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Abstract—A novel 1T2R with three degrees of freedom 

redundantly actuated and overconstrained 2RPU-2SPR parallel 

manipulator is here presented as an alternative approach for 

high speed machining in aerospace field. Firstly, the actuation 

and constraints of the parallel manipulator imposed by passive 

joints are analyzed in terms of the screw theory, and the degree 

of freedom of the parallel manipulator is further derived. 

Secondly, the kinematic analysis is carried out, the inverse 

position and geometric constraint equations of the parallel 

manipulator are established, and the overall Jacobian matrix 

was explicitly derived. Subsequently, the stiffness matrix of the 

chain is deduced considering the elastic deformation of the link, 

and the stiffness matrix of the parallel manipulator is 

established by the differential mapping relationship between the 

actuated chains and the moving platform. The linear and 

angular stiffness, eigenscrew decomposition, and maximum and 

minimum stiffness eigenvalues are introduced to evaluate the 

stiffness characteristics of the manipulator. Finally, through 

some numerical examples, distributions law of the performance 

indices of redundantly actuated and overconstrained 

2-RPU-2SPR parallel manipulator are illustrated in details. The 

results demonstrate that the three degree of freedom redundant 

actuation parallel manipulator proposed in this paper has much 

better stiffness performance than the 2-RPU-SPR parallel 

manipulator, and has much more extensive prospect in 

engineering applications.  

 
Index Terms—Redundantly actuated, overconstrained, 

parallel manipulator, eigenscrew, stiffness.  

 

I. INTRODUCTION 

In recent years, lower degree of freedom (DOF) parallel 

manipulator especially 1T2R with three DOFs parallel 

manipulator as the main body of the high-end intelligent 

equipment is the focus of the current trend, which has been 

demonstrated by abundant engineering applications in the 

aerospace field for complex component machining, such as 

Sprint Z3 spindle [1], Tricept hybrid machine tool [2], 

Exechon hybrid machine tool [3], etc. In practical 

applications, to increase the workspace of 1T2R parallel 

manipulator, a hybrid structure is generally derived by 

integrating a serial model with a parallel manipulator. At the 

same time, to improve the orientation capability of the end 
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effector, two or three degrees of freedom rotating head can be 

attached on the moving platform, so the multi-degree of 

freedom hybrid machine tool can be constructed. In view of 

structural component with large dimension and complex 

freedom surface in aerospace field, a novel 1T2R lower DOF 

parallel manipulator with higher stiffness and higher 

orientation capability is of great importance kernel issue by 

adding two tracks in X-Y axis to form five axis serial-parallel 

hybrid machine tool to complete machining milling with high 

efficiency and high accuracy. Therefore, overconstrained 

parallel manipulator as a special lower DOF parallel 

manipulator came into being in this mode, which can 

effectively avoid the singularity, increase the workspace, and 

improve kinematics and dynamic characteristics, enlarge 

stiffness and driving stability, and so on. What’s more, it has 

been successfully received extensive attentions in different 

engineering and technological areas as a special lower DOF 

parallel manipulator [4]-[6]. 

