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Abstract—A VEGA (Vector Evaluated Genetic Algorithm) 

based method to derive a reduced order ( th-order) model for a 
given stable discrete-time system is presented. In this method 
not only stability is preserved and the first   
time-moments/Markov-parameters are fully retained but also 
the errors between a set of subsequent 
time-moments/Markov-parameters of the system and those of 
the model are minimized. The method is useful as it guarantees 
improvement as well as alleviates the problems of deciding the 
values of number of error functions to be minimized.  
Furthermore, the operations of the proposed method are 
carried out entirely in   domain. The search area for GA is very 
wide and it usually converges to a point near global optima. 
 

Index Terms—Discrete-time systems, Model reduction,  
Routh-Padé approximants. 
 

I. INTRODUCTION 

The approximation of linear high-order systems by a 
low-order model has received considerable attention due to 
the advantages of reduced computational effort and increased 
understanding of the original systems. Consequently, a large 
number of time-domain and  frequency-domain 
simplification techniques have been developed to suit 
different requirements [1,2]. Amongst them, a 
frequency-domain method is Padé approximation in which 
2r terms of the power series expansion (time moments) of the 
high-order (nth-order) transfer function are fully retained in 
low-order (rth-order) model. In some cases, Padé 
approximant may turn out to be unstable even though the 
original system is stable. To overcome stability problem, a 
number of stable reduction methods [3-7] based on retention 
of only r terms have been developed for discrete-time systems. 
However, matching of only   terms may not  generally be 
sufficient to   ensure a good overall time response 
approximation and it is also important to note that, for 
overall time response approximation, both time moments 
and Markov parameters should be considered [8,9]. In [10], a 
bilinear Routh approximation (BRA) method has been 
proposed as an extension of RA method [11] to discrete 
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systems but it has been found that BRA method of [10] may 
fail to produce good approximants [12] as [11] again deals 
with r terms matching. Further improvement over [12] is 
suggested in [13]. However, the method of [13] does not 
possess any optimal properties. 

In a recent publication [14], a suboptimal bilinear Routh 
approximation (SBRA) method is presented which is an 
improvement over BRA method and can be used to improve 
bilinear Schwarz approximation [15-17]. The SBRA method 
is based on combining Routh technique and minimization of 
ISE. The last   and   parameters of BRA method are replaced 
by new parameters so that the ISE of impulse response of the 
reduced model is locally minimized without destroying time 
moments fitting properties of BRA method. However, 
selecting the denominator coefficients arbitrarily and fixing 
time moments may bring a loss of considerable degree of 
freedom in optimization. It may also be noted that the 
methods [10-17] require bilinear transformation which is not 
an efficient operation as it involves extra computation and 
complexity especially for the systems with very high order. 
Thus, the essential problem is to obtain, avoiding bilinear 
transformation, a model which retains or near retains a few 
terms in excess of r terms while preserving stability.   

In this note, a computer-oriented method based on the 
concept of Pareto-optimality is proposed for the solution of 
Routh-Padé approximation problem. The method is 
essentially a multi-objective optimization procedure in which 
VEGA [22,23] is used to generate Pareto-optimal solutions 
and the final solution is chosen based on the best fitness value 
of the objective function. The numerator polynomial of the 
model is obtained by fully retaining first   time 
moments/Markov parameters of the system and the 
denominator polynomial is obtained by minimizing the 
errors between a set of next r time moments/Markov 
parameters (matching or near-matching of a total of 2r terms 
as in standard Padé approximation) of the system and those 
of the model while preserving stability. The operations of the 
method are carried out entirely in   domain. Thus, use of 
bilinear transformation is avoided. Two numerical examples 
are included which bring out the systematic nature of the 
algorithm and the improvement achieved in the system 
approximation. 
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II.  PROCEDURE FOR PAPER SUBMISSION 
   The Routh-Padé problem is formulated by first 

calculating the time-moments and Markov-parameters of the 
system and the model. Consider that higher-order 
discrete-time system is expressed as: 
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is to be constructed, where  st i'  and st i'ˆ   are time- 

moments around )1( =z , sM i '    and sM i 'ˆ   are 

Markov-parameters of the system and model respectively. 
The Routh-Padé problem for discrete-time system is 

formulated by first calculating the time-moments and 
Markov-parameters of discrete-time system (1) and the 
model (4). 

