
  

  
Abstract—Monitoring and early warning systems, although 

being capable of continuously collecting field data related to 
landslide processes, are usually unable to autonomously detect 
and analyze signs of landslides in real time. This paper presents 
the design and experimental implementation of an autonomous 
landslide monitoring system. Besides reliably issuing early 
warnings in case of detected slope anomalies, the monitoring 
system is primarily designed to support human individuals in 
assessing the risk of landslide and to improve the understanding 
of the slope behavior, which may help to reduce economic losses 
and fatalities caused by landslides. Specifically, intelligent 
wireless sensor nodes are distributed in the observed slope to 
autonomously collect, analyze and communicate relevant 
environmental parameters in real time. Supporting remote 
analyses of the collected field data, a web application, which is 
installed on a computer connected to the on-site sensor nodes, 
enables an automated dissemination of slope parameters 
through the Internet. Last but not least, geospatial information 
stemming from external sources is integrated into the 
monitoring system to provide a comprehensive overview of 
landslide-related slope conditions. 
 

Index Terms—Monitoring of slope movements, wireless 
sensor networks, early warning systems, artificial intelligence, 
smart sensors, Internet computing.  
 

I. INTRODUCTION 
The world population, which currently numbers more than 

7 billion people [1], is growing continuously, and it is 
expected to reach 10 billion people in the year 2100 [2]. As a 
direct consequence of the population growth, also the density 
of population increases rapidly, and therefore unstable, 
hazardous areas and steep terrains with high risks of natural 
hazards such as volcanic eruptions, floods or landslides are 
being developed for settlement [3]. As another direct 
consequence of the population growth, human activities 
increasingly trigger natural hazards due to changes in the 
environmental conditions. For example, landslides are 
frequently initiated by human-induced factors, such as 
disturbed or changed drainage patterns, destabilized slopes, 
or removed vegetation [4]. Landslides, according to the 
United States Geological Survey (USGS) are defined as 
“downslope movement of soil, rock and organic materials 
under the effects of gravity” [4]. Generally, landslides occur 
in different terrains independently from climate conditions, 
and they are among the most common but also among the 
most dangerous natural hazards, because civil infrastructure 
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cannot withstand the forces generated by moving masses of 
soil, rock, or organic material. Having severe impact both on 
civil infrastructure and on the natural environment, landslides 
cause losses and damages of several billion US$ every year 
as well as numerous fatalities and injuries [4]. As reported by 
Petley [5], who has investigated fatal landslides between 
2004 and 2010, during the 7-year observation period 2,620 
landslides have been recorded, which have caused more than 
30,000 fatalities. 

To investigate landslides and to mitigate their impact on 
civil infrastructure and natural environments, it is important 
to obtain detailed knowledge about the causes, the natural 
phenomena associated with landslides, and the conditions of 
the slopes. As defined by Crozier [6], the instability of a slope 
is that condition, which causes landslides. More specifically, 
two types of contradictory forces exist in slopes, (i) forces 
that tend to promote slope movement and (ii) forces that tend 
to resist slope movement. For example, shear stress promotes 
movement and shear strength is the opposing force resisting 
movement. The difference between both forces is referred to 
as “margin of stability”. Based on the margin of stability, 
Crozier has proposed a classification of slope states, 
categorizing slopes as stable, marginally stable, or actively 
unstable. A stable slope withstands all forces promoting 
movement; a slope is in marginally stable state, if no 
movement occurs and the margin of stability is small; and a 
slope is in actively unstable state, if the margin of stability 
approaches zero and signs of ground movement are observed. 
Three groups of destabilizing factors can be defined that 
affect the slope states [6]: 

• Preparatory factors change the state of a slope from 
stable to marginally stable state without initiating slope 
movement and make the slope susceptible to 
movement. 

• Triggering factors place slopes from marginally stable 
to actively unstable state by initiating movement. 

• Controlling factors define form, rate and duration of 
movement. 
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In summary, landslides are the result of a variety of 
aggregated effects of interrelated factors. Besides human 
activities, as mentioned earlier, seismicity and precipitation 
are among the most common factors. Petley [7], for example, 
has reported that more landslides occur during seasons with 
high precipitation than during seasons with low precipitation. 
Accordingly, in countries with low precipitation, landslides 
do not occur as often as, for example, in tropical countries [3]. 
Extreme weather events, such as intense rainfall, rapid 
snowmelt, glacier thinning, permafrost degradation or 
increased groundwater, make slopes more susceptible to 
landslides. In this context, the groundwater fluctuation is a 
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retrieve the battery properties. Thereby, it is possible to 
update the software running on the sensor nodes or to extend 
thecapabilities of the software agents without manually 
installing or updating software applications. 