Up to now, most of the investigations can be focus on 

stiffness characteristics issue of the parallel kinematic 

machine (PKM). Domestic and foreign scholars have done 

numerous efforts on the stiffness of the parallel manipulators, 

and the main methods include analytical method and finite 

element method (FEM). For example, Gosselin firstly put 

forward a stiffness model for full degree of freedom planner 

and spatial mechanism based on the principle of virtual work, 

but this method only considered the stiffness of actuation joint, 

not considered constraint force and moment imposed by 

passive joint [7]. Clinton employed sub-structural matrix 

method to establish the stiffness analytical model for 

Gough-Stewart parallel manipulator to evaluate its stiffness 

performance [8]. A comprehensive stiffness modeling method 

was first proposed by Robert in virtue of the screw theory, 

who established the stiffness model including 

tension/compression, torsion, and deflection as well coupling, 

and the whole stiffness model was obtained by equivalent 

stiffness for linear connected springs in series [9]. Zhao 

investigated the overall stiffness matrix based on the virtual 

work principle by considering the actuation force, constraint 

force and virtual joint [10]. Zhang adopted virtual joint 

method to formulate the stiffness matrix of constrained 

parallel manipulator in which a weighted function could be 

maximized in terms of the main diagonal elements of the 

stiffness matrix. However, the value of trace of the stiffness 

matrix does not definitely predict the stiffness performance of 

the manipulator [11]. The stiffness of the Stewart parallel 

machine has been intensively investigated by Khasawneh [12], 
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among others, whose approach is based on the generalized 

Jacobian matrix in terms of the minimum and maximum 

singular value of the stiffness to reveal the distribution, and 

simultaneously the static stiffness model of the end effector at 

different positions was established by using the finite element 

software. Wang performed parameterization model in virtue 

of commercial finite element software ANSYS, researched 

finite element modeling method of various joints, and 

demonstrated the stiffness performance of the five degrees of 

freedom Trivariant hybrid robot [13]. The stiffness modeling 

of redundant actuated and overconstrained parallel 

manipulator is still rarely seen. Yan and Li only analyzed the 

structural characteristics and freedom, and inverse and 

forward kinematics of the two overconstrained 2RPU&SPR 

parallel manipulator [14]. Zhang utilized the virtual joint 

method (VJM) to establish the stiffness model of chains and 

joints, and then the sub-structure synthesis method was 

employed to synthesize the static stiffness analytic model of 

the overconstrained Exechon parallel module, and the 

stiffness distribution over the prescribed workspace was 

further studied [15]. Cui established the chain stiffness and 

mechanism stiffness of 3RPS-UPS parallel manipulator based 

on the screw theory and illustrated the stiffness improvement 

owing to the actuation redundancy [16]. 

In summary, the structure of the paper is as follows: The 

structure of a novel redundantly actuated and overconstrained 

2RPU-2SPR parallel kinematic machine tool is described, 

and the degree of freedom is further obtained considering the 

actuation force and constraint force/moment in terms of the 

screw theory in Section II. The kinematic analysis of the 

parallel manipulator, as well as the inverse position solution 

and the constraint equations, are carried out in Section III. 

The overall stiffness of the parallel manipulator is 

straightforward obtained considering tension compression, 

bending and torsion deformation of the links without 

considering the joints deformation in Section IV. The 

stiffness performance indices including linear and angular 

stiffness, stiffness eigenscrew decomposition, and maximum 

and minimum stiffness eigenvalue are introduced, the 

theoretical model proposed in this paper is verified by means 

of the FEA model, and the stiffness characteristics of the 

parallel manipulator was evaluated in Section V. Finally the 

conclusions are drawn, and demonstrate the merits of the 

proposed manipulator. 

 

II. DEGREE OF FREEDOM ANALYSIS OF THE 2RPU-2SPR 

PARALLEL MANIPULATOR 

A. Architecture Description of the Manipulator  

The parallel kinematic machine tool for high speed 

machining milling considered in this paper is shown in Fig.1 

and the topological structure of its core module a novel 

redundantly actuated and overconstrained 2-RPU-2SPR 

parallel manipulator, is shown in Fig.2. The parallel module is 

comprised of the fixed platform attached to the moving 

platform through two identical revolute- prismatic- universal 

(RPU) joints in series and two identical spherical- prismatic- 

revolute (SPR) joints in series respectively and the prismatic 

joint is active joint which is actuated by the linear servo motor. 

Two RPU chains distribute symmetrically, and are located in 

the plane  . Similarly, the two SPR chains are also 

symmetrical distribution and located in the plane  .The 

spindle tool is attached on the end of moving platform for the 

high speed milling machining. 

 

 
Fig. 1. The virtual prototype. 

