

Abstract—The increasing use of web applications to provide

reliable online services, such as banking, shopping, etc., and to

store sensitive user data has made them vulnerable to attacks

that target them. In particular, SQL injection, which allows

attackers to gain unauthorized access to the database by

injecting specially crafted input strings, is one of the most

serious threats to web applications. Although researchers and

practitioners have proposed various methods to address the

SQL injection problem, organizations continue to be its victim,

as attackers are successfully able to circumvent the employed

techniques. In this paper, we present and evaluate Runtime

Monitoring Framework to detect and prevent SQL Injection

Attacks on web applications. At its core, the framework

leverages the knowledge gained from pre-deployment testing of

web applications to identify valid/legal execution paths.

Monitors are then developed and instrumented to observe the

application’s behavior and check it for compliance with the

valid/legal execution paths obtained; any deviation in the

application’s behavior is identified as a possible SQL Injection

Attack. We conducted an extensive evaluation of the framework

by targeting subject applications with a large number of both

legitimate and malicious inputs, and assessed its ability to detect

and prevent SQL Injection Attacks. The framework successfully

allowed all the legitimate inputs to access the database without

generating any false positives, and was able to effectively detect

and prevent attacks without generating any false negatives.

Moreover, the framework imposed a low runtime overhead on

the subject applications compared to other techniques.

Index Terms—Basis path testing, data flow testing, runtime

monitoring, SQL injection attacks (SQLIAs)

I. INTRODUCTION

Web applications have become popular means of modern

information retrieval and interaction, and store sensitive user

data such as financial, medical, personal information records,

etc., in the back-end database. The increasing use of such

applications has made them vulnerable to attacks such as SQL

Injection Attacks (SQLIAs), Cross-Site Scripting (XSS),

Cross-Site Request Forgery (CSRF), Path Traversal Attacks,

etc. In June 2013, the Open Web Application Security Project

(OWASP) officially released the Top 10 attacks [1]

performed on web applications. SQLIAs have been ranked

again as the most widely performed attack and a major

security threat to web applications. There are many examples

of SQLIAs performed on organizations such as Sony [2],

LinkedIn [3], Nvidia [4], and Gamigo [5] during recent years

causing serious consequences. SQLIAs give attackers direct

 Manuscript received January 4, 2014; revised March 10, 2014.

The authors are with the Department of Computer Science, University of

Memphis, Memphis, TN 38152 USA (e-mail: rdharam@memphis.edu,

sshiva@memphis.edu).

access to the database underlying an application and allow

them to leak sensitive information. Hence, there is an

emerging need to protect web applications from such attacks

and to assure the confidentiality of user data.

Web applications are structured as a three-tiered

architecture, as shown below in Fig. 1, which consists of a

web browser, an application server, and a back-end database

server. Such an application will accept input from external

users via forms, dynamically construct the database queries

using the inputs, dispatch them to the underlying database for

execution, and finally retrieve and present the data to the user.

Fig. 1. Web application structure.

SQLIAs, a class of code injection attacks, are performed to

gain unauthorized access to sensitive user data residing in the

database. They occur when the input, provided by a malicious

user, consisting of SQL keywords or operators is not properly

validated and is included directly as part of the query. This

causes the web application to generate and send a query that

in turn results in unintended behavior of the web application,

thus causing the loss of confidential user data. For example,

consider an Employee Directory application which accepts

username and password input strings from users and displays

the specific employee details. Such an application will have a

back-end database that stores the usernames and passwords of

different users. It may contain code such as the following to

access and retrieve the data from the database:

Query = "SELECT * FROM employeeinfo WHERE name = '

"+ request.getParameter ("name") + " ' AND password = '

"+ request.getParameter ("password") + " ' ";

This code generates a query to authenticate a user who tries

to login to a web site. If a malicious user enters “ „ OR 1 = 1

-- ‟ ” and “ „ ‟ ” instead of a legitimate username and

password into their respective fields the query string becomes

as follows:

SELECT * FROM employeeinfo WHERE name = ' ‘ OR 1=1

-- ’ 'AND password = ' ‘ ’ ';

Any web application that uses this code will be vulnerable

to SQLIAs. The character “--” indicates the beginning of a

comment, and everything following the comment is ignored.

