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Abstract—During the software development, numbers of 

mistakes are committed by software developers consequential 
to the insertion of a number of faults in the program. The 
behavior of a faulty program may be different from expected 
one. Since testing to detect all imaginable faults is impossible 
because of large numbers of test cases are required. Fault 
based testing strategies detects only pre-defined types of faults. 
Kuhn’s fault class hierarchies provide the focus of fault-based 
testing strategies on detecting particular faults. We have 
purposed supplementary fault detection strategies by 
considering Coupling Effect Hypothesis and the Competent 
Programmer Hypothesis to detect faults with small number of 
test cases. Our results extend Kuhn’s fault class hierarchy 
combine with Black’s fault detection strategies that provide a 
focus on testing strategies for detection of faults. The resulting 
tests are also effective for detecting faults in other classes with 
the sane test cases. 
 

Key words—Fault-based testing; Fault classes, 
Specification-based testing;  

 

I. INTRODUCTION 
Software testing is crucial and decisive in ensuring the 
quality of software. A formal specification provides the entire 
knowledge about a system and valuable information for 
testing programs. The aim of fault-based testing is to 
generate tests to detect faults in software [1], [10]. The 
mutation method is a fault-based testing strategy that 
measures the quality/adequacy of testing by examining 
whether the test set used in testing can reveal certain types of 

faults. Given a program p, a mutant is some variant  of p.  
A mutant is generated by applying some mutation operators 
i.e.  rules that allow us to transform programs. A mutant 
produced by applying one instance of one operator only is 
called first-order mutants. By applying a mutation operator 
to a mutant, a mutant of a mutant is generated known as 
second order mutant. By mutating a second order mutant, a 
third order mutant is obtained and so on. These “higher 
order” mutants are not considered in Mutation Testing. 
Using only first-order mutants has been justified in two ways. 
Firstly, it is argued that if our test finds the small differences 
defined by first-order mutants, then it is likely that it will find 
larger differences defined by higher-order mutants. It is 
based on The Coupling Effect Hypothesis i.e. “Large 
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program faults, particularly those of a semantic nature are 
coupled with smaller syntactic faults that can be detected 
with mutation testing”. Secondly, it is also argued that real 
programmers make small mistakes and thus that real 
programs are like first-order mutants of correct programs. It 
is based on The Competent Programmer Hypothesis i.e. “In 
general programmers are competent i.e., the programs they 
write are nearly correct. The program differs from a correct 
version in only a few small ways.  Kuhn’s hierarchy [1] of 
fault implies that some faults may be left during software 
testing. Earlier results [2], [6] were restricted for 
specifications in disjunctive normal form (DNF). Vadim [10] 
strategy is capable of removing the restriction to DNF. By use 
of fault-based testing using DNF specifications may fail to 
notice faults that can be detected if testing were done from the 
original specifications [1, 8]. Kuhn developed the hierarchy 
based on detection conditions for fault classes. We have used 
Kuhn’s and Vadim et al [10] approach. We consider only the 
conditions for Logical Operator Reference Faults (LRF), CIF, 
Clause Negation Fault (CNF) and Expression Negation Fault 
(ENF) depending upon the particular operators or 
association faults chosen. Note that the conditions under 
which a particular fault will cause a failure are defined by the 
difference of the specification with respect to the particular 
fault. We also extend the hierarchy to include additional fault 
such as LRF, ENF, Clause Reference Fault (CRF), and CNF 
and stuck off faults (STF). The use of fault conditions enables 
us to analyze existing testing methods. For instance, we find 
that the basic meaningful impact strategy is stronger in that it 
tests for LRF and not variable negation faults.  
 

II. TYPES OF FAULT  
In the software development process, software developers 
may make a numbers of mistakes resulting into the 
introduction of number of faults in the program. The Faults 
may involve Boolean variables, Boolean operators, relational 
operators, logical operator or arithmetic expressions. The 
different faults which may occur are: 
(i) Clause Reference Fault (CRF) – Clause ‘a’ is 

replaced with another clause ‘b’. For example, the 
specification (x >7) V (y < 3) is implemented as (x > 
9) V (y < 3). 

(ii) Clause Negation Fault (CNF) - Clause  is replaced 

by its negation . 
(iii) Clause Insertion Fault (CIF) - Clause b is inserted, 

for example clause  is replaced by  op  where 
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another clause, and op is is is either conjunction or 
disjunction. There are two subclasses of this class. 

(iv) Clause Conjunction Fault (CCF) - Clause  is 

replaced by   . 

(v) Clause Disjunction Fault (CDF) - Clause  is 

replaced by . 
(vi) Relational Operator Reference Fault (RRF) - 

Relational operator is replaced by any other 
relational operator. Note that replacing a relational 
operator with its opposite is the same as negating 
the whole relational expression. 

(vii) Off-By-1 Fault (OFF) - in a relational expression 
E1opE2, replace the arithmetic expression E2 with 
E2 + 1 or  E2 − 1. 

(viii) Stuck-At Fault (STF) - stuck-at-0 replaces a clause 
with 0, stuck-at-1 replaces it with 1. 