 

 
Fig. 2. The schematic diagram of the parallel manipulator 

 

To facilitate analysis, the absolute coordinate 

system B xyz and the relative coordinate system A uvw are 

established as shown in Fig. 2. Wherein B is the midpoint of 

the fixed platform, the X axis is coincides with the vector 1BB , 

the Y axis is coincide with the vector 2BB , and the Z axis is 

perpendicular to the fixed platform upwards. Similarity, A is 

the midpoint of the moving platform, the u axis is coincides 

with the vector 1AA , the v axis is coincides with the 

vector
2AA , w axis is perpendicular to the moving platform 

upwards. In the SPR chains (taking the first chain as an 

example), the first rotation axis s11 of the spherical joint is 
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parallel to the Z axis, the second axis s21 is perpendicular to s11, 

and the third rotation axis s31 is perpendicular to s41 and 

parallel to the rotation axis s51. Similarity, in the RPU chains 

(taking the fourth chain as an example), the rotation joint axis 

s14 is parallel to the X axis, the universal joint consists of two 

vertical R joints, and the first rotation axis s34 is parallel to s14, 

and the second rotation axis s44 is perpendicular to s34 and 

parallel to v axis. 

B. Degree of Freedom Analysis of the Manipulator  

According to the screw theory twist and wrench 

observation method, the 1, 2, 3, 4 chain provide actuation 

force
aiF , and its direction along the link 

0il . The 1 and 3 

chain produce a constraint force
ciF , whose direction is 

parallel to v axis passing through the spherical joint (i=1, 3). 

The 2 and 4 chain produce a constraint force 
ciF  and a 

constraint moment 
ciT , whose constraint force direction is 

parallel X axis passing through the universal joint and 

constraint moment direction is normal to the rotation axis of 

the universal joint (i=2, 4). The direction of constraint force 

imposed by passive joints denotes as
if , and direction of 

constraint moment represents as
i [17]. It is known that the 

instantaneous constraint force and constraint moment don’t 

work on the center of the moving platform in terms of screw 

theory, that is, 

(( ) ) 0( 1,3)

( ) 0( 2,4)

ci i ci i i i

ci i ci i i

F f v F a l f w i

F f v F a f w i

        


       
       (1) 

0( 2,4)ci iT w i             (2) 

Rewriting Eqs.(1) and (2) in matrix form results in 

T T

T T

T T

3 1

(( ) )

0

0

i i i i

c i i i

i

f a l f
v v

f a f
 



  
    

      
    

 

J          (3) 

where 
cJ  can be expanded as the follows  

T T

1 1 1 1

T T

2 2 2

T T

3 3 3 3

T T

4 4 4

T T

3 1 2

T T

3 1 4

(( ) )

(( ) )

0

0

c

f a l f

f a f

f a l f

f a f









  
 

 
  

  
 

 
 
  

J                         (4) 

Due to the special configuration of the revolute joints, there 

are three linearly independent items in the constraint Jacobian 

matrix
cJ , so the mechanism has three redundant constraints, 

and the formula is based on the degree of freedom [18] 

1

( 1)
g

i

i

F d n g f v 


                 (5) 

where F represents the degree of freedom of the mechanism, n 

represents the number of the components, g represents the 

number of the kinematic joints, 6d    represents the 

order of the mechanism, fi represents the degree of freedom of 

the i-th kinematic joint, v represents the redundant constraints 

of the mechanism, and  represents the local degree of 

freedom.  

Neither constraint couple in the same direction, nor 

constraint force in collinear among the constraint screw in the 

parallel manipulator, therefore, there is no common constraint, 

that is, 0  . Due to without local degree of freedom, so 

0  . We can see from the schematic of the mechanism, the 

number of the component is 10, the number of the kinematic 

joint is 12, and the relative freedom of all the kinematic joints 

in the mechanism is 18, the degree of freedom of the 

2-PRU-2SPR parallel manipulator can be mathematically 

calculated by applying the modified G-K equations, that is  

6 (10 12 1) 18 3 0 3F                 (6) 

According to the constraint force and moment, the 

independent degree of freedom is a translation that 

perpendicular to the constraint force
ciF and two rotations that 

perpendicular to the constraint moment
ciT . Because the 

mechanism has four active prismatic joint, so the mechanism 

belongs to redundantly actuated and overconstrained parallel 

manipulator. 