 

A. . Calculation of Time-Moments 
Putting  1+= pz in (1) and expanding about ,0=p  (1), 
becomes:  
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where  0=iU   for 1;1;0 0 ==≤ iVVi    for   1−≤i  . Hence, 
time-moments of the system (1) becomes: 
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sT  is the sampling frequency and  jiw )1( −  is defined as:  
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For the reduced-order model represented by (2.4), the 
respective time-moments sTi 'ˆ    take the form: 
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where   sti 'ˆ  are given by: 
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and  0ˆ =iU    0ˆ;1ˆ0 0 ==≤ iVVi   for   . 1−≤i   Note that  

sU i 'ˆ and   sVi 'ˆ   are  obtained for  the model in the same 

manner as sU i 'ˆ   and sVi 'ˆ  are obtained for the system. 
 

B.  Calculation of Markov-Parameters 

The Markov-parameters ),,( 21 ⋅⋅⋅⋅⋅⋅⋅MM   of the system 
(1) are determined by expanding (1)  around  0=z   

The Markov-parameters sM i '   are given by: 
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where 0== ii ba   for    ,2,1 ⋅⋅⋅⋅++= nni  
Expanding the model (4) around ,0=z  one has: 
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C.  Formulation of Objective Function   
We seek a stable model so as to satisfy  
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This arbitrariness in stability preservation can be exploited 
to minimize square of the errors of matching of r time 
moments/Markov parameters of the system with those of the 
model, namely, to minimize objective functions  

M
lr

T
k zz +−+ λλ ,  given by  

mrlmk

M
M

z

T
T

z

lr

lrM
lr

k

kC
k

−==













−=

−=

+−

+−
+−

+

+
+

,.1;,.,1

)
ˆ

1(

)
ˆ

1(

2

2

λ

λ
λ

λ

λ
λ

(20a)                                       

Using (15), (18) and (19), (20a) takes the form belonging 
to                                                       
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D.    Formulation of Stability Constraints 
The stability constraints are obtained using Jury’s stability 
table, as applied to characteristic polynomial, 
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which is denominator of the model. Jury’s 
stability table is shown below:  
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E. Problem Statement 
The problem is to minimize (20) subject to (22). 

III.   APPLICATION OF  V.E.G.A. 
The vector evaluated genetic algorithm (VEGA) [22,23] is 

proposed herein for solving the above stated problem. VEGA 
is the simplest possible multi-objective GA [22,23] and is 
straightforward extension of a single-objective extension of 
multi-objective optimization. Since a number of objectives 
(say Q) have to be handled, GA population is divided at every 
generation into Q equal subpopulations randomly. Each 

subpopulation is assigned a fitness value based on different 
objective function. 

    After each solution is assigned a fitness, the selection 
operator, restricted among solutions of each subpopulation, 
is applied until the complete subpopulation is filled [22,23]. 
The following VEGA procedure is used [22,23]. 
   Step  1 Set, for population size N, an objective function 

counter i = 1 and define QNx /=  
   Step 2 For all solutions, xijxij *  to*)1(1 =−+= , assign 

fitness as: )ˆ()ˆ( )()( j
i

j bzbZ = . 
  Step  3  Perform proportionate selection on all x  solutions 

to create a mating pool iP . 
  Step  4   If  Qi = , go to Step 5. Otherwise, increment i by 

one and go to Step 2. 
  Step  5   Combine all mating pools together: i

Q
i PP 1== U . 

Perform crossover and mutation on P to create a 
new population. 

A common and simple way to handle constraints is to ignore 
any solution   that violates any of the assigned constraints. 
Penalty function approach is a popular constraint handling  
strategy. Minimization of  objective function is assumed here. 
Before the constraint  violation is calculated, all constraints  
are normalized. Thus the  resulting constraint functions are 
the 0)( )( ≥i

j xg  for j=1,2,3,…..,J for each solution 
)(ix ,the constraint violation for each  constraint is calculated 
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to get  overall  constraints violation 
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        This constraint  violation is then multiplied with 
penalty parameter mR  and objective function values. 
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             The function  mF  take into account the constraints  
violation. Once  penalized function (25) is formed ,any of the  
unconstrainted multi-objective optimization methods can be 
used with  mF . Since all penalized fuctions are to 
minimized,Gas should move into the feasible region and 
finally approach the pareto-optimal set.  

Now, the problem is to minimize (20), satisfying (22). The 
vector evaluated genetic algorithm (VEGA) [22,23] is 
proposed herein for solving the above stated problem. VEGA 
is the simplest possible multi-objective GA [22,23] and is 
straightforward extension of a single-objective extension of 
multi-objective optimization. Since a number of objectives 
(say Q) have to be handled, GA population is divided at every 
generation into Q equal subpopulations randomly. Each 
subpopulation is assigned a fitness value based on different 
objective function. 