(ix) Expression Negation Fault (ENF) - replace an 
expression E by . 

(x) Missing Expression Fault (MEF) - a predicate is 
omitted during implementation. MEF includes both 
where a clause is missing and where a compound 
predicate is missing. 

(xi) Logical Operator Reference Fault (LRF) - a Boolean 
operator is replaced by another operator, e.g., x  

y is replaced by x  y. 
(xii) Associative Shift Fault (ASF) - change the 

associability of terms. For example, replace (ab) c 

with a (b c). 
(xiii) Term Omission Fault (TOF): A particular term is 

omitted during the implementation. For example 
 are wrongly 

implemented as . 
(xiv) Literal Negation Fault (LNF): A literal in a 

particular term is wrongly implemented as its 
negation.  

(xv) Literal Omission Fault (LOF): A literal in a 
particular term is omitted during the 
implementation such as 

 being implemented 

as . 
(xvi) Literal Insertion Fault (LIF): A literal not appearing 

in a particular term is inserted into that term. For 
example,  is incorrectly 

implemented as . 
(xvii) Literal Reference Fault (LRF): A literal in a 

particular term is replaced by another literal not 
appearing in the term during the implementation.  
Where 

  (horizontal line 
above an operand) 

Negation 

∨   

Disjunction 

∧ 

Conjunction 

⊕ 

Exclusive-or 

↔ Equivalence 
→ Implication 
<, ≤, =, ≠, >,  ≥ Operator 

And clause is either a Boolean variable or a relational 
expression [10]. A relational expression is of the form A 
operator B, where A and B are arithmetic expressions A 
compound predicate consists of one or more binary Boolean 
operators and their operands. A predicate is either a clause or 
a compound predicate. These fault classes correspond closely 
to first-order mutants that may occur in software 
specifications, where one occurrence of first-order mutants 
may be an error while another occurrence is correct [10]. 
 

III. PREVIOUS  WORK 
The objective of only using first-order mutants is reduction 

of efforts i.e. if we do not restrict ourselves to first-order 
mutants then the total number of mutants is likely to be 
extremely large. To imagine all types of faults is not possible 
but some faults classes can be hypothesized and test sets can 
be constructed. Kuhn [1] purposed the techniques for 
analyzing the effects of faults in specifications. Let S denote a 
specification predicate considered to be correct and S′ a faulty 
version of it. A test detects the fault if and only if it causes S′ 
to evaluate to a different value than S, formally when S ⊕S′. 

The notation  signifies that a predicate X of specification 
S is replaced by a predicate E. Kuhn’s [2] classification of 

detection condition for the fault is   = S ⊕ , in other 

words,  evaluates to a different value than S and  is 
referred to as the detection condition for the fault. By 
considering this condition Kuhn [2] compared the detection 
conditions for different faults like variable reference fault 
(VRF), variable negation fault (VNF), and expression 
negation fault (ENF) and he purposed that if any test that 
detects a VRF for some variable also detects a VNF for the 
same variable, also the test that detects the VNF for some 
variable also detects an ENF for the expression in which the 
variable occurs. A number of researchers [2, 6, 8, 9, 10] used 
Kuhn’s technique to compare fault classes.  

The restriction of disjunctive normal form (DNF) was 
removed by Vadim et al [10] and considered another classes 
of faults likes CRF, CNF, ENF, CCF, and CDF and. They 
proved that a test case that detects CRF can also detect CNF 
and a test case that detects CNF can also detect ENF. 
Detection condition is an effective and concise analytical tool 
for studying faults in formal specifications. They refine the 
fault detection conditions. 
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Different faults like LIF, LRF, LOF TOF, LNF, TNF, and 
ENF were considered by [6]. They showed that if a test case 
detects literal insertion fault will also detect literal reference 
fault, literal omission faults and a test case that detects LRF, 
TOF, or LOF can also detect LNF. They also showed that if a 
test case that detects LNF can also detect TNF, a test case that 
detects TNF can also detect ENF.  

Research on the tests that detect Missing Clause Fault 
(MCF) will also detect VNF was considered in [9]. They also 
discovered that tests that detect MCF may not be able to 
detect VRF, and vice versa. They also proved that a test set 
that detects MCFs for single variable terms, as well as VRFs, 
is sufficient to detect both VRFs and MCFs. 

 

IV. FAULT CONDITIONS 
With the following truth table, we can analyze fault 
conditions for various fault classes. For any predicates x, y, 
and z, the following identities are built from the above truth 
table and used throughout in this paper: 

x∧ y ⊕ y ∧ z=(x ⊕ y) ∧ z     (1) 

x ∧ y ⊕ y=   ∧ y      (2) 

(x ⊕ y) ∧  =(x ∨ y) ⊕ (y ∨ z)    (3) 

x ⊕ y ⊕ ⊕ y=1     (4) 

x ⊕ y =(x ∨ y) ⊕ (x ∧ y)     (5) 

(x ∧y) → z = 1      (6) 

x ⊕  =  1     (7) 

Let S denote a specification predicate and  is a clause in S, 
 is another valid clause and E is an expression in S. The 

notation SF is used to represent the detection condition for an 
arbitrary fault belonging to fault class F. The detection 
conditions [10] for fault classes CRF, CNF, ENF, CCF, CDF 
and LRF are summarized as. 