 

III. KINEMATIC ANALYSIS 

A. Position Inverse Analysis 

Z-Y-X Euler angles are adopted to describe orientation 

matrix of the moving coordinate system with respect to the 

absolute coordinate system, first rotating the moving platform 

about z-axis by angle  ， then about y-axis of the new 

coordinate system by angle  ，and finally about x-axis of 

the new coordinate system by angle  . Thus, the orientation 

transformation matrix R can be written as follows 

     , , ,z y x

c c s s c c s c s c s s

c s s s s c c c s s s c

s s c c c

  

           

           

    



  
 

  
 
  

R R R R

               (7) 

where s and c are the abbreviation of sine and cosine, 

respectively. 

 
T

p x y z represents the position vector of the 

original point A in the absolute coordinate system . ai and bi 

represent the position vector in the absolute coordinate of 

joints Ai and Bi, 1 2 3 4B B B B  and 
1 2 3 4A A A A  are both square 

whose circumradius are nominated as 
ar ,

br , and the 

coordinate of each joint in the absolute coordinate system can 

be respectively expressed as  

 0
T

i a i a ia r c r s  R ，  0
T

i b i b ib r c r s      (8) 

where 
2( 1)

, 1,2,3,4
4

i

i
i





    

In virtue of the arrangement of the revolute joints, the four 

constraint conditions can be structured as  

   

   

T

T

0 1 0 0( 1,3)

1 0 0 0( 2,4)

T

i

T

i

p b i

p a i

    


   

R
            (9) 
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Selecting parameters  ,  , z as three independent 

parameters, parasitic motion can be arranged as  

0x  ，
zs c

y
s s s c c

 

    
 


， arctan

s s

c

 




 
  

 
 (10) 

The close-loop vector method is used to establish the 

equation of vector
i iA B  in the absolute coordinate system 

B xyz   

i i i
L = a - bp +                                   (11) 

Dot-multiplying Eq.(11) with itself, we yields by taking 

square root  

( )( )
i i i iil  a - b a - bp + p +                  (12) 

B. The Jabobian Matrix of the Manipulator 

If the velocity vector v and angular velocity vector w of the 

moving platform reference point A are known, the velocity 

vector 
aiv of the joint point Ai that connected the actuated 

chain and moving platform can be expressed as  

( 1,2,3,4)ai iv v a i                       (13) 

Then the velocity 
il  of the i-th linear actuator can be 

expressed as  

0 0( )i ai i i il v l v a l                         (14) 

The Eq.(14) can be written in the matrix form  

i a

v
l



 
  

 
J ， 0 0( )T T

a i i il a l   J            (15) 

Where
aJ presents the actuation Jacobian matrix of the 

parallel manipulator. 

Thus, combining Eq.(4) and Eq.(15)can be rewritten in the 

matrix form 

0i

v
l



 
  

 
J ， 0

a

c

 
  
 

J
J

J
                       (16) 

where 
0J  is the generalized Jacobain matrix of the parallel 

manipulator that relates the velocity of joint to the velocity of 

the moving platform. 

According to the dual relationship between the velocity 

mapping and the force mapping, the relation between the 

chains and the moving platform can be obtained by Eq.(17)  

0

T f  J ，
T

T TF M     ,
T

T T

a cf f f        (17) 

Where  presents the external force F  and external 

moment M acting on the reference point at the moving 

platform, and f presents driving force
af and constraint 

force
cf of the kinematic chains. 

