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V EGA Based Routh-Padé Approximants For
Discrete Time Systems : A Computer-Aided
Approach

Shailendra K. Mittal, Dinesh Chandra, Bharti Dwivedi

Abstract—A VEGA (Vector Evaluated Genetic Algorithm)
based method to derive areduced order (th-order) model for a
given stable discrete-time system is presented. In this method
not only stability is preserved and the first
time-momentsM arkov-parameters are fully retained but also
the errors between a set of subsequent
time-moments/M arkov-parameters of the system and those of
the model are minimized. The method isuseful asit guarantees
improvement aswell as alleviates the problems of deciding the
values of number of error functions to be minimized.
Furthermore, the operations of the proposed method are
carried out entirelyin domain. The search areafor GA isvery
wide and it usually convergesto a point near global optima.

Index Terms—Discrete-time systems, Model
Routh-Padé approximants.

reduction,

I. INTRODUCTION

The approximation of linear high-order systems by a
low-order model has received considerable attention due to
the advantages of reduced computational effort and increased
understanding of the original systems. Consequently, alarge
number of time-domain and frequency-domain
simplification techniques have been developed to suit
different requirements [1,2]. Amongst them, a
frequency-domain method is Padé approximation in which
2r terms of the power series expansion (time moments) of the
high-order (nth-order) transfer function are fully retained in
low-order (rth-order) modd. In some cases, Padé
approximant may turn out to be unstable even though the
original system is stable. To overcome stability problem, a
number of stable reduction methods [3-7] based on retention

of only r terms have been devel oped for discrete-time systems.

However, matching of only terms may not generally be
sufficient to ensure a good overal time response
approximation and it is also important to note that, for
overall time response approximation, both time moments
and Markov parameters should be considered [8,9]. In[10], a
bilinear Routh approximation (BRA) method has been
proposed as an extension of RA method [11] to discrete
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systems but it has been found that BRA method of [10] may
fail to produce good approximants [12] as [11] again deals
with r terms matching. Further improvement over [12] is
suggested in [13]. However, the method of [13] does not
possess any optimal properties.

In arecent publication [14], a suboptimal bilinear Routh
approximation (SBRA) method is presented which is an
improvement over BRA method and can be used to improve
bilinear Schwarz approximation [15-17]. The SBRA method
is based on combining Routh technique and minimization of
ISE. Thelast and parameters of BRA method are replaced
by new parameters so that the | SE of impul se response of the
reduced model islocally minimized without destroying time
moments fitting properties of BRA method. However,
selecting the denominator coefficients arbitrarily and fixing
time moments may bring a loss of considerable degree of
freedom in optimization. It may also be noted that the
methods[10-17] require bilinear transformation which isnot
an efficient operation as it involves extra computation and
complexity especialy for the systems with very high order.
Thus, the essential problem is to obtain, avoiding bilinear
transformation, a model which retains or near retains a few
termsin excess of r terms while preserving stability.

In this note, a computer-oriented method based on the
concept of Pareto-optimality is proposed for the solution of
Routh-Padé approximation problem. The method is
essentially amulti-objective optimization procedurein which
VEGA [22,23] is used to generate Pareto-optimal solutions
and thefinal solution ischosen based on the best fitnessvalue
of the objective function. The numerator polynomial of the
model is obtained by fully retaining first time
momentsyMarkov parameters of the system and the
denominator polynomial is obtained by minimizing the
errors between a st of next r time momentsMarkov
parameters (matching or near-matching of atotal of 2r terms
asin standard Padé approximation) of the system and those
of themodel while preserving stability. The operations of the
method are carried out entirely in  domain. Thus, use of
bilinear transformation is avoided. Two numerical examples
are included which bring out the systematic nature of the
algorithm and the improvement achieved in the system
approximation.
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Il. PROCEDURE FOR PAPER SUBMISSION

The Routh-Padé problem is formulated by first
cal cul ating the time-moments and Markov-parameters of the

system and the mode. Consider that higher-order
discrete-time system is expressed as:
X(2)  a;z"t+a,z"? +xta
G, (1= BZ " 82 " ()
y(2) Z" +b,z" 1 + 2t b,
=ty +tp(2- 1) +t5(z- D? +0x 2
(expansion around z=1)
=M,z + M,z % + 0 €)

(expansion around zZ =0)
Assume that a reduced order (rth- order )

mode of the form:
r-2

N A _r-1 . & A
G, (2) = )f(z) =& +Aa22 +>oo<:rar ,r <n(4)
¥(2) z" +by 2"t + 00k b,
=t +{,(z- D+i5(z- D? +x ®)
=Mz + M,z % e (6)

isto be constructed, where t'; s and {'; s aretime-

momentsaround (z=1),M;' s and I\7Ii's are

Markov-parameters of the system and model respectively.

