IACSIT International Journal of Engineering and Technology Vol.1,No.5,December,2009
ISSN: 1793-8236

Toward A Theory of Test Case Reduction in
Specification Based Software Testing

Rakesh Kumar Kulvinder Singh

Abstract—During the software development, numbers of
mistakes are committed by software developers consequential
to the insertion of a number of faults in the program. The
behavior of a faulty program may be different from expected
one. Since testing to detect all imaginable faults is impossible
because of large numbers of test cases are required. Fault
based testing strategies detects only pre-defined types of faults.
Kuhn’sfault class hierar chies provide the focus of fault-based
testing strategies on detecting particular faults. We have
purposed supplementary fault detection strategies by
considering Coupling Effect Hypothesis and the Competent
Programmer Hypothesis to detect faults with small number of
test cases. Our results extend Kuhn’s fault class hierarchy
combine with Black’s fault detection strategies that provide a
focus on testing strategies for detection of faults. The resulting
tests are also effective for detecting faultsin other classes with
the sane test cases.

Key words—Fault-based Fault
Specification-based testing;

testing; classes,

|. INTRODUCTION

Software testing is crucial and decisive in ensuring the
quality of software. A formal specification providesthe entire
knowledge about a system and valuable information for
testing programs. The aim of fault-based testing is to
generate tests to detect faults in software [1], [10]. The
mutation method is a fault-based testing strategy that
measures the quality/adequacy of testing by examining
whether thetest set used in testing can reveal certain types of

faults. Given a program p, a mutant is some variant P of p.
A mutant is generated by applying some mutation operators
i.e. rulesthat allow us to transform programs. A mutant
produced by applying one instance of one operator only is
called first-order mutants. By applying a mutation operator
to a mutant, a mutant of a mutant is generated known as
second order mutant. By mutating a second order mutant, a
third order mutant is obtained and so on. These “higher
order” mutants are not considered in Mutation Testing.

Using only first-order mutants has been justified in two ways.
Firstly, it isargued that if our test finds the small differences
defined by first-order mutants, thenitislikely that it will find

program faults, particularly those of a semantic nature are
coupled with smaller syntactic faults that can be detected
with mutation testing”. Secondly, it is also argued that real
programmers make small mistakes and thus that red
programs are like first-order mutants of correct programs. It
is based on The Competent Programmer Hypothesisi.e. “In
general programmers are competent i.e., the programs they
write are nearly correct. The program differs from a correct
version in only a few small ways. Kuhn’s hierarchy [1] of
fault implies that some faults may be left during software
testing. Earlier results [2], [6] were restricted for
specificationsin digunctivenormal form (DNF). Vadim [10]
strategy is capable of removing therestriction to DNF. By use
of fault-based testing using DNF specifications may fail to
noticefaultsthat can be detected if testing weredonefrom the
original specifications [1, 8]. Kuhn devel oped the hierarchy
based on detection conditions for fault classes. We have used
Kuhn’sand Vadim et a [10] approach. We consider only the
conditionsfor Logical Operator Reference Faults (LRF), CIF,
Clause Negation Fault (CNF) and Expression Negation Fault
(ENF) depending upon the particular operators or
association faults chosen. Note that the conditions under
which a particular fault will cause afailure are defined by the
difference of the specification with respect to the particular
fault. We al so extend the hierarchy to include additional fault
such as LRF, ENF, Clause Reference Fault (CRF), and CNF
and stuck off faults (STF). The use of fault conditions enables
usto analyze existing testing methods. For instance, we find
that the basic meaningful impact strategy isstronger in that it
tests for LRF and not variable negation faults.

1. TYPESOF FAULT

In the software development process, software developers
may make a numbers of mistakes resulting into the
introduction of number of faultsin the program. The Faults
may involve Boolean variables, Boolean operators, relational
operators, logical operator or arithmetic expressions. The
different faults which may occur are:
(i) Clause Reference Fault (CRF) — Clause ‘@’ is
replaced with another clause ‘b’. For example, the
specification (x >7) V (y < 3) isimplemented as (x >

larger differences defined by higher-order mutants. It is 9V (y<3).
based on The Coupling Effect Hypothesis i.e. “Large (ii) Clause Negation Fault (CNF) - Clause a isreplaced
by its negationa.