 

IV. STIFFNESS MODELING OF THE MANIPULATOR 

Without the loss of generality, when constructing the 

stiffness analytic model of redundantly actuated and 

overconstrained parallel manipulator, it was explicitly 

assumed that the moving and fixed platforms are perfectly 

rigid, ignoring the deformation of the rotational joint, 

spherical joint and universal joint, and only considering the 

elastic deformation of the links. The actuation force, 

constraint force and amplitude exerted to the moving platform 

can be denoted as $ai
,

aif and $ri
,

rif（i=1,2,3,4）respectively. 

The second and fourth chain can provide the moving platform 

with constraint moment and amplitude $ i ,
if（i=2, 4）, it can 

be also decomposed into two constraint moments along the 

driving link and perpendicular to the driving link direction 

[19]. 

A. Stiffness Modeling of the Chain 

The chain will produce tensile deformation under driving 

force screw $ai
,

aif , that is  

ai ai aif k  , ai

i

EA
k

l
                               (18) 

where E is the elasticity modulus, A is the cross-section of the 

link, and 
aik  is the tension/compression stiffness coefficient 

of the link.  

The deflection 
ri  of the link along the constraint force 

axis under constraint force screw $ri
,

rif can be expressed as 

ri ri rif k  ，
3

3 z

ri

i

EI
k

l
                            (19) 

where Iz is the section inertia moment, and 
rik  is bending 

stiffness coefficient.  

The deflection 
1i  along the link axis under constraint 

moment screw $ j , jf  can be denoted as 

0 1i i i ni if l k   ，
p

ni

i

GI
k

l
                      (20) 

where G is shear modulus, Ip is polar inertia 

moment,
1 2i e e   ,  

T

1 1 0 0e  ,and  
T

2 1 0 0e R . 

Similarly, the deflection
2i of perpendicular the link axis 

under constraint moment screw $ j , jf  can be indicated as 

1 0 2( )i i i ti if e l k   ， z

ti

i

EI
k

l
               (21) 

A matrix form can be written as  

T T

0 1 2ai ri j ai ri j jf f f           K i=1,2,3,

4, j=2,4）                     (22) 

where,  

4 4 4 4

0 4 4 4 4

2 4 2 4

a

c



 

 

 

 
 

  
 
 

K 0 0

K 0 K 0

0 0 K

,  1 2 3 4=diaga a a a ak k k kK ,

 1 2 3 4c r r r rdiag k k k kK ,
1 1 2

1 2 2











 
  
 

K 0
K

0 K
,
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2 2

1

2 20 2 1 20 2 20 2 1 20( ) ( )

n tk k

l e l l e l


   

 
  

    
K ,

4 4

2

4 40 4 1 40 4 40 4 1 40( ) ( )

nk k

l e l l e l


   

 
  

    
K  

B. Stiffness Model of the Parallel Manipulator 

The mapping relationship between actuation chains 

deformation and moving platform displacement X can be 

expressed as  
T

1 2ai ri j j v X         J                (23) 

Where

a

v rc

c

 
 


 
  

J

J J

J

, (1: 4,1: 6)rc cJ J , 

3 1 20

3 1 1 20

3 1 40

3 1 1 40

( )

( )

T T

T T

c T T

T T

l

e l

l

e l











 
 

 
 
 

  

0

0
J

0

0

 

Substituting Eqs. (22) and (23)to Eq.(17), we can obtain 

the equation 

0 0

T

v X  J K J                                    (24) 

The stiffness matrix of the parallel manipulator can be 

rewritten as  

0 0

T

vK J K J                                      (25) 

 

V. STIFFNESS PERFORMANCE INDICES 

A. Linear Stiffness and Angular Stiffness 

If the structural parameters and pose are given, the stiffness 

matrix of the parallel manipulator will be determined. Some 

stiffness performance indices can be defined to evaluate the 

stiffness characteristics. Here we treat the diagonal 

corresponding element of the stiffness matrix as the linear 

stiffness and angular stiffness, which can be defined in details 

as follows [20]-[21].  