The Routh-Padé problem for discrete-time system is
formulated by first calculating the time-moments and
Markov-parameters of discrete-time system (1) and the
model (4).

A. . Calculation of Time-Moments
Putting z = p+1in (1) and expanding about p =0, (1),
becomes:

a +1 n-1
Gy (p) = u(prl) -+
(P+D 7 +b (p+D ™"+,

+ 04U

x(p) _

y(p)
Ulpn'1+U2pn'2
- p" +V1p”'1+V2 pn-Z
:t1+t2p+t3p2+><><>< (9

=ty +,(2- D +t5(2- D+ (10)

Up

v,

+.0¢a

(")

(8)

+ 20tV !

ti =
t; 1y

|1
a Voot )/v i = 2,30

i
)
I
=i
T (U
(n+1-i) ~
{ =1

where U; =0 for i £0V, =1LV, =1 for i£-1.Hence
time-moments of the system (1) becomes:

i t; :

| =1
T =i (12) where

- 1)a ; ST Wy it i = 2,30

I
I =1

T, isthe sampling frequency and w;_yy; is defined as:

W + jw, i-1)>j

Wiy =1 20 T D2 g,
T 0 (i-D>]

with W(i-l)(i-l) :W(i-l)l =1 (14)

425

For the reduced-order model represented by (2.4), the
respective time-moments T;'s  take the form:

i {;

A i=1
15
:( nt- 1)a. T(T) W l)jt(J+l) |—23>°°<( )
1 j=1
where f's aregiven by:
y .
T tlzt;—r
f =1 ’ (16)
1( (n+1-) - an o] )/ =23
i j=1
and U; =0 i£0 Vy=1 V, =0 for .i£-1 Notethat

U;'sand Vi's are obtained for the mode in the same

manner as U;'s and V.'s are obtained for the system.

B. Calculation of Markov-Parameters

The Markov-parameters (M, M, 300000 of the system
(1) are determined by expanding (1) around z=0
The Markov-parameters M;'s are given by:

(17)

| ai
~ | i-1
Mi=i,. 2 18
i :al - a bI ij ( )
T j=L
where éi—tA},:O for i=r+1r+2x
C. Formulation of Objective Function
We seek a stable model so as to satisfy
- T =0 i
N y i=1..,0;j=1..r-1 (19)
M; - M; =0p

Thisarbitrarinessin stability preservation can be exploited
to minimize square of the errors of matching of r time
moments/Markov parameters of the system with those of the

model, namely, to minimize objective functions
zIT+k ' ZrN-II +| given by
Tis
s
+k i’/k:L.,m;I =1,r - m (20a)
VI
A |

M r-1 +l II)
Using (15), (18) and (19), (204a) takes the form belonging
to

Z.(6) = £(B,b,...B)i
2 6= £ (6,5 B

k 1.,.ml=1Lr-m
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D. Formulation of Stability Congtraints
The stability constraints are obtained using Jury’s stability
table, as applied to characteristic polynomial,
Y(2) =z +b,2" +0,2" 2 + %t b, . (21)
which is denominator of the modd. Jury’s
stability table is shown below:
TABLE |: JURY’SSTABILITY TABLE
0., b, .. b B 1
b b 0
1 dr-Z d

o>

=

o

r- r

l:A)r-z r-
T A
dr-Z

o
o

1 2
2 G3 &4 - &
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L P
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Po P Py P

q, 4 G
where

T BrA 1- k
b0 bk+1

for k=010 x%r -1

o>

dk: , 60:1

C]r-l drA-Z-k
d0 dk+1
k = 0,1,0% x%r - 2

e = for

Pz P2k

Po  Pxu
for k=0712.

A model with characteristic polynomial  ¥(z) is stable if

the following  conditions ae  dl satisfied:

9,(6) =1> b,

9,(0) = 9(2)| _, >0

- jfor r even
b) = y(z i
93(b) y()|z=-1{forrodd

04 (b) =[d,.o| >[do|
gu (b) = |q2| >|Q0| b

ka‘

u
.I.
i
{, (22)
|

E. Problem Statement
The problem isto minimize (20) subject to (22).

1.  APPLICATION OF V.E.G.A.

Thevector evaluated genetic algorithm (VEGA) [22,23] is
proposed herein for solving the above stated problem. VEGA
is the simplest possible multi-objective GA [22,23] and is
straightforward extension of a single-objective extension of
multi-objective optimization. Since a number of objectives
(say Q) haveto behandled, GA population isdivided at every
generation into Q equal subpopulations randomly. Each

subpopulation is assigned a fithess value based on different
objective function.