Runtime Monitoring Framework for SQL Injection

Attacks

Ramya Dharam and Sajjan G. Shiva

392

IACSIT International Journal of Engineering and Technology, Vol. 6, No. 5, October 2014

DOI: 10.7763/IJET.2014.V6.731

The database interprets everything after the WHERE token as

a conditional statement, and inclusion of the “OR 1=1” clause

turns this conditional statement into a tautology which always

evaluates to true. Thus, when the above query is executed, the

user will bypass the authentication logic and more than one

record is returned by the database. As a result, the information

about all the users will be displayed by the application, and

the attack succeeds. The above discussed example is one of

the types of SQLIAs called tautology based SQLIA. Different

kinds of SQLIAs known to date are discussed in [6] which

include the use of SQL tautologies, illegal queries, union

queries, piggy-backed queries, etc.

One of the most widely used techniques to detect and

prevent SQLIAs on web applications is input validation. It

consists of checking the user input for SQL keywords, such as

“FROM”, “WHERE”, and “SELECT”, and SQL operators

such as single quotes or comment operator. The rationale

behind this technique is that the presence of such keywords

and operators may indicate an attempted SQLIA. Input

validation technique has not been successful in completely

preventing SQLIAs because: 1) the technique is limited by the

developer‟s ability to generate appropriate input validation

code and recognize all situations in which it is needed, 2) it

results in high rate of false positives, as SQL keywords can be

part of a normal text entry and SQL operators can be used to

express formulas or even names, and 3) attackers keep

finding new attack strings or subtle variations on old attacks

that avoid the checks that programmers put in place [7]. This

results in anomalous behavior of the application during its

execution because of which the attacker gains unauthorized

access to the confidential user data.

Software testing, which is one of the important phases in

Software Development Life Cycle (SDLC), is performed by

developers/testers to assure correctness, quality, security, and

reliability of web applications. Traditional functional testing

is performed to ensure that software works according to the

user specified functional requirements i.e. services the system

should provide, outputs that should be displayed by the

system for particular inputs, etc [8]. Unfortunately, traditional

functional testing cannot fully demonstrate that the software is

immune to security attacks like SQLIAs, XSS, path traversal

attacks etc., and neither is the best approach to determine the

behavior of the software under hostile conditions [9]. This is

because: (1) they assume the users of the software are perfect

and will never attempt to perform attacks on it, (2) the

environment of the software is perfect, as it will never interact

with other software that generates hostile return values, and (3)

the API or the library functions of the software are perfect

[10]. Hence, traditional functional testing should always be

augmented with security testing that ensures that the software

systems used by organizations and users are secured from

unauthorized attacks.

Security testing consists of identification and removal of

security vulnerabilities i.e. a defect or weakness in a software

system‟s design, implementation, operation, or management

that could be exploited by an attacker. Few of the most

commonly used security testing techniques includes

automated static analysis, vulnerability scanning, and

penetration testing. Automated static analysis [9] involves

analyzing the source code of the software without executing it,

and is performed using static analysis tools. The main

objective of static analysis is to discover security flaws and to

identify their potential fixes. The analysis doesn‟t require

knowing what the code is intended to do. Static analysis tools

are effective at detecting language rules violations such as

buffer overflows, incorrect use of libraries, type checking and

other flaws. Static analysis tools have following limitations: 1)

inability to detect unexpected flaws – flaw categories must be

predefined, 2) inability to detect system administration or user

mistakes, and 3) inability to find vulnerabilities introduced by

the execution environment.

Automated vulnerability scanning [9] is supported for

application level software, as well as web servers, database

management systems, and some operating systems.

Application vulnerability scanners can be useful for software

security testing. These tools scan the executing application

software for input and output of known vulnerability patterns,

also known as signatures. While they can find simple patterns

associated with vulnerabilities, automated vulnerability

scanners are unable to pinpoint risks associated with

aggregations of vulnerabilities, or to identify vulnerabitlites

that result from unpredictable combinations of input and

output patterns. Because automated vulnerability scanners are

signature-based, they need to be frequently updated with new

signatures. In software‟s target environment, vulnerabilities in

software are often masked by environmental protections such

as network- and application-level firewalls. Moreover,

environment conditions may create novel vulnerabilities that

cannot be found by a signature-based tool.

Penetration testing [9] is the “art” of testing a running

application in its “live” execution environment to find

security vulnerabilities. Penetration testing observes whether

the system resists attacks successfully, and how it behaves

when it cannot resist an attack. Penetration testers also

attempt to exploit vulnerabilities that they have detected and

once that were detected in previous reviews. Types of

penetration testing include black box, white box, and grey box.