(1,1)

(2,2)

(3,3)

(6,6)

x

y

z

w

k

k

k

k








 

K

K

K

K

                                (26) 

where 
xk , yk and

zk are the linear stiffness along X-,Y-, and 

Z-axis, respectively; 
wk is the torsional stiffness about Z-axis. 

Once the parameters of geometry, configuration and 

physical are given in Table I, the stiffness matrix under the 

configuration can be derived as follows Eq.(25) 

 
TABLE I: RELATED PARAMETERS OF MANIPULATOR 

Type Parameter Value 

Structure 

ra(/mm) 278 

rb(/mm) 565 

li(/mm) (750,1250) 

Pose 

 (/radian) 0 

 (/radian) 0 

z(/mm) 853 

Physical 

E(/Pa) 2.06x1011 

G(/Pa) 7.69x1010 

A(/m2) 7.06 x10-4 

Iz(/m
4) 3.97 x10-8 

 

The stiffness matrix of the home position configuration can 

be obtained  

8

0.3297 0 0 0 0.2719 0

0 0.3297 0 0.2713 0 0.0006

0 0 5.8136 0 0 0
10

0 0.2713 0 0.2252 0 0.0005

0.2719 0 0 0 0.2248 0

0 0.0006 0 0.0005 0 0.0008

 
 

 
 
 

  
  

 
 

   

K

  (27) 

where the units of terms are N/m for
11K ,

22K , and
33K , and 

Nm/rad for
44K ,

55K ,and
66K . 

With the help of commercial finite element software 

AnsysWorkbench, the validity of the stiffness model is 

verified, finite element analysis of the PKM is conducted at 

the specified configuration [22]. For facilitate analysis, the 

finite element model of the virtual prototype is constructed for 

the home position in the workspace, the deformations of the 

parallel manipulator under force or moment are shown in Fig. 

3. Fig. 3a-3c illustrated the deformation of the parallel 

manipulator under force along the direction of X-axis, Y-axis, 

and Z-axis, respectively. Fig.3d demonstrated the deformation 

of the parallel manipulator under the moment about the 

direction of Z-axis.  

 

 

 

 
(a) Deformation along X-axis under F=[20N,0,0]T (b) Deformation along Y-axis under F=[0,20N,0]T 
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(c) Deformation along Z-axis under F=[0,0, 20N]T (d) Deformation about Z-axis under M=[0,0, 20Nm]T 

Fig. 3. Deformation with force/moment imposed at the point A. 

 

Based on the FEA analysis, the linear and angular stiffness 

can be numerically calculated by the ratio the fore or moment 

and the displacement or angle. Table II shows the comparison 

of the analytic model and the FEA model. 

 
TABLE II: A COMPARISON WITH ANALYTIC METHOD AND FEA METHOD 

Parameter Analytic FEA 

kx  (N/um) 32.97 31.68 

ky (N/um) 32.97 30.89 

kz (N/um) 581.36 578.41 

kw x104 (Nm/rad) 8 7.86 

 

It can be seen that the results from the analytic method 

match well with those evaluated by FEA method based on the 

hypotheses. Therefore, the established analytical model of the 

whole manipulator stiffness is effective and can be employed 

to evaluate the stiffness performance of the proposed 

manipulator.  

For the purpose of analysis, a specified workspace is 

defined as 40 40   , 40 40   , and z=853. Now the 

stiffness distributions of the PKM are illustrated in Fig.4. 

