one of the 

properties in the equations. The continuity equation is 

described as: 
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In Cartesian coordinates,     
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And for cylindrical  operator, 
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The compact momentum equation for the moving fluid is 

given by: 
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where  is the volume fraction of the working fluid (that is, 

the fraction of the volume occupied by the motionless 

component), K is a coupling constant characterizing the drag 

between interpenetrating fluid, and 


is the viscous stress 

tensor. 

Expanding equation (32) into non-conservative form 

yields: 
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The term 





 u  in Equation (33) represents the 

continuity equation. Assuming that the partial cell parameter 

 is independent of time and incompressible flow; dividing 

Equation (33) by  gives: 
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The connection between Equations (29) and (34) and the 

partial cell treatment is made by specializing  to a situation 

where  is a step function with values of 0.0 and 1.0 in the 

obstacle material and moving fluid respectively. First, we 

note that 00.u   in the obstacle material and  is constant 

piecewise. Therefore; the terms in square brackets in 

Equation (34) can be neglected as the interest is only about the 

fluid behavior. Hence, the general momentum equation 

becomes:  
















P

guu
t

u
                (35) 

 

Substituting u2   and expanding Equation 

(35), the momentum equations in  yx , and 

z directions become: 
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where 



   is the kinematic viscosity,   is the viscosity 

and   is the density.  

Prior to expressing the momentum equations in cylindrical 

coordinates, the following transformations are needed: 
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(38) 

From equation (14), the  operator becomes: 
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Substituting Equations (37) to (39) into Equation (35) 

yields the momentum equations in cylindrical coordinates 

expressed as follows: 
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(42) 

 

The derived continuity equations are only applicable to 

incompressible flow, where the velocity of fluid is less than 

30% of the speed of sound.  

B. Momentum Equations (Navier-Stokes Equations) 

The Equations of Motion (Navier-Stokes equations) can be 

derived by either applying Newton’s second law to an element 

of fluid or applying the impulse-momentum principle for 

control volumes. The derived equations are known to 

accurately represent the flow physics for Newtonian fluids in 

very general circumstances, including three-dimensional 

unsteady flows with variable density. The derived 

Navier-Stokes equations are applicable to both laminar and 

turbulent flows and underline much of the practice of modern 

fluid mechanics. Momentum equations form the basis of the 

code needed to simulate the system. Their final forms are: 
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where ν is the kinematic viscosity, P is the pressure, ρ is the 

density and gx, gy and gz are the external accelerations in the x, 

y and z directions, respectively. The momentum equations in 

cylindrical coordinates can be written as follows: 
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where r, θ and z refer to the radial, azimuthal and axial 

coordinates, respectively. Details of derivations are in 

Alwazzan (2006). 

Equations (44), (45) and (46) are applicable at every point 

inside the fluid. Once numerically implemented, the arc 

length azimuthal coordinate y=xIM1θ replaces θ where xIM1 is 

the radius of the computational mesh. This emphasizes on the 

similarity of the derived equations to the Cartesian equations. 

C. The Principle of the Fractional Volume-of-fluid (VOF)      

Considering a general free surface cell as indicated in Fig. 

(3) below: 

  

 

Fig. 3. Two-dimensional free surface cell that partially filled with fluid 

 

The cell is partially filled with fractional volume-of-fluid 

(F). The rate of change of mass within the cell is equal to the 

net flow rate of mass across the element. Hence, the 

time-dependent of F is governed by the equations: 
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Assuming that the fluid is incompressible and dividing by 

the area  dxdy  give: 
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Expanding Equation (14) yields: 
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Note that the square bracket term on the right hand side of 

Equation (50) is the continuity equation. Hence; 
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Using the same procedure, Equation (51) could be 

developed into three-dimensions as follows: 
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Finally, the transient behavior of gas-liquid flow in a bend can 

be expressed as follows: 
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Using Equation (54) above yields the governing equation for 

F in cylindrical coordinates as follows: 
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Implementing this approach allows the fluid interfaces to 

be represented by different equations. However, the flux of F 

through each face of the Eulerian grid will be required. 

Standard finite-difference techniques would lead to a 

smearing of F values, and the interfaces would lose their 

definition. Using the step function character of F allows a 

form of donor-acceptor differencing that preserves the 

discontinuous nature of F.  

 

III. MODIFIED NASA-VOF 3D CODE 

NASA-VOF 3D program (Torrey et al., 1987) is a 

powerful program developed to solve three-dimensional, 

transient with multiple free boundary two-phase flow. It has a 

variety of options that provide capabilities for a wide range of 

applications. It was especially designed to calculate confined 

flows in a low gas environment, in which surface physics must 

be accurately treated.  

In In this study, NASA-VOF 3D has been considered as the 

CFD platform to carry out key modifications to the governing 

equations in order to probe the impact of a horizontal bend on 

the flow pattern transition during incompressible 

simultaneous two-phase flow. The modifications consisted of 

deriving the cylindrical coordinates of the bend and 

incorporating these changes in the original governing 

equations. In addition, the volume of fluid algorithm (VOF) 

has been modified to solve the governing equations for the 

fluid properties at each cell. The outcomes of the updated 

code show good agreement with the experimental data 

Alwazzan (2017).  
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