In black box penetration testing, the testers are given no

knowledge of the application. White box penetration testing is

the opposite of black box. In that, complete information about

the application may be given to the testers. Grey box

penetration testing, the most commonly used, is where the

tester is given the same privileges as a normal user to simulate

a malicious insider. Many developers use application

penetration testing as their primary security testing technique.

While it certainly has its place in a testing program,

application penetration testing should not be considered the

primary or only testing technique. Penetration testing can lead

to a false sense of security. Just because an application passes

penetration testing doesn‟t mean that it is free of

vulnerabilities. Conversely, if an application fails penetration

testing, there is a strong indication that there are serious

problems that should be mitigated.

The above mentioned limitations and lack of assurance

from security testing of web applications has lead to the

exploitation of security vulnerabilities by attackers. This has

also enhanced the need for additional tools or methodologies

to detect and prevent SQLIAs on web applications.

Monitoring an application during runtime determines whether

the current execution of the program behaves correctly. There

393

IACSIT International Journal of Engineering and Technology, Vol. 6, No. 5, October 2014

could be some information that is available only at runtime, or

the behavior of the system could depend on the environments

where the system runs. Also, it is possible that, nevertheless

the system has been tested and maybe also proved correct, the

developer wants to be sure that system does not violate some

given properties during its execution [11]. Hence, runtime

monitoring can also be useful to guarantee the security of

running programs, and is performed by software runtime

monitors.

In this paper, we present a framework to counter SQLIAs

that uses the idea of runtime monitoring discussed above. The

framework first uses pre-deployment testing of web

applications to develop and instrument monitors into them.

Then, at runtime, the monitors observe the behavior of the

application and check them for compliance with the obtained

valid/legal execution paths. Any deviation in the application‟s

behavior will be identified as a possible SQLIA, notify the

administrator of the attack, and the execution of the

application is stopped as an immediate preventive measure.

We primarily focus on tautology based SQLIA which is the

most popular type of SQLIAs. In this paper, we also present

an evaluation of the developed framework on subjects of

various types and sizes. We targeted the subject applications

with a large number of both legitimate and SQL injection

attack inputs, and assessed the ability of the framework to

detect and prevent the attacks. The framework was able to

detect most of the attacks without generating any false

negatives, and successfully allowed all the legitimate inputs to

access the database without generating any false positives.

Moreover, our technique imposed a low overhead on the

subject applications.

II. RUNTIME MONITORING FRAMEWORK

 In this section, we discuss the proposed Runtime

Monitoring Framework to detect and prevent SQLIAs. The

framework leverages the artifacts obtained from

pre-deployment testing of web applications to develop and

instrument runtime monitors, which observe the application‟s

behavior during execution. The key insights behind the

development of the framework are that 1) the information

essential to identify the possible valid/legal execution paths of

a web application can be obtained from the pre-deployment

testing i.e. basis path and data flow, and 2) an SQLIA would

violate the valid/legal execution paths previously obtained.

Therefore, the framework first uses pre-deployment testing of

web applications to develop and instrument monitors into

them. Then, at runtime, the monitors observe the behavior of

the application and check them for compliance with the

obtained valid/legal execution paths. Any deviation in the

application‟s behavior will be identified as a possible SQLIA,

and its execution is immediately stopped as a preventive

measure. The Runtime Monitoring Framework described is

shown in Fig. 2 and it consists of the following three phases: 1)

Critical Variables Identification, 2) Critical Paths

Identification, and 3) Runtime Monitor Development and

Instrumentation which are discussed below in detail.

A. Critical Variables Identification

Critical variables are those variables that get initialized

with the input provided by an external user and are part of a

SQL query execution. Since critical variables are the ones that

provide an interface between the external world and internal

information, it is very important to identify all the critical

variables present in the application. We scan the software

repository which consists of a collection of documents related

to requirements, security specifications, source code, etc., to

find all the critical variables present in the source code of the

application.

Fig. 2. Runtime monitoring framework.

B. Critical Paths Identification

Critical Paths, also called monitorable paths, are the

valid/legal execution paths of the application. A combination

of two pre-deployment testing techniques i.e. basis path and

data flow are used to identify critical paths of the application;

runtime monitors developed for the application observes

these paths to detect and prevent possible SQLIAs. We first

discuss about two pre-deployment testing techniques, basis

path and data flow testing techniques, which play a major role

in identification of critical paths.

