
 

 

 

 

 

Abstract—This study is focused on the interaction between a 

solitary wave and a bottom cavity with different aspect ratios. 

Vortex formations in cavity with different Reynolds numbers 

are considered. The moving trajectories of the primary vortex 

and the transportation of virtual fluid particles in the cavity are 

analyzed numerically. The numerical model is based on stream 

function-vorticity formulations, and the transient body-fitted 

grid combined with overset grid is adopted for grid systems. The 

numerical results were conducted through the comparisons with 

the experimental observations and measurements. Comparisons 

behave in good comparable tendency.  

 
Index Terms—Solitary wave, cavity flow, viscous effect, 

particle motion. 

 

I. INTRODUCTION 

In the shallow water region, wave can easily transport 

particle materials, such as toxic pollutants, sand grains, 

containments, nutrition or planktons, etc., thereby influencing 

the ecological environment of the sea.  

Almost all wave theories are treated by potential flow. 

However, vortex motions around the structure are occurred 

apparently. With the more complete considerations of real 

wave flow, in the past decade, several authors have 

investigated viscous effect in waves. The study of viscous 

effects on the propagation of solitary waves was initially 

investigated by [1]. Later, more and more numerical studies 

were presented in literatures (e.g. [2]-[5]). However, few 

researches outline the viscous effects of sediment 

transportation in coast environment. In this paper, the laminar 

viscous fluid flows are considered. Such as an oil tanker 

accident, causing the leakage of oil, large coastal region is 

polluted. Reynolds number (Re) becomes an important role of 

parameter in viscous fluid motion.  

This article is a part of the result of [6]. We apply the 

numerical model developed by [7]. The validation of the 

numerical model is conducted by comparisons of the particle 

tracking visualization in experiment [6]. The vortex behaviors 

of wave-cavity for simulation mainly at Re = 50000, 5000, 

and 500 are examined. 
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Fig. 1. Schematic diagram of physical problem. 

 

II. NUMERICAL METHOD  

A. Flow-Field Equations  

A solitary wave propagating over a cavity in a 

two-dimensional, incompressible, viscous fluid flow is 

simulated (as illustrated in Fig. 1). All variables appeared in 

this paper are expressed in a non-dimensional form by using 

the normalized quantities defined by scales based on the 

undisturbed-water-depth, and the linear-long-wave speed. 

One may specify a stream function (  ) to satisfy the 

continuity equation. Let the components of particle velocity 

defined as (u, v)=( xy ,   ). Then substitute it into the 

definition of vorticity ( ). We can obtain the formulations of 

Poisson equation for stream function and the vorticity 

transport equation in a curvilinear coordinates. A 

transformation from Cartesian coordinates, )( t;y,x , to a 

general boundary fitted-curvilinear grid )(  ;, . The    

formulation in general curvilinear coordinates reads 
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Re is Reynolds number. And the variables U and V are 

contravariant components of relative fluid velocity are given 

by 
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Equations (1) and (2) are to be solved with initial 

conditions and associated boundary conditions. The initial 

wave is imposed using the analytic solutions of [8] and is 

placed at X0 in front of the cavity to keep away from 

disturbance. The initial conditions are a solitary wave of 

height A0 on free surface. The celerity (C) and initial wave 

profile( f ) are: 
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boundary values for stream function can give as f = fC . The 

vorticity values are all given to be zero at initial.  

On the free surface, defined by )t,x(y  , the dynamic and 

kinematic boundary conditions must be satisfied. The 

dynamic condition is under the assumption of fluid pressure is 

the same as the atmospheric pressure. We neglect the surface 

tension on free surface. The total differential of atmosphere 

pressure (Pa) along  -line is zero. This lead to 
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where )(  xyyxJ  is the Jacobian transformation. The 

kinematic condition on free surface is claimed that fluid 

particle which is once on the surface remains on it, and hence 

yields the condition 
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The bottom is a constant, streamfunction can be written as 

00  . And the vorticity on wall shall satisfy the velocity 

vanish at walls, a method derived by [9] but expressed in the 

present generalized cuevilinear form is given by 
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For the vertical or horizontal walls the (8) leads to 

 

)(2 010   iig
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where the grid node on wall is noted by subscript “0”, and “1” 

is the node adjacent to “0” one in interior flow field. The 

superscripts i = 1 and i = 2 are specified to vertial wall and 

horizontal bottom, respectively. 

The open boundary conditions are given as  

 

01    x
                              (10) 

 

where   is a dummy variables, representing  ,  or ; the + 

sign is chosen for the right boundary; and the – sign is chosen 

for the left boundary.  

B. Numerical Method  

The streamfunction-vorticity with free surface (SVFS) 

formulation was first developed by [2]. They used 

boundary-fitted grid for solving the governing equations with 

Finite Analytic Method (FAM) [10] and discretizing the 

associate boundary conditions by time-averaged Finite 

Difference Method (FDM). Also, they joined the overset grid 

in SVFS model to reveal detail flow motions. The detail 

procedures in numerical method in grid generations and 

discretizations can refer these references. In this paper, we 

applied and modified their model. We use both of the FDM 

and FAM for suitable flow-field equations to increase 

computing efficiency. The base grids are built evenly in 

x-direction, while y-direction grid is separated into two parts. 

