
  

 

Abstract—Rainfall-induced debris flow caused by climate 

change has recently become a threat to human life worldwide. 

Types of rainfall characteristics, namely, high rainfall intensity 

for a short duration, high accumulated rainfall for a long 

duration, and postseismic effects were investigated to build a 3D 

rainfall threshold surface for debris flow warning. Rainfall 

parameters including effective accumulated rainfall, intensity, 

and duration were investigated in the 3D analysis. The 

construction of a 3D rainfall threshold surface enhances 

knowledge on the rainfall characteristics that initiate debris 

flows. Rainfall monitoring in consideration of different rainfall 

characteristics can improve predictions of debris flow and thus 

facilitate the issue of timely warnings. 

 
Index Terms—Debris flow, warning, 3D, rainfall threshold.  

 

I. INTRODUCTION 

Climate-change-triggered torrential-rainfall-induced debris 

flow has recently become a threat to human life worldwide. 

Natural disaster-induced accidents increased in 2005 as a 

result of the sequenced intense typhoons Haitang (July), 

Matsa (August), and Longwang (September) hitting Taiwan. 

Additionally, typhoons brought severe wind, floods, 

landslides, and debris flows from Bilis (July, 2006), Sepat 

(August, 2006), and Krosa (October, 2006), and from 

Kalmaegi (July, 2008), Sinlaku (September, 2008), and 

Jangmi (September, 2008). 

Typhoon Morakot landed Taiwan on 7-10 August, 2009, 

bringing heavy rainfall and serious floods in southern Taiwan. 

The typhoon-induced disasters were attributed to its slow 

velocity, which led to long rainfall duration and high rainfall 

intensity [1]. Rainfall from Typhoon Marakot triggered 

numerous debris flows in southern Taiwan in 2009. Fig. 1 

shows some debris flow disasters after Typhoon Morakot in 

southern Taiwan in 2009. In all, 398 residents were buried by 

a dam-breach-induced debris flow in Shaolin Village when 

Typhoon Morakot struck Taiwan [2]. Fig. 2 Shows debris 

flow blockages resulting in a stream that scoured the lower 

terrace of Longhua Elementary School in Nantou County [3]. 

Typhoon Morakot was an extreme rainfall event exceeding 

a 200 yr recurrence amount at many rain gauge stations 

causing severe floods, landslides and debris flows in southern 

Taiwan [4]. A high-precision real-time rainfall monitoring 

system for debris flow warning is urgently required for 
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Fig. 1. Debris flow disasters after Typhoon Morakot in southern Taiwan in 

2009 (a) debris masses buried Shaolin Village, (b) debris buried farm, (c) 

debris buried hot spring village. 

 

Taiwan has 1705 debris-flow-prone creeks [5]. After 

Typhoon Herb in 1996, only 485 debris-flow-prone creeks 

were present. The number of debris-flow-prone creeks 

increased after the ML 7.3 Chi-Chi earthquake in Taiwan in 

1999. Postseismic landslides resulted in up to 1420 creeks 

being prone to debris flow in 2001 during typhoons Toraji and 

Nari. Torrential rains from Typhoon Marakot abruptly 

increased the number of debris-flow-prone creeks to 1503. 

The number has been continually increasing in recent years 

(Fig. 3). 
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Fig. 2. Debris flow blockages resulting in a stream that scoured the lower 

terrace of Longhua Elementary School in Nantou County [3]. 

 

 
Fig. 3. Statistical analysis of the number of debris-flow-prone creeks in 

Taiwan. 

 

Rainfall monitoring is the main methodology for debris 

flow warning. Early and precise rainfall monitoring could 

provide sufficient time for emergency evacuation of residents. 

The most commonly used rainfall parameters for debris flow 

monitoring include (effective) accumulated rainfall, duration, 

and intensity. The commonly used combinations of debris 

flow thresholds include accumulated rainfall–intensity [6]–[7] 

and intensity–duration [8]–[12]. However, no studies have 

used a spatial threshold surface for debris flow warning. 

Table 1 lists the available rainfall threshold equations 

based on rainfall intensity and duration. The rainfall threshold 

equation for debris flow and landslide warning is expressed in 

the following form: 

 

I = αD
-β

                                             (1) 

 

where parameters α and β are constant. 

 
TABLE I: RAINFALL THRESHOLD EQUATIONS BY RAINFALL INTENSITY AND 

DURATION 

Equation Type Reference 

I=14.82D-0.39 Shallow landslide and 

debris flow 

[13] 

D=0.9/(I-0.17) Debris flow [14] 

I=30.53D-0.57 Debris flow and 

landslide 

[15] 

I=91.46D-0.82 Landslide [16] 

I=12(1/D+0.07) Soil slips and debris 

flow 

[17] 

I=63/D+6.05 Debris flow [18] 

I=12.45D-0.42 Landslide [19] 

I=0.82D-0.19 Landslide [20] 

I=73.9D-0.79 Landslide [21] 

I=2.2D-0.44 Shallow landslide and 

debris flow 

[22] 

I=6.61D-0.77 Debris flow [23] 

I=2.18D-0.26 Shallow landslide [24] 

I=25.96D-0.24 Debris flow [25] 

I=0.45D-0.09 Mudflow [26] 

I=52.86D-0.45 Landslide, debris flow, 

and rock slide 

[27] 

I=2.63D-0.3 (summer) 

I=3.64D-0.28 (fall) 

Debris flow [28] 

I=2.97D-0.41( 5% 

threshold) 

Shallow landslide and 

debris flow 

[29] 

I=3.99D-0.65 

(1% exceedance 

probability) 

Debris flow [30] 

 

II. STUDY AREA AND METHODOLOGY 

Taiwan is located at the intersection of the Eurasian plate 

and Philippine plate. Thus, it has a fragile geological 

condition and is prone to frequent earthquakes. Moreover, the 

topography of Taiwan is characterized by mountains with an 

elevation of approximately 3000 m and short rivers (Fig. 4). 