Basis path testing, also known as structured testing, is a

methodology for software module testing based on the

cyclomatic complexity of McCabe [12], [13] that involves

using the source code of a program to find every possible

executable path. Functions, procedure, and sub-routines can

be called as modules. Cyclomatic complexity is software

metric that provides a quantitative measure of the logical

complexity of a program. The cyclomatic number gives the

number of independent paths, called basis paths, through the

control flow graph. This means that cyclomatic number is

precisely the minimal number of paths that can, in linear

combination, generate all possible paths through the

application [14]. A control flow graph is an abstract directed

graph that describes the control structure of a module. The

nodes in the graph correspond to either the computational or

conditional statements in a program and the edges represent

transfer of control between nodes. As discussed in [12], [13],

[15], the four steps devised by McCabe to perform basis path

testing are follows: 1) Obtain a control flow graph, 2)

Calculate the cyclomatic complexity, 3) Select a basis set of

394

IACSIT International Journal of Engineering and Technology, Vol. 6, No. 5, October 2014

paths, and 4) Generate test cases for each of these paths. Only

the first three steps are essential for our framework to help in

the development of runtime monitors.

 Data flow testing [16] focuses on the variables used within

a program and allows the tester to chart the changing values of

variables within the program. A typical data flow test case

requires that all path segments between a variable being

assigned a value and that variable‟s value being used be

covered during testing. With respect to variables, there are

two types of nodes as discussed in [17]: defining nodes and

usage nodes. For example, with respect to variable x, nodes

containing statements such as “input x” and “x = 2” would be

both defining nodes and nodes containing statements such as

“print x” and “a = 2 + x” would be both usage nodes. All-uses

(AU) is one of the strategies to perform data flow testing on a

variable and this strategy states that: for every use of the

variable, there is a path from the definition of that variable to

the use [17]. This implies that the paths obtained from data

flow testing will be sub-paths of the paths obtained from basis

path testing.

 Thus, the Critical Paths Identification phase combines the

paths obtained from basis path and data flow testing

techniques, as discussed above, and builds the set of

monitorable paths which are identified using the pseudo code

shown below:

Let C = {C
1
, C

2
……., C

m
} be a set of m critical variables

identified during the Critical Variables Identification Phase.

Let PC = {{ PC
1
 } , { PC

2
 }, …..,{ PC

m
}} be a set of critical

variable paths such that, PC
i
 is a set of paths that a critical

variable C
i
 can take during its lifetime in the software, i [0, m]

and is identified by performing data flow testing on C
i
.

Let P = {P
1
, P

2
 ……, P

k
} be a set of k legal/valid execution

paths identified using basis path testing and CP is a set of

monitorable paths.

CP = { }

for every P
j

 P and

for every PC
i

PC

if (P
j
∩ PC

i
== PC

i
)

CP = CP U { P
j
}

i [0, m] and j [0, k]

C. Runtime Monitor Development and Instrumentation

A runtime monitor is developed for the execution paths of

the application obtained from the Critical Paths Identification

phase. Execution paths of the program are monitored because

of the following reasons as discussed in [18]: 1) paths offer

insights into a program‟s dynamic/runtime behavior that is

difficult to achieve any other way and 2) paths capture some

of the usually invisible dynamic sequencing of statements and

records a program‟s executable statements in the order in

which they run. Events occur instantaneously during a

program execution and consist of variable updates, method

calls and returns, etc. A program‟s sequence of events over an

execution is a rich source of information about the program‟s

behavior on that execution. Runtime monitoring can detect

such sequence of events, enabling developers to handle the

sequences with reporting or recovery code [19].

Dynamic events are mapped onto events in the actual code

base. One potentially good way of doing this would be to use

pointcuts of an aspect oriented programming language [20].

As discussed in [21], [22], pointcuts define a collection of

specific points in the dynamic execution of the application.

On pointcuts, advice can then be defined in order to execute

certain code. AspectJ supports before and after advice,

depending on the time the code is executed. The definition of

pointcuts and the specification of advice on these pointcuts

together form an aspect definition. Such pointcuts have

proven themselves to be easy enough to understand for many

average software developers, as indicated by their

wide-spread use in software development.

Runtime Monitors are developed using AspectJ [23] which

is an aspect-oriented extension to the Java language and

follows the Aspect Oriented Programming (AOP) paradigm.

AOP has been widely used in all areas of software

development and recently it is being widely used in the area of

software security. AOP builds on pervious technologies such

as procedural-oriented and object-oriented programming.