Faculty of Computer Science, Department of Computer Science and . ..
Applications(D.C.S.A), Kurukshetra University, Kurukshetra (K.U.K)- India (“') Clause Insertion Fault (CIF) - Clause b is inserted,

Faculty of Computer Engineering, University Indtitute of Engineering & for example clause a is replaced by a op b, where
Technology (U.I.E.T), Kurukshetra University, Kurukshetra (K.U.K),India

481

Qo=

(iv)

v)

(vi)

(vii)

(viii)

(ix)

)

(xi)

(xii)

(xiii)

IACSIT International Journal of Engineering and Technology Vol.1,No.5,December,2009
ISSN: 1793-8236

banother clause, and opisisiseither conjunction or
digunction. There are two subclasses of this class.
Clause Conjunction Fault (CCF) - Clause a is
replacedby @ A b,

Clause Digunction Fault (CDF) - Clause a is
replacedby @ Vv b.

Relational Operator Reference Fault (RRF) -
Relational operator is replaced by any other
relational operator. Note that replacing a relational
operator with its opposite is the same as negating
the whole relational expression.

Off-By-1 Fault (OFF) - in a relational expression
E1opE2, replace the arithmetic expression E2 with
E2+1or E2—- 1.

Stuck-At Fault (STF) - stuck-at-0 replaces a clause
with O, stuck-at-1 replacesit with 1.

Expression Negation Fault (ENF) - replace an
expression E byE'.

Missing Expression Fault (MEF) - a predicate is
omitted during implementation. MEF includes both
where a clause is missing and where a compound
predicate is missing.

Logical Operator Reference Fault (LRF) - aBoolean
operator is replaced by another operator, eg., x
yisreplaced by x V' y.

Associative Shift Fault (ASF) - change the
associability of terms. For example, replace (ab) v ¢
witha(b Vv c).

Term Omission Fault (TOF): A particular term is

omitted during the implementation. For example
(anb)viend)v(enf) ae wrongly

implemented as(a A b)) v (c Ad).

(xiv) Literal Negation Fault (LNF): A literal in a
particular term is wrongly implemented as its
negation.

(xv) Literal Omission Fault (LOF): A literd in a
particular term is omitted during the
implementation such as
(anbnac)v(d Ve f)being implemented
as(lanb)v(d venf).

(xvi) Literal Insertion Fault (L1F): A literal not appearing
in a particular term is inserted into that term. For
example, (a Ab) v (d v e A f) is incorrectly
implemented as(a Ab A) v (d venf)

(xvii) Literal Reference Fault (LRF): A literal in a
particular term is replaced by another literal not
appearing in the term during the implementation.
Where

@ (horizontal line | Negation
above an operand)
Digunction

Conjunction
A

Exclusive-or
@
PN Equivalence
— Implication
S5 H/H> 2 Operator

And clause is either a Boolean variable or a relational
expression [10]. A relational expression is of the form A
operator B, where A and B are arithmetic expressions A
compound predicate consists of one or more binary Boolean
operatorsand their operands. A predicateiseither aclause or
acompound predicate. Thesefault classes correspond closaly
to firg-order mutants that may occur in software
specifications, where one occurrence of first-order mutants
may be an error while another occurrenceis correct [10].

1. PREVIOUS WORK

Theobjective of only using first-order mutantsis reduction
of efforts i.e. if we do not restrict ourselves to first-order
mutants then the total number of mutants is likely to be
extremely large. Toimagine all types of faultsis not possible
but some faults classes can be hypothesized and test sets can
be constructed. Kuhn [1] purposed the techniques for
analyzing the effects of faultsin specifications. Let Sdenotea
specification predicate considered to becorrect and S' afaulty
version of it. A test detectsthefault if and only if it causes S
to evaluateto a different valuethan S, formallywhen S @ S..

X
Thenotation 3 E signifiesthat apredicate X of specification
Sisreplaced by a predicate E. Kuhn’s [2] classification of

. X X
detection condition for thefaultis dSE =S e 5 E, in other

words, s i‘?’ evaluates to a different value than S and is
referred to as the detection condition for the fault. By
considering this condition Kuhn [2] compared the detection
conditions for different faults like variable reference fault
(VRF), variable negation fault (VNF), and expression
negation fault (ENF) and he purposed that if any test that
detects a VRF for some variable also detects a VNF for the
same variable, also the test that detects the VNF for some
variable also detects an ENF for the expression in which the
variable occurs. A number of researchers[2, 6, 8, 9, 10] used
Kuhn’s technique to compare fault classes.

The restriction of digunctive norma form (DNF) was
removed by Vadim et al [10] and considered another classes
of faults likes CRF, CNF, ENF, CCF, and CDF and. They
proved that atest case that detects CRF can also detect CNF
and a test case that detects CNF can aso detect ENF.
Detection condition isan effective and concise analytical tool
for studying faultsin formal specifications. They refine the
fault detection conditions.