One part is distributed by a fixed even distribution in the 

lower part of water depth, another with the upper part to 

conform the moving free surface to re-distribute the y-grid 

space uniformly in this part. In the free surface, the 

free-surface displacements and stream functions are solved, 

respectively, from kinematic and dynamic conditions. A 

correction with time-average is a vital procedure when 

discrete the nonlinear free surface conditions. In flow field, 

we utilize the FAM discretization to solve both of the Poisson 

equations of stream function and the vorticity transport 

equation; meanwhile using the FDM to work out associated 

boundary conditions.  

Unlike traditional FDMs, it is given by the local analytic 

solution to the linearized convective diffusion equation in a 

grid cell. This has the advantage of automatically weighting 

the convective diffusion. To express the two dimensional 

convective-diffusion equations in the standard FAM 

formulation, we let 
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Therefore (1) becomes 
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vorticity, (2), can be expressed as 
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The cell spaces are 11* /1 gh   and 22* /1 gk  . 

In the FAM, the governing differential equations are 

discretized into algebraic equations based on an analytic 

solution on the small computational element. In this method, a 

combined function of a linear and an exponential function for 

the boundary conditions is commonly used. The solutions of 

(12) and (13), expressed by the dummy variable   at node P 

can be described with the nine-point values as 
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with the FAM coefficients given by  
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Above, the A and B are replaced by 
A  and 

B  for solving 

(1); and by 
A  and 

B  for solving (2). 

 

III. RESULTS  

A. Visualization Comparisons 

Fig. 2 compares the results of experimental visualization 

and numerical simulation, thereby verifying the consistency 

of both. The Re is approximately equal to 66700 according to 

the experimental conditions. Incident wave with A0 = 0.2 is 

placed at 0X
 
= -20 to keep away from the cavity. The 

streamline patterns of a solitary wave interacting with a 

square cavity with D = W = 0.43 at various instant snapshots 

are plotted in Fig. 2a, while the corresponding image of Fig. 

2b taken by PIV technique to capture the velocity vectors; and 

the snapshot of particle trajectory photography at t = 33 are 

shown in Fig. 2c. It shows the main wave moves to 

downstream, only local flow evolves around the cavity, the 

primary vortex moves back toward the center of cavity; 

simutaneously, all eddies are swelling, the secondary vortex is 

bulging obviously at the cavity right corner. Results show the 

corresponding observed flow visualizations, basically have 

the same characteristics to numerical solutions. 

For a different aspect ratio with W = 0.215,and D = 0.43, 

which is half of the previous case in cavity width. Similarly, 

the computational streamlines at one instant moment (t = 35) 

are compared with photo pictures. The comparisons between 

the numerical streamline patterns, velocity vectors and the 

experimental photoes are in good agreements, as shown in Fig. 

3. In comparison with the previous case, the major different 

behavior is the secondary vortex in the cavity right wall can 

move toward the deeper cavity. But the fluid is almost 

stationary below the lower half of this deep cavity. This 

means the contents deposited in cavity deeper than the 

half-water depth will not be easily disturbed by a moderate 

solitary wave. Above results can validate the precision of 

present model to build confidence to calculate the following 

numerical examples. 
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Fig. 2. Solitary wave A0 = 0.2 passes a cavity of W = D = 0.43: (a) numerical 

streamlines (-0.011~0.002 at interval 0.0002 with light lines, solid line is 

positive and dashed line is negative; 0.002~0.2 at interval 0.005 with heavy 

solid lines); (b) PIV measurement of velocity vectors, and (c) flow 

visualization pictures by experiment [6]. 

 

 

 

 
Fig. 3. Solitary wave A0 = 0.2 passes a cavity of W = 0.215 and D = 0.43: (a) 

numerical streamlines (-0.005~0.002 at interval 0.0002 with light lines; 

0.002~0.2 at interval 0.005 with heavy solid lines); (b) PIV measurement of 

velocity vectors, and (c) flow visualization pictures by experiment [6]. 

 

 

 

 
Fig. 4. Streamlines of a solitary wave A0=0.6 passes a cavity of W = D = 0.5 

for different Re at various time: (a) Re=50000; (b) Re=5000; (c) Re=500. 
 

B. Flow Patterns at Re = 50000, 5000, and 500 

It can easily be specified a pure bottom cavity in numerical 

simulations. The purpose of this section is to discuss the role 

of fluid viscosity, this includes Re = 50000, 5000, and 500. A 

pure cavity with W = D = 0.5 in geometry model is selected. A 

International Journal of Engineering and Technology, Vol. 10, No. 1, February 2018

32



 

 

 

 

solitary wave passing over it with A0 = 0.6 starting from X0  =  

-15 is concerned. Relatively, that is a case of steep wave. Fig. 