  
(a) Stiffness distribution in X-axis direction (b) Stiffness distribution in Y-axis direction 

  

(c) Stiffness distribution in Z-axis direction (d) Stiffness distribution about Z-axis direction 

Fig. 4. Stiffness distribution law in prescribed workspace. 
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As shown in Fig.4a-4d, the linear stiffness kx and ky are 

distributed axis-symmetrically in nature and the magnitude of 

kx and ky is very approximate, what’s more, the linear stiffness 

in z direction is larger than that in x and y, which just satisfied 

the machining milling requirements for high position 

accuracy. Along with the varying of orientation parameters of 

the PKM, the tendency of variation on the linear stiffness in 

the workspace is decreased in Fig.4c. The variation of kz is 

contrary to that of kw. 

B. Eigenscrew Decomposition of Stiffness Matrix 

In the screw, the end deformation X can be usually 

expressed in the axis coordinate system, while the wrench 

screw can be generally indicated in the ray coordinate system 

[23]-[25]. In order to ensure the consistency of the coordinate 

system, the twist screw and wrench screw are denoted in the 

same coordinate system, the axis coordinate system is 

converted to the ray coordinate system by employed the 

matrix, i.e.  , that is,  

3 3

3 3





 
   

 

0 I

I 0
                               (28) 

where I denotes an identity matrix, and the 

matrix  interchange the first and the last three elements.   

Therefore, the decomposition of the stiffness matrix is 

converted into the decomposition of the matrix K , that is, 

e e K                                       (29) 

where  and e is the eigenvalues and the eigenvectors of the 

matrix K at a given position, respectively.  

The eigenscrew decomposition of the stiffness matrix can 

be straightforward obtained as 
6

T

1

m m m

m

k w w


K ,
2

m

m

m

k
h


 ，

T1

2
m m mh w w  ,

m

m

m m m m

n
w

n h n

 
  

  
              (30) 

 

where 
mk  is the spring constant, 

me is the m-th eigenvector of 

the matrix K , 
mw is the unit screw of the 

eigenvector
me ,

mh expressed the pitch of vector
mw , 

mn is the 

direction vector of the vector 
mw , 

m is the position vector 

that 
mw  relative to the original coordinate system. 

 The eigenscrew decomposition is applied to the stiffness 

matrix K as described in Eq.(27). By sorting to solve the 

eigenscrew problem in Eq.(29), the six eigenstiffness
m , the 

six eigenscrew pitches 
mh , and the six corresponding unit 

eigenscrew
mw can be derived in more detail in Eq.(31) 

6([ 7.1231 7.1231 1.4493 1.3614 1.4493 1.3614]) 10m diag       

([ 0.0135 0.0135 0.0431 0.0159 0.0431 0.0159])mh diag     

0.0780 0.0780 0.1239 0.5842 0.1239 0.5842

0.0096 0.0096 0.9828 0.0753 0.9828 0.0753

0.9969 0.9969 0.1371 0.8081 0.1371 0.8081

0.0090 0.0090 0.8158 0.0379 0.8158 0.0379

0.0644 0.0644 0.0590 0.4852 0.0590 0.4852

0.0122 0.

mw



 




 



  0122 0.003 0.0019 0.003 0.0019

 
 
 
 
 
 
 
 

   

                                    (31) 

 

The interpretation of stiffness matrix K based on 

eigenscrew decomposition is elaborated in Table III, which 

indicates that stiffness matrix K can be interpreted by a body 

suspended by six-dimensional screw springs with directions 

along the eigenscrew of the stiffness matrix K as shown in Fig. 

5. 
mp denotes the pitch of helical joint used in the screw 

spring. 