482

IACSIT International Journal of Engineering and Technology Vol.1,No.5,December,2009
ISSN: 1793-8236

Different faultslike LIF, LRF, LOF TOF, LNF, TNF, and
ENF were considered by [6]. They showed that if atest case
detects literal insertion fault will also detect literal reference
fault, literal omission faults and atest case that detects LRF,
TOF, or LOF can also detect LNF. They also showed that if a
test casethat detects LNF can also detect TNF, atest casethat
detects TNF can also detect ENF.

Research on the tests that detect Missing Clause Fault
(MCF) will also detect VNF was considered in [9]. They also
discovered that tests that detect MCF may not be able to
detect VRF, and vice versa. They also proved that a test set
that detects MCFsfor singlevariableterms, aswell as VRFS,
is sufficient to detect both VRFs and MCFs.

IV. FAULT CONDITIONS

With the following truth table, we can analyze fault
conditions for various fault classes. For any predicates x, v,
and z, the following identities are built from the above truth
table and used throughout in this paper:

XNYDYANZ=(X D Y)AZ 1

XAYy@y= XAy)

X@Y)AZ=(xVY) D (YV 2) 3

XOy®xX® y=1 (4)
X@y=(xVvy) @ (xXAY) (%)
(xAy) —z=1 (6)

X@ %=1 ©

Let Sdenote a specification predicate and @ isaclausein S,
b is another valid clause and E is an expression in S. The
notation Sr is used to represent the detection condition for an
arbitrary fault belonging to fault class F. The detection
conditions[10] for fault classes CRF, CNF, ENF, CCF, CDF
and LRF are summarized as.

483

Scre = dsf Clause Reference Fault
Scne = 55 Clause Negation Fault

SenrE = dSEE Expression Negation Fault
Scce = d5 5, Clause Conjunction Fault
Scor= dS 2, ClauseDigunction Fault

Sire = dSZ1F Logical Operator Reference Fault

First consider the relationship between Logical Operator
Reference Fault (LRF) and clause negation faults (CNF).

()Any test case that detects a Logical Operator
Reference Fault (LRF) for a clause in a predicate
will also detect the clause negation faults (CNF) for
the same clause, then S rr — Scnr

Proof: For a predicate S and a clause ex occurring in S, and

in Logical Operator Reference Fault (LRF) a operator is

replaced by another operator, eg., @ A b is replaced
bya Vv b. Then LRF isgiven by:

dSE? =(a v B)@ (a A b)

= (a@b)
The clause negation faults (CNF) where @& is replaced by its
Negation @ and given by
dSZ = a@a=1Then
ds2.y —dSg holds, where b is another valid clause
andb #= a
Writing with detection condition [10] i.e.
dss =(A®B) A g Where A isa predicatein Sand is
replaced by another predicate B. We have

(@v ho(anrb) AT - (adT) N

ds ds
(a®h) N T~

With equation (6) the above expression will holds. So if any
test case that detects a LRF for a clause in a predicate will
also detect the CNF for the same clause.

(i) Any test case that detects a Logical Operator
Reference Fault (LRF) for a clause in a predicate
will also detect the Expression negation faults (ENF)
for the same clause, then S rr — Sene.

Proof: For a predicate S and a clause €t occurring in S, and

in LRF a operator is replaced by another operator, eg.,
a N bisreplaced bya Vv b. Then LRFisgiven by:

f@ el L

IACSIT International Journal of Engineering and Technology Vol.1,No.5,December,2009
ISSN: 1793-8236

dsgl? =(a Vv b@ (a A b)

= (a@b)

And the Expression Negation fault (ENF) is inserting an
ExpressionE in place of ExpressionE.
dSg = (E® E)where Eisreplaced by E then
dsgly « dSE hold,
Writing with detection condition [10] i.e.
ds
dSg =(A®B) N —
Where 4 is a predicate in S and is replaced by another
predicate B. We have

(a vV B@(a A b) ﬂ%a(EEﬁEj n%

d¥ ds —
(a@b) Ao EwhereE{-BE: 1

With equation (6) the above expression will holds. So if any
test case that detects a LRF for a clause in a predicate will
also detect the ENF for the same clause.