4) Weather forecast module 
To provide information on weather conditions, weather 

data from external sources is integrated into the landslide 
monitoring system. Several weather forecast websites 
provide such data and application programming interfaces 
(APIs) to integrate the weather data into applications. A 
weather forecast module is implemented as a part of the 
landslide monitoring system. The weather forecast module 
uses the Forecast API [19] to query a forecast website and to 
retrieve the current conditions and weather forecasts for a 
certain location. A forecast is retrieved at regular intervals 
and used for the analysis of landslide possibility in case of 
high soil moisture values. The forecast contains several 
properties, among which precipitation probability, 
precipitation intensity and precipitation type. 

5) Database module 
The database module ensures the persistent storage of the 

measurement data received from the wireless sensor network. 
Here, a MySQL database system is deployed. To remotely 
connect the desktop application to a MySQL database system, 
the Java Database Connectivity (JDBC) technology [20], an 
industry standard for database-independent connectivity 
between the Java programming language and MySQL 
database systems, is used. 

An excerpt of the database schema is shown in Fig. 8. In 
general, the database consists of a sensornodes table and 
several measurement tables. The sensornodes table contains 
the properties of the sensor nodes, i.e. IEEE address, latitude 
and longitude. The measurement tables differ in the type of 
the stored data as described earlier. Soilmoisture tables are 
designed for storing soil moisture data, tilt tables for tilt data, 
acceleration tables for acceleration data, and inversevelocity 
tables for the inverse velocity. Each type of measurement 
table is created for every sensor node, whereby tables are 
identified with a unique name that includes the last 16 bits of 
a sensor node’s network address. To give an example, the 
tables created for two sensor nodes, whose addresses end 
with “792d” and “7840”, are shown in Fig. 8. 

6) Analysis module 
The analysis module provides analytical functionalities. If 

the system is in marginally stable state (i.e. when a soil 
moisture value exceeds – or has exceeded – the soil moisture 
threshold), the analysis module checks whether heavy 
precipitation is expected. For that purpose, the weather 
forecast module is used to receive the actual precipitation 
probability and the average expected precipitation intensity. 

For example, if the precipitation probability is above 60% 
and the intensity is above 0.4 inches of liquid water per hour, 
heavy rainfall is expected. In the latter case, a warning is 
issued and sent via email to the involved individuals. 

 

 

 
Fig. 8. An excerpt of the database schema. 

 
Furthermore, the analysis module uses the acceleration 

data collected by the wireless sensor nodes to compute the 
inverse velocity of the slope surface. To calculate the inverse 
velocity, the analysis module computes the velocity by 
numerically integrating the acceleration data. Specifically, 
the trapezoidal rule [21] is applied to approximate the 
acceleration. The velocity vi is calculated according to the 
following equation: 

 
vi = vi-1 + (ai-1 + ai)/ 2 ·(ti – ti-1)               (4) 

 
wherev is the velocity, a is the acceleration, and t is the 

point in time. 
7) Alarm module 
To automatically send emails to human individuals for 

issuing warnings and alarms, the alarm module utilizes the 
JavaMail Application Programming Interface (JavaMail API) 
[22]. The JavaMail API provides functionalities that can be 
integrated into software programs for sending emails based 
on Internet standards such as MIME, SMTP, POP3, and 
IMAP. Two types of email messages are sent by the alarm 
module. First, a warning message is sent if the slope is in 
marginally stable state and heavy precipitation is expected. 
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Second, an alarm message is sent if the slope is in actively 
unstable state. 

C. Web Application 
The web application is designed to provide remote access 

to the database and to the desktop application of the 
monitoring system. The web application is implemented 
utilizing Java Server Pages technology (JSP). In essence, the 
web application retrieves sensor data from the database and 
visualizes the data using the Google Charts library [23] that is 
used to display the data in terms of charts. A chart is created 
for every sensor node and for all available sensor readings, i.e. 
soil moisture, tilt and acceleration (Fig. 9). In addition, the 
velocity and inverse velocity values, calculated by the 
desktop application, are also presented graphically by the 
web application. 

To visualize geospatial information about the wireless 

sensor nodes, a map is implemented into the web application. 
As can be seen from Fig. 9, the sensor nodes installed in the 
slope are displayed as points on the map being characterized 
by the latitude and longitude. For the map implementation, 
the Google Maps API is integrated into the web application. 