TABLE III: THE EQUIVALENT SCREW SPRING 

Springs km  /
810  mn  

m    ( 2 )m mp h  

1 2.6401 [-0.0780, 0.0096, 0.9969]T [0.0640, 0.0080, 0.0049]T 0.0848 

2 2.6401 [0.0780, 0.0096, -0.9969]T [0.0640, -0.0080, 0.0049]T -0.0848 

3 0.1679 [0.1239, 0.9828, 0.1371]T [-0.0084, -0.1118, 0.8091]T 0.2711 

4 0.4286 [0.5842, -0.0753, 0.8081]T [-0.3920, 0.0318, 0.2863]T 0.0988 

5 0.1679 [0.1239, -0.9828, 0.1371]T [-0.0084, 0.1118, 0.8091]T -0.2711 

6 0.4286 [0.5842, 0.0753, 0.8081]T [-0.3920, -0.0318, 0.2863]T -0.0988 

 
From the Table III and Fig. 5, we can see that the 

eigenscrew decomposition of the stiffness matrix can be 

deduced into six simple screw springs superimposition, and 

dived into three groups of springs. Each group has two springs 

at one common point with the same spring stiffness, and the 

pitch is opposite. Since the parallel manipulator own two 

different chains, the manipulator doesn’t exhibit one certain 

symmetry, and the distribution of the springs is not regular. 

C. The Maximum and Minimum Eigenvalue of Stiffness 

Matrix 

In order to evaluate the stiffness value of some positions in 

prescribed workspace, the maximum and minimum 

eigenvalues of the stiffness matrix K are usually employed as 

the evaluation indices of parallel kinematic machine. 
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Fig. 5. The physical interpretation of the stiffness of the PKM. 

 

 
Fig. 6. The maximum eigenvalue of the stiffness matrix. 

 

 
Fig.7. The minimum eigenvalue of the stiffness matrix. 

 

 
Fig. 8. The maximum eigenvalue of the stiffness matrix. 

 

Fig. 6 and Fig. 7 illustrated the atlas of the maximum value 

and the minimum value of the 2RPU-2SPR parallel 

manipulator with different height in prescribed workspace, 

from the figures, the maximum and minimum eigenvalues of 

the stiffness matrix decreased with the increment of z. The 

lowest highest value of maximum stiffness occurs around the 

boundary of the workspace, so does the highest value of the 

minimum stiffness, since the manipulator approaches singular 

when it comes near the workspace boundary. 

The preliminary comparison between the redundantly 

actuated and overconstrained 2RPU-2SPR parallel 

manipulator and the 2RPU-SPR parallel manipulator without 

actuation redundancy illustrates that the former own higher 

stiffness than that of the latter in a same positions as shown in 

Fig.8. In terms of the engineering application of machining 

milling, the proposed manipulator has better stiffness values 

and exhibits desirable stiffness characteristics to satisfy the 

requirements for high position accuracy 

 

VI. CONCLUSION 

In order to accomplish the high-speed machining of 

aerospace structural components with large dimension and 

with complex freedom surface, this paper proposed a novel 

1T2R redundantly actuated and overconstrained parallel 

kinematic machine tool, which can integrate two X-Y tracks 

to construct a five axis hybrid machine tool. From the 

investigation, the following conclusions can be drawn:  

(1) The actuation force and constraint force/moment of 

the proposed manipulator are analyzed in detail by sorting to 

the screw theory, and the freedom of the parallel manipulator 

is further determined. 

(2) The stiffness model of the redundantly actuated and 

over-constrained parallel manipulator was formulated under 

the hypothesis that the main deformation sources are 

concentrated on the links by simultaneously considering the 

actuation and constraints force, and this theoretical model is 

verified by the FEA simulation method. 

(3) The stiffness distributions of the proposed 

manipulator are illustrated. The algebraic characteristics such 

as the linear stiffness, angular stiffness, eigenvalue and 

eigenscrew of the stiffness matrix are usually employed as the 

performance index to evaluate the stiffness of the parallel 

manipulator. The results indicate the proposed manipulator 

has much higher stiffness than the 2RPU-SPR parallel 

manipulator without actuation redundancy, which is a great 

merit and has wide engineering applications in the fields of 

industrial robot and parallel kinematics machine tools. For the 

further work, more performance induces such as dexterity, 

motion-force transmission, kinematic accuracy and reliability 

will be considered to enhance the ability of the proposed 

parallel kinematic machine, and then a real-prototype will be 

fabricated. 
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