@iy Any test case that detects a Clause Insertion faults
(CIF) for a clause in a predicate will also detect the
Logical Operator Reference Fault (LRF) for the

same clause and vice ver sa, then Seer W Scor < Sire

Proof: For a predicate S and a clause @& occurring in S, and
in Logical Operator Reference Fault (LRF) a operator is
replaced by ancther operator, e.g., @ A b is replaced by
a V b. Then thelogical operator reference fault is:

dSElE =@V b @ (a A b)

= (a@b)
And the clause Insertion fault (CIF) is insert a clause b,
which is, replace a clause @ by @ op b, where b is another
clause, op is either conjunction or digunction.
= al@ (a Ab)whereaisreplaced by (a A b)or
= a@® (a Vv b) where a isreplaced by (@ v b)) then
ds2il s dse v dSg . hold,

awh anb avhk
Writing with detection condition [10] i.e.
ds
dSg =(A@B) N

Where 4 is a predicate in S and is replaced by another
predicate B. We have

(@aV b @ (a A b) nﬁ —(a®(a A b)) A %

V(a@(a Vb)) AT

[a{—]ﬁ]b)ﬂ% o (ab) A %xﬂ(&b]ﬂ E
=(abvab A

= (a@b) A S

Fromthisexpression Scce V' Scor < Sire Will holds. Soif
any test casethat detectsa L RF for aclausein apredicate will
also detect the CIF for the same clause.

(iv) Any test case that detects a Clause Insertion Fault
(CIF) for a clause in a predicate will also detect the
Stuck-At-0 and Stuck-At-1 faultsfor the same clause,

then Scir — Ssrre

Proof: clause Insertion fault (CIF) isinsert a clause b, which
is, replace aclause a by a op b, where b is another clause,
op is either conjunction or digunction.

= a@® (a A b)whereaisreplaced by (@ A b)) or

= al® (a v b)wheeaisreplacedby (a v b)

dst,., = [a{-]—][a ﬂb])r’t E
=(anb) A %

And stuck-at-0 fault replaces a clause with 0; stuck-at-1 fault
replacesit with 1.

a ds
dsZg =(a v e (a Vv 0)A —

= ds
—[ﬂ,ﬂb)ﬂﬁ
dSE% —(a A B)e (a A 1)A %
T ds
:[:aﬂ.b)ﬂa
Then

2, —dSZi holds. Soif any test case that CIF for a
clause in a predicate will also detect the stuck-at-O and
stuck-at-1 faults for the same clause.

The above relationship between LRF, CIF, CNF and ENF is
shown in figure 1. This relationship between fault classes

impliesthat the number of tests needed is much less, because
of overlap between detection conditions.

Figurel depicts the relationships between fault classes

e

CN

484

IACSIT International Journal of Engineering and Technology Vol.1,No.5,December,2009
ISSN: 1793-8236

V.CONCLUSION

Software testing is the most costly phase in the software
development and efforts should be made to reduce the cost.
The proposal made in the paper helps in reducing the test
cases. By extending the fault hierarchy, we have been
provided with to detect a corresponding fault from a class,
thus improving the effectiveness of fault based testing. The
technique presented in this paper helps us for detection of
faults with the minimum numbers of test case thus reducing
the overall software testing cost.

(1
(2

(3]
(4

(5]
(6]

(8]

(9

[10]

485

REFERENCES

D. R. Kuhn, “A technique for analyzing the effects of changes in formal
specifications”, The Computer Journal 35 (6) (1992) 574-578.

D. R. Kuhn, “Fault classes and error detection in specification based
testing”, ACM Transactions on Software Engineering Methodology 8 (4)
(1999) 411-424,

H. D. Mills, ”On the datigtical validation of computer programs’,
Software Productivity, Little, Brown, Boston, 1983, pp. 71-81.

J. Offutt, Y. Xiong, S. Liu, Criteria for generating specification-based
tests, Proceedings of the Fifth IEEE Fifth International Conference on
Engineering of Complex Computer Systems (ICECCS °99), |EEE
Computer Society Press, Las Vegas, NV, 1999, pp. 119-131

K.-C. Tai, Theory of fault-based predicate testing for computer programs,
|EEE Transactions on Software Engineering 22 (8) (1996) 552-562.

M. F. Lau, Y. T. Yu, “On the reationships of faults for Boolean
specification based testing”, Australian Software Engineering Conference,
IEEE CS Press, 2001, pp. 21-28.

P. E. Ammann, P. E. Black, and W. Majurski. “Using model checking to
generate tests from specifications” Proceedings of the Second IEEE
International Conference on Formal Engineering Methods (ICFEM*98),
pages 46-54. |EEE Computer Society, Dec. 1998.

P. E. Black, Vadim Okun, Yaacov Yesha, “Mutation operators for
specifications”, 15th IEEE International Conference on Automated
Software Engineering (ASE2000), |IEEE Computer Society, Grenoble,
France, 2000, pp. 81-88 .

T. Tsuchiya, T. Kikuno, “On fault classes and error detection in
specification based Testing”, ACM Transactions on Software
Engineering Methodology 11 (1) (2002) 58-62.

Vadim Okun , Paul E. Black, Yaacov Yesha” Comparison of Fault
Classes in Specification-Based Testing” Elsevier Science, 2 April 2

f@ el L