 
SCRF  =    Clause Reference Fault 
SCNF  =    Clause Negation Fault 
SENF  =     Expression Negation Fault 
SCCF  =    Clause Conjunction Fault 
SCDF =    Clause Disjunction Fault 
SLRF  Logical Operator Reference Fault 
 
 First consider the relationship between Logical Operator 
Reference Fault (LRF) and clause negation faults (CNF). 

 
(i) Any test case that detects a Logical Operator 

Reference Fault (LRF) for a clause in a predicate 
will also detect the clause negation faults (CNF) for 
the same clause, then SLRF → SCNF. 

Proof: For a predicate S and a clause  occurring in S, and 
in Logical Operator Reference Fault (LRF) a operator is 
replaced by another operator, e.g.,  is replaced 
by . Then LRF is given by:  

  = ( ) ⊕  

 = ( ) 
The clause negation faults (CNF) where  is replaced by its 
Negation  and given by 

  =    = 1 Then 
  →  holds, where  is another valid clause 
and   
Writing with detection condition [10]  i.e. 

   = ( )     Where is a predicate in S and is 

replaced by another predicate B.  We have  
 

( ) ⊕   →   

)   →  
 
With equation (6) the above expression will holds. So if any 
test case that detects a LRF for a clause in a predicate will 
also detect the CNF for the same clause. 
  
(ii)  Any test case that detects a Logical Operator 

Reference Fault (LRF) for a clause in a predicate 
will also detect the Expression negation faults (ENF) 
for the same clause, then SLRF → SENF. 

 

Proof: For a predicate S and a clause  occurring in S, and 
in LRF a operator is replaced by another operator, e.g., 

 is replaced by . Then LRF is given by:  
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  = ( ) ⊕  

 = ( ) 
 
And the Expression Negation fault (ENF) is inserting an 
Expression  in place of Expression . 

  =   (E   where  is replaced by   then 
    hold.  

Writing with detection condition [10] i.e. 

   = ( )    

Where is a predicate in S and is replaced by another 
predicate B.  We have  

( ) ⊕   → (E    

)   →  where  = 1 
 
With equation (6) the above expression will holds. So if any 
test case that detects a LRF for a clause in a predicate will 
also detect the ENF for the same clause. 

 
(iii) Any test case that detects a Clause Insertion faults 

(CIF) for a clause in a predicate will also detect the 
Logical Operator Reference Fault (LRF) for the 
same clause and vice versa, then SCCF   SCDF ↔ SLRF 

 
Proof: For a predicate S and a clause  occurring in S, and 
in Logical Operator Reference Fault (LRF) a operator is 
replaced by another operator, e.g.,  is replaced by 

. Then the logical operator reference fault is: 

   = ( ) ⊕  

 = ( ) 
And the clause Insertion fault (CIF) is insert a clause b, 
which is, replace a clause  by  op  where  is another 
clause, op is either conjunction or disjunction. 
 =     where  is replaced by  or 
=     where  is replaced by  then 

           hold.  
 
Writing with detection condition [10]  i.e. 

   = ( )    

Where is a predicate in S and is replaced by another 
predicate B.  We have  

( ) ⊕      ↔    

   
 

)    ↔  (    (    

= (   )   

= )   

From this expression SCCF   SCDF ↔ SLRF   will holds. So if 
any test case that detects a LRF for a clause in a predicate will 
also detect the CIF for the same clause. 
 
(iv) Any test case that detects a Clause Insertion Fault 

(CIF) for a clause in a predicate will also detect the 
Stuck-At-0 and Stuck-At-1 faults for the same clause, 
then SCIF → SSTF 
 

Proof: clause Insertion fault (CIF) is insert a clause b, which 
is, replace a clause  by  op  where  is another clause, 
op is either conjunction or disjunction. 
 =     where  is replaced by  or 
=     where  is replaced by  

  =  

             = (  
And stuck-at-0 fault replaces a clause with 0; stuck-at-1 fault 
replaces it with 1. 

  = ( )  ⊕   

 = )  
 

  = ( )  ⊕   

 = )  
Then 
  →  holds. So if any test case that CIF for a 
clause in a predicate will also detect the stuck-at-0 and 
stuck-at-1 faults for the same clause. 
 
The above relationship between LRF, CIF, CNF and ENF is 
shown in figure 1. This relationship between fault classes 
implies that the number of tests needed is much less, because 
of overlap between detection conditions. 
 
 
Figure1 depicts the relationships between fault classes 
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V. CONCLUSION 
 

Software testing is the most costly phase in the software 
development and efforts should be made to reduce the cost. 
The proposal made in the paper helps in reducing the test 
cases. By extending the fault hierarchy, we have been 
provided with to detect a corresponding fault from a class, 
thus improving the effectiveness of fault based testing. The 
technique presented in this paper helps us for detection of 
faults with the minimum numbers of test case thus reducing 
the overall software testing cost. 
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