4 shows two snap shots of streamlines. Contours are plotted 

with  -0.04 ~ 0 at interval 0.001; 0 ~ 0.0065 at interval 0.0005 

and 0.05 ~ 0.75 at interval 0.05. The Re = 50000 (Fig. 4a) is a 

case closer to general laboratory water wave conditions. The 

vortex is shedding out when the wave passes over the cavity. 

There is a clockwise vortex, which is the primary one 

generated at the edge due to flow separation (t = 12). The flow 

separation is due to high velocity gradient of boundary layer  

of incident solitary wave near the frontal edge of the cavity. In 

the same time, a vortex is generated at the top of the 

downstream bottom. Actually, it is relatively small but the 

numbers of vortices increase with time. The primary vortex 

grows larger and rotates continuously, and size of the vortex 

increases simultaneously. At the diffusion stage (t = 50), the 

flow motion is gradually weaker and weaker. The secondary 

vortex generated from the concave right corner develops into 

a closed cavity flow. A main anti-clockwise vortex rotates 

forming concentric streamlines in the cavity. The jetting pair 

vortices is not found for Re = 500 (Fig. 4c). In addition, the 

closed cavity flow, acts like the case of Re=5000, but has 

weaker flow motion in it. Fig. 5 shows the equivalent vorticity 

line corresponding to the same instance of Fig. 4. Contours 

-0.04 ~ 0.686 at interval 0.002; -25 ~ -0.1 at interval 0.1 are 

plotted with dashed lines for negative values. From Fig. 5, we 

observe that as the Re increases the vorticity contours indicate 

that strong vorticity gradients develop on the bottom and the 

cavity walls. The pair of vorticity rolls move upward due to 

the stronger convection effect; for lower Re (Re = 500) the 

vorticity is distributed a symmetric pattern when it develops 

into a diffusion stage, that is similar to the lid-cavity flow 

behavior at very low Re [11]. 

 

 

 

 
Fig. 5. Equi-vorticity contours of a solitary wave A0=0.6 passes a cavity of W 

= D = 0.5 for different Re at various time: (a) Re = 50000; (b) Re = 5000; (c) 

Re = 500. 
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Fig. 6. Time varying particle motion for A0=0.6 passing over a square 

cavity at different Re. 
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C. Particle Motions in Cavity  

The particles within the cavity can be partially transported 

outside when wave passes over. Fig. 6 shows the migration of 

particles resulting from the interaction of the solitary wave of 

A0 = 0.6 and a cavity with W = D = 0.5 at Re = 50000, 5000, 

and 500. We select the spaces δx = δy = 0.01 to determine the 

particle density in the cavity. There are 2500 imagined fluid 

particles within this cavity. The particle motions are traced 

using the Lagrangian viewpoint. The phenomenon of particle 

motions at t = 12, and 50 are plotted. Based on the figures we 

inspect that the role of Re in the particle transportations. For 

the case of Re = 50000, from Fig. 6a we can find when the 

wave is approaching cavity, at t = 12 partial particles have 

been carried downstream. Finally, the left wall of cavity is 

suffered a vertical velocity shooting upwards, thereby 

producing a jet-like flow along the wall, and the jet splits into 

bidirectional asymmetric particle rolls. The left roll of the pair 

usually carries more particles than the right one. The rolling 

mechanisms for Re = 50000 (Fig. 6a) and Re = 5000 (Fig. 6b) 

perform in a similar pattern. Major differences in Re = 5000 

are the pair rolls growing upward and tilted toward 

downstream and a system of spiral distribution is formed in 

cavity at the final stage. For lower Reynolds number, Re = 500, 

particles move slowly without apparent particle rolls 

produced during the wave propagation process, but a group of 

particles are swept upstream. Anyway, once the particles 

brought outside by flow motion, if there are currents or waves 

will carry these particles to other region, thereby affecting the 

environment. 

 

IV. CONCLUSIONS 

This paper introduces the numerical and experimental 

methods to analyze the motion of a solitary wave stirring the 

particles in a cavity. The numerical model is governed by 

streamfunction-vorticity equations using a body-fitted grid 

system and suitable FAM to obtain converged flow field 

solutions. The emphasis of this research is to study the 

mechanism of viscous effect in the translation of vortex 

motion and the transportation of virtual particles around a 

cavity. As we think, a serious impact on the environment 

occurred when an additional disturbance, such as waves or 

currents, transporting these particles to drift into downstream. 

Some important items are noted here as conclusions. 

The comparison between the numerical simulations and 

experimental visualizations for the vortex motion due to 

wave-cavity interaction are in good agreement for two 

different aspect ratio cavities. 

The flow cases for Re = 50000, 5000, and 500 are 

simulated in numerical study. For the low Re flow, the 

evolving vortex motion in cavity behaves like the traditional 

lid-cavity flow, and no vortices produced by uplifting jet flow. 

The path of primary vortex core moves more smooth and 

gentle, at the final stage, it moving inclines into upper left; 

that is in contrast to the higher Re, which tends towards upper 

right. 
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