After each solution is assigned a fithess, the selection
operator, restricted among solutions of each subpopul ation,
isapplied until the complete subpopulation isfilled [22,23].
Thefollowing VEGA procedureis used [22,23].

Sep 1 Se, for population size N, an objective function
counter i =1 and define x=N/Q

Sep 2 For al solutions, j=1+(i- D*xtoj =i*x, assign
fitnessas: Z(b") =z (bV).

Sep 3 Perform proportionate selection on al X solutions
to create amating pool P.

Sep 4 If i =Q, goto Sep 5. Otherwise, increment i by
one and go to Step 2.

Sep 5 Combine all mating pools together: P=U%, P .

Perform crossover and mutation on P to create a

new population.
A common and simple way to handle constraintsisto ignore
any solution that violates any of the assigned constraints.
Penalty function approach is a popular constraint handling
strategy. Minimization of objective function isassumed here.
Before the constraint violation is calculated, al constraints
are normalized. Thusthe resulting constraint functions are

the gj(x(i))3 0 for j=1,2,3,.....,J for each solution

x® ,theconstraint violation for each constraint iscal culated
as follows

it g;(x")<0

oy
(23

w, (xV) =
% 0 otherwise
Thereafter all constraints violation are added together

toget overal congraintsviolation

J
wix®) = g w,y(x?)
J=1
Thisconstraint violation is then multiplied with
penalty parameter R, and objective function values.

Fn(x) = £ (x) + RyW(x") (25)
The function F,,, take into account the constraints

violation. Once penalized function (25) isformed ,any of the
unconstrainted multi-objective optimization methods can be
used with F, . Since al penalized fuctions are to

minimized,Gas should move into the feasible region and
finally approach the pareto-optimal set.

Now, the problem isto minimize (20), satisfying (22). The
vector evaluated genetic algorithm (VEGA) [22,23] is
proposed herein for solving the above stated problem. VEGA
is the simplest possible multi-objective GA [22,23] and is
straightforward extension of a single-objective extension of
multi-objective optimization. Since a number of objectives
(say Q) haveto behandled, GA population isdivided at every
generation into Q equal subpopulations randomly. Each
subpopulation is assigned a fitness value based on different
objective function.

After each solution is assigned a fitness value, the
selection operator restricted among solutions of each

(24)
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subpopulation, isapplied until the complete subpopulation is
filled [22,23]. The following VEGA procedure is used
[22,23].

In this VEGA, linear crossover operator is used. It
creates  three 050 +p30y
@.5b™ - 0562Y), (-0.50Y +1.56V) from two parent

solutions b™ and b{®Y at generation t, with the best two

solutions being chosen as offspring. For performing mutation,
random mutation isused. Instead of creating a solution from
the entire search space, a solution in the vicinity of parent
solution with a uniform probability distribution is chosen:

yED =plt 4 (r. - 0.5)D, where T, is a random number

solutions,

in [0,1] and D, is the user—defined maximum perturbation
allowed in i-th decision variable.

IV. EXAMPLES

The performanceof thealgorithmisverified by application
to the following numerical examples:
EXAMPLE 1
Suppose for a fourth-order system given by
Y ounseok Choo [6]:
0.8645z° - 1.90022>

+1.3982z- 0.3106

D= S 6+ 26622 ()
- 1.2067+0.288
T, =1 T,=06288  T,=-0.8773
M, =08645 M, =03475 M, =0.00213a second

order mode of the form:
4z+4,

G,(2) = .
2 z2 +bz+h,

(27)

isdesired. Equation (17) gives

£ = at+a £ :él'(?"'fil)fl
1+b +b,

—, (28)
1+b +b,

£ :f1+(2+61)f2

’ 1"'61"'62

From (17) and (19), we obtain:

T, =-t, T, :f2+%f3,

T, =1, (29)

M, =4, M,=4,- M;b, M;=-Mb, - M,b,, The
approximant GZ(Z) is obtained by following steps given

bel ow:

Sep 1. From therequirement first r terms matching,

onefinds:
:l:1:T1 ”p }ézzgl"'bl"'bz)'él (30)
M; =M, 1 a, =0.8645

Sep2: From (28), (29) together with (30), we obtain:
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+ _(-0.8645- (2+b,)1.0)
? 1+ tA’l + tA’z

M, =1.0(1+b, +b,)- 0.8645(1+b;)
T, =-T,- 1.0- (zj'bl):rz)
2.01+b, +by)
M, =-0.86450, - M,b;
Sep 3:  Now the objective functions , (taking

m, =m, =2 takesthe following form:

(31)

Minimize

'|°3 o1

f, :él- i
- 087335

subject to constraints:

6,0) = ¢/, - 1>0,
go(b) =1+, +b, >0
gs(0) =1- b +b, >0

(32)

To obtain the optimum valuesof b and b, for which f,
take the minimum value:

Following GA parameter settings are used
Population size 6

and f,

Selection Roulette-wheel selection operator
Croosover Linear crossover (Elite preserving)
Mutation Random mutation with D; =0.1.