Taiwan is also located on the track of typhoons and is prone to 

torrential rains brought by the typhoons. 

Data from documented debris flows were collected to 

construct a 3D threshold surface for debris flow warning (Fig. 

4). The data set comprises 61 postseismic debris flows from 

1999 to 2001 [6], 11 landslides and debris flows in 2008, and 

38 landslides and debris flows in 2009 [31]. The different 

periods of debris flows represent various debris flow 

triggering conditions, including postseismic effects, high 

rainfall intensity for a short duration, and high accumulated 

rainfall for a long duration. The three most commonly used 

rainfall parameters, effective accumulated rainfall (Ac-eff), 

rainfall duration (D), and average rainfall intensity (Iavg), were 

used for constructing the 3D rainfall threshold surface. 

Statistical computations for constructing the surface were 

performed using R [32]. 

The effective accumulated rainfall (Ac-eff) is defined as 

follows [31]: 

 

Ac-eff = α1d1 + α2d2 + … + α14d14 = 
t

t

t d


14

1


, αt = 0.5

t/T
   (2) 

 

where αt is the empirical attenuation coefficient, dt (mm) is the 

daily rainfall in t days, and T is the half-life (1 day herein). 

The average rainfall intensity (Iavg) is defined as follows: 

 

Iavg = Ac-eff / D                                     (3) 

 

III. RESULTS AND DISCUSSION 

An analysis of the postseismic debris flow revealed that 

debris flows were initiated at a low rainfall intensity in 

Taiwan. The average rainfall intensity was suggested to be 

used for improving the monitoring efficiency [6]. The optimal 

regression and lower level of equations for the surface can be 

represented as follows (Fig. 5): 
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Iavg = 29.11 + 0.034Ac-eff - 0.6D (r
2
 = 56%, for Iavg, Ac-eff, and 

D > 0)                                                                                 (3) 

 

Iavg = 20.26 + 0.02Ac-eff - 0.63D (-2.5% lower level)      (4) 

 

Legend:
Debris flows

 
Fig. 4. Study area and site locations of initiated debris flows in 2008-2009 in 

Taiwan. 

 

 
Fig. 5. 3D rainfall threshold surface for postseismic debris flows. 

 

Debris flows were initiated by rainfall at a high intensity for 

a short duration during Typhoon Kalmegi in 2008. The 

optimal regression and lower level of equations for the 

surface can be represented as follows (Fig. 6): 

 

Iavg = 58.35 + 0.098Ac-eff - 5.73D (r
2
 = 97%, for Iavg, Ac-eff, and 

D > 0)                                                                                  (5) 

 

Iavg = 52.27 + 0.08Ac-eff - 6.6D (-2.5% lower level)         (6) 

 

Debris flows were initiated by high accumulated rainfall for 

a long duration during Typhoon Morakot in 2009. The 

optimal regression and lower level of equations for the 

surface can be represented as follows (Fig. 7): 

 

Iavg = 22.34 + 0.024Ac-eff – 0.55D (r
2
 = 93%, for Iavg, Ac-eff, and 

D > 0)                                       (7) 

 

Iavg = 20.26 + 0.02Ac-eff – 0.63D (-2.5% lower level) (8) 

 

 
Fig. 6. 3D rainfall threshold surface for debris flows induced by rainfall at a 

high rainfall for a short duration after Typhoon Kalmegi in 2008. 

 

 
Fig. 7. 3D rainfall threshold surface for debris flows induced by high 

accumulated rainfall for a long duration after Typhoon Morakot in 2009. 

 

The three events evaluated using the rainfall threshold 

surface exhibited notable differences (Fig. 8). The 

postseismic debris flows had the lowest threshold surface. 

Debris flows that occurred after Typhoon Morakot in 2009 

exhibited a middle threshold surface under high accumulated 

rainfall for a long duration. Typhoon Kalmegi-induced debris 

flows in 2008 had the highest threshold surface under a high 

rainfall intensity for a short duration. The different rainfall 

threshold surfaces suggest that rainfall characteristics must be 

considered in monitoring rainfall-induced debris flows. 

 

 
Fig. 8. Comparisons between rainfall threshold surfaces for debris flow 

warning. 
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IV. CONCLUSION 

Debris flow warning is an economic and effective strategy 

for disaster prevention and mitigation. An effective warning 

model can provide sufficient time for emergency evacuation. 

The 3D rainfall threshold surface constructed using the 

effective accumulated rainfall, intensity, and duration 

provides enhanced spatial information on the initiation of 

debris flows. The results obtained using various threshold 

surfaces reveal that various rainfall characteristics, such as 

high rainfall intensity for a short duration, and high 

accumulated rainfall for a long duration, and postseismic 

effects, must be considered in monitoring and issuing 

warnings for rainfall-induced debris flows. 
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