The web application also provides a feature allowing users 
to subscribe for warnings and alarms issued by the landslide 
monitoring system. As described above, the monitoring 
system automatically generates alarms and warnings when 
the state of the slope changes, and it sends email messages to 
previously specified recipients. Through the subscribe 
feature of the web application, a user can be added to the list 
of the recipients. While access to the sensor data is provided 
to all visitors of the web application website, access to the 
desktop application is provided only to authorized users.  

 

 
Fig. 9. Web application with experimental data. 

 

III. FIELD VALIDATION 
For the proof of concept of the experimental landslide 

monitoring system, a validation experiment is conducted. 
The main objectives are 

1) To verify the capabilities of the monitoring system with 
respect to autonomously collecting, integrating and 
communicating data from the observed slope, and  

2) To obtain data for investigating the relationship 
between changes in the slope condition, particularly 
groundwater changes, and landslide-related slope 
deformations. 

A. Calibration 
Prior to conducting the validation experiment, the 

monitoring system is calibrated depending on the 

site-specific soil type used in the experiment in order to 
ensure accurate soil moisture measurements. For that purpose, 
the soil used for the experiment is baked in an oven until the 
moisture is baked out. Thereupon, several small containers 
are filled with an equal amount of soil, having the same 
weight and volume. Varying amounts of water are added to 
the containers such that the actual volumetric water content is 
known. The containers are left for a few hours to let the soil 
distribute evenly in each sample. Then, the VH400 soil 
moisture sensors are installed in the containers and the 
voltage readings are recorded for each sample being related 
to the actual volumetric water content of the samples. 

B. Validation Experiment Setup 
For the experiment, a flume is filled with sand, as 

illustrated in Fig. 10. The length of the flume is 190 cm, the 
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the changes in the acceleration of the sensor node, the 
velocity of the sensor node increases. Accordingly, the 
inverse velocity decreases with time approaching 0. The 
inverse velocity curve is convex and crosses the abscissa 
approximately eight minutes after start of the experiment. 
This is exactly the failure time of the slope as can be roughly 
predicted from the collected field data. 

D. Experimental Results 
In summary, the field test has demonstrated that the 

monitoring system is capable of autonomously collecting and 
processing slope data. The experiment has also corroborated 
that groundwater changes are related to landslide processes; 
the increased volumetric water content of the soil has led to 
slope failure. It has been shown that the system identifies 
abnormal slope deformations (e.g. changes in the orientation 
of the sensor node and the acceleration of the slope surface) 
without any human interaction. Warnings have been issued 
automatically. The inverse velocity concept applied to 
analyze slope surface deformations has successfully 
estimated the time of the landslide before landslide 
occurrence. In addition, data and relevant information have 
been made available remotely through the Internet. 

IV. SUMMARY AND CONCLUSIONS

The design and prototype implementation of an 
Internet-enabled multi-sensor system for continuous 
monitoring of landslide processes have been presented. The 
system comprises of three major components: a wireless 
sensor network, a desktop application, and a web application. 
The wireless sensor network, composed of a number of 
wireless sensor nodes, is designed to collect local field data 
from the observed slope based on autonomous software 
programs embedded into the sensor nodes. As a distinct 
advantage compared to conventional monitoring approaches, 
the field data is analyzed directly on the sensor nodes in a 
fully decentralized fashion. The desktop application stores 
the data obtained from the wireless sensor network in a 
database system, provides diagnostic functions, and 
visualizes the recorded data sets. The web application, finally, 
integrates external geospatial and weather information 
relevant to assessing the risk of landslides, and it provides 
remote access to the field data. 

A field test, serving as a proof of concept of the proposed 
monitoring approach, has been conducted in this study. In 
summary, it could be demonstrated that the autonomous 
software programsembedded into the wireless sensor nodes 
reliably collect, processes, and analyze the field data. Also, 
slope anomalies relevant to landslides, as simulated in the 
field test, are detected and early warnings are autonomously 
issued. 

In total, it has been shown in this paper that autonomous 
wireless sensor nodes have the potential to substantially 
enhance the reliability and efficiency of landslide monitoring 
as compared with traditional systems. In particular, merging 
local groundwater, tilt and acceleration information provided 
by the sensor nodes with geospatial and weather information, 
as in the prototype monitoring system, supports human 
individuals in landslide risk assessment. Although the 
feasibility of implementing the newly proposed monitoring 

approach could be demonstrated, there is still room for 
improvements in a number of areas. For example, future 
work may include integrating further diagnostic 
functionalities into the monitoring system, and additional 
sensors may be connected to the wireless sensor nodes 
installed in the slope (such as extensometers and GPS 
sensors). Besides long-term field deployments, future work 
may also include the integration of model-based simulations 
of the slope condition in order to better understand the 
landslide dynamics. 
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