Sep 4. For the following population of initial conditions,
the population after crossover and mutation operators are
shown in following table: considering R, =2,R, =10.R,,
the resulting Pareto-optimal front for the penalized
functionsis closed to the true Pareto-optimal solution.
(Refer Tablell and Tablelll)

Applying Pareto-Optimality and V.E.G.A. agorithm
converges to the following optimal solution:

b, =-0.811075, b, =0.316536 (33)

Sep5: From (28) the numerator parameters of éz(z)
turns out as:
4, =0.8645 4, =-0.359034 (34)

Sep 6: Finadly, Gz(z) takes the form:

0.8645z- 0.359034

G,(2) = :
2(2) 7% - 0.811075z + 0.316536

(35)

Time- moments and Markov-parameters of the model are
following

T, =1.0,T, = 0641840, T, =-0.87618L
M, =0.8645,M, =0.342135 M , =0.003852
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For comparison purposes, a second order approximant by
Younseok Choo [6] isfound to be;

0.91321z- 057321
z% - 0.87323z+0.21388

Gy(2) = (36)

The step responses for original system (26) and its models
(35) and (36) are shown in Fig. 1. It is observed that the
proposed method gives better reduced model than the method
by Y ounseok Choo [6].

EXAMPLE 2
Consider afourth order system by Y ounseok Choo [7]:

2z* +1.82° +0.82%> +0.1z- 0.1

G,(2) = (37)
+(2 7% - 1273 +0.3z2 +0.1z+0.02
G, (2) can be decomposed as:
G4(2) =G(¥)+G(2) (38)
where é(¥) =2 and
4.27° +0.2z%> +0.1z- 0.14
G,(2 = (39)

z*-1.27° +0.32° +0.1z+0.02
Time-moments and Markov-parameters of the
system are following:

T, =18.90909, T, =35.90909, T, =-33.078522
M, =42, M, =5.24, M, =4.928. Suppose
a second order approximant of the form

HOE . (40)

72 + blz + b2
isdesired.
The approximant G, (2) is obtained by following steps

given below:

Sepl: From the requirement first r terms

matching, onefindS'
T, = Ta2 —1890909(1+b1+b2) 4 (1)
M, = Mlg i =42

Sep 2:
_ (-4.2- (2+by)18. 90909)
1+ b1 + bz
M, =18.90909(1+b, +b,) - 0.8645(1+b,)
(18.90909- (2+b,)T,)
2.0(1+b, +Dby)
5 =-0.86450, - M,b;.

2

Ty=-T,-

(42)

Sep 3:  Now the objective functions (taking
m, = m, = 2) take the following form: Minimize

2 T, &0
_g 35909097 §
o) (43)
ge o i
i
& - - 33.078522 0785222, b
Sep 4. For the population of initial conditions, the
population after crossover and mutation operators,
Applying Pareto-Optimality and V.E.G.A., agorithm
converges to the following optimal solution, considering
R, =2,R, =10.R, , the resulting Pareto-optimal front for
the penalized functionsis closed to the true Pareto-optimal
solution given in equation (44)
b, =-1.442346, b, =0.616743.

Sep5: The numerator parameters of

(44)

G,(2) turnsout

as.

3, =4.2 a, =- 0.9023114. (45)
Sep 6: Finaly, G,(z) takestheform:
A 4.2z- 0.9023114
Gy(2) = (46)

- 1.4423467 + 0.616743'

Time-moments and Markov-parameters of the model are
following:

(T, =18.90909, T, =36.381035, T, =-32.427620
M, =4.2,M, =5.155532,M , = 4.845744 )
For comparison purposes, a second order

approximant by Younseok Choo [7] isfound to be:
A 4.87768z- 2.55604
Gy(2) = (47)

7 - 150888z + 0.63166
Thestep responses of (39), (46) and (47) areplottedin Fig.
2. Clearly, (46) isasignificant improvement over (47).
Thel SE pertaining to unit step input corresponding to (46)
and (47) are 0.014388 and 8.162988 respectively, which
confirms the applicability of the present techniqueto realize
improvement in system approximation.

V.CONCLUSIONS

In this paper, GA is used for finding the Routh-Padé
approximants for discrete-time systems. It is shown that the
numerator polynomial of the mode is obtained by fully
retaining thefirst terms (time-moment/Markov-parameters),
of the system and the denominator polynomia is found by
minimizing the errors between a set of subsequent time
moments/Markov parameters of the system and those of the
model while preserving stability. The effectiveness and
superiority of proposed method has been illustrated with the
help of two examples.
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