 After each solution is assigned a fitness value, the 
selection operator restricted among solutions of each 
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subpopulation, is applied until the complete subpopulation is 
filled [22,23]. The following VEGA procedure is used 
[22,23]. 

      In this VEGA, linear crossover operator is used. It 
creates three solutions, )ˆˆ(5.0 ),2(),1( t

i
t

i bb + , 

)ˆ5.0ˆ5.1( ),2(),1( t
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t
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i bb +− from two parent 

solutions ),1(ˆ t
ib  and ),2(ˆ t

ib at generation t, with the best two 
solutions being chosen as offspring. For performing mutation, 
random mutation is used. Instead of creating a solution from 
the entire search space, a solution in the vicinity of parent 
solution with a uniform probability distribution is chosen: 

ii
t

i
t

i rby ∆−+=+ )5.0(ˆ ),1()1,1(  where ir  is a random number 

in [0,1] and i∆  is the user–defined maximum perturbation 
allowed in  i-th decision variable. 

 
 

IV. EXAMPLES 
The performance of the algorithm is verified by application 

to the following numerical examples: 
EXAMPLE 1     

Suppose for a fourth-order system given by 
Younseok Choo [6]: 
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To obtain the optimum values of   1̂b and  2b̂  for which  1f  
and  2f    take the minimum value:  

      Following GA parameter settings are used 
 Population size    6 
Selection         Roulette-wheel selection  operator 
Croosover          Linear crossover (Elite preserving) 
Mutation            Random mutation with .1.0=∆i       

Step 4:  For the following population of initial conditions, 
the population after   crossover and mutation operators are 
shown in following table:  considering 121 .10,2 RRR == , 
the resulting Pareto-optimal front for the penalized 
functions is closed to the  true Pareto-optimal solution.      
(Refer Table II and Table III) 
   Applying Pareto-Optimality and V.E.G.A. algorithm 

converges to the following optimal solution: 
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Step 5:   From (28) the numerator parameters of   )(ˆ
2 zG    

turns out as: 
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For comparison purposes, a second order approximant by 
Younseok  Choo [6] is found to be:  
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The step responses for original system (26) and its models 
(35) and (36) are shown in Fig. 1. It is observed that the 
proposed method gives better reduced model than the method 
by Younseok Choo [6]. 

 
EXAMPLE 2 

Consider a fourth order system by Younseok Choo [7]: 
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          Step 3:  Now the objective functions (taking  

221 == mm ) take the following form: Minimize 
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078522.33

ˆ
1

90909.35

ˆ
1

T
f

T
f

                            (43)     

Step 4:  For the population of initial conditions, the 
population after crossover and mutation operators,  

Applying Pareto-Optimality and V.E.G.A., algorithm 
converges to the following optimal solution, considering 

121 .10,2 RRR ==  , the resulting Pareto-optimal front for 
the penalized functions is closed to the  true Pareto-optimal 
solution given in equation (44) 

.616743.0ˆ,442346.1ˆ
21 =−= bb                    (44) 

Step 5:   The numerator parameters of    )(ˆ
2 zG   turns out 

as: 
.9023114.0ˆ2.4ˆ 21 −== aa                 (45) 

Step 6:  Finally, )(ˆ
2 zG    takes the form:  

,
616743.0442346.1

9023114.02.4)(ˆ
22

+−
−

=
zz

zzG               (46) 

Time-moments and Markov-parameters of the model are 
following: 
          

427620.32ˆ,381035.36ˆ,90909.18ˆ( 321 −=== TTT

)845744.4ˆ,155532.5ˆ,2.4ˆ
321 === MMM  

For comparison purposes, a second order 
approximant by Younseok Choo [7]   is found to be:  

,
63166.050888.1

55604.287768.4)(ˆ
22

+−
−

=
zz

zzG                  (47) 

The step responses of (39), (46) and (47) are plotted in Fig. 
2. Clearly, (46) is a significant improvement over (47). 

The ISE pertaining to unit step input corresponding to (46) 
and (47) are 0.014388 and 8.162988 respectively, which 
confirms the applicability of the present technique to realize 
improvement in system approximation. 

 
 

V. CONCLUSIONS 

In this paper, GA is used for finding the Routh-Padé 
approximants for discrete-time systems. It is shown that the 
numerator polynomial of the model is obtained by fully 
retaining the first terms (time-moment/Markov-parameters), 
of the system and the denominator polynomial is found by 
minimizing the errors between a set of subsequent time 
moments/Markov parameters of the system and those of the 
model while preserving stability. The effectiveness and 
superiority of proposed method has been illustrated with the 
help of two examples. 
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