With AOP, a programmer could do some of the following to

achieve software security: (1) write aspects to address

security concerns such as secrecy and integrity [24], (2) write

an aspect to define a set of sensitive operations that says

“before each sensitive operation, check the user‟s access

level” [25], etc. Thus, AOP provides specific language

mechanisms that make it possible to address concerns, such as

security in a modular way. This way, the security issue in a

software system can be addressed [26].

A special complier provided by AspectJ called the AspectJ

Compiler (AJC) is used to instrument monitors into the

respective modules of the application. During runtime, if the

path taken by the application violates the valid/legal

execution paths obtained, this implies that the input from the

external user is malicious, and the query formed is trying to

access the confidential user data. This abnormal behavior of

the application is detected by the instrumented runtime

monitor as a possible SQLIA, notifies the administrator of the

attack, and the execution of the application is stopped as an

immediate preventive measure.

III. EVALUATION

 The goal of the evaluation is to assess the effectiveness and

efficiency of the Runtime Monitoring Framework, presented

in this paper, to detect and prevent tautology based SQLIA

when applied to various web applications. We investigate the

following three research questions:

RQ1: Does Runtime Monitoring Framework detect and

prevent tautology based SQLIA that would otherwise remain

undetected? (False Negatives)

RQ2: Does Runtime Monitoring Framework detect

legitimate inputs as tautology based SQLIA and prevent their

execution on the database? (False Positives)

RQ3: What is the runtime overhead imposed on the

instrumented web application by the Runtime Monitoring

Framework?

The rest of this section is organized as follows. First, we

illustrate the setup for our evaluation, i.e. SQL Injection

Application Testbed that consists of web applications, and

Target/Subject web applications that we used for performing

our experiments. We then describe the attack and legitimate

395

IACSIT International Journal of Engineering and Technology, Vol. 6, No. 5, October 2014

test input data collected and the results obtained for each of

the research questions listed above. Finally, we compare our

approach with other techniques and discuss the observations

made.

TABLE I: ILLEGITIMATE TAUTOLOGY BASED ATTACK INPUTS

Illegitimate inputs

Login Password

' OR 1=1 -- ' ' '

' ' ' OR '1'='1

' 'aaa' OR 1=1 -- ' ' '

' '111' OR 1=1 -- ' ' '

' '333' OR true#' ' '

' 'admin' OR 1<2 -- ' ' '

' 'login' OR 4>2 -- ' ' '

' ' ' OR 1=1 -- '

' ' ' 'bbb' OR 1=1 -- '

' ' ' '222' OR 1=1 -- '

' ' ' '444' OR true#'

' ' ' 'password' OR 4>2 -- '

' ' ' 'admin' OR 10<100 -- '

' '
' or user_password between 'a'

and 'z

' or user_login between 'a' and 'z ' 'password' OR 4>2 -- '

' or user_login between 'a' and 'z ' '

' OR '1'='1-- ' '

A. Target/Subject Applications Used for Evaluation

SQL Injection Application Testbed [27] provides a set of

subject web applications that are vulnerable to SQLIAs. The

testbed was developed to facilitate the evaluation of various

techniques and methodologies to detect and prevent SQLIAs.

The set of subjects consists of seven web applications that are

vulnerable to SQLIAs, which accept user input via forms and

use the input to build queries to gain access to the underlying

database. The first five subjects in the testbed i.e. Classifieds,

Events, Employee Directory, Bookstore, and Portal are

commercial web applications, and the remaining two

applications in the testbed, Checkers and Office Talk, are

developed by students and have been used in other related

works in [28]. For the purpose of experimentation, we chose

the first three applications i.e. Events, Classifieds, and

Employee Directory from the SQL Injection Application

Testbed to evaluate the framework. Events application is an

online tracking system, which can be used to schedule various

events in an organization, and is developed using Java Server

Pages (JSPs). The users can only view information of events

scheduled whereas the administrator has the privilege to add,

remove, and edit information related to scheduled events.

Classifieds application is an online management system

developed using JSPs. Employee Directory application is an

online management system developed using JSPs. This

application can be used in an organization to look up for

employee details such as name, email, department, etc. The

administrator of the application has the privilege to add,

remove, and edit employee or department related information.

B. Test Input Data Collection

For our evaluation we collected a large set of inputs by

surveying various sources which included government

security websites such as NVD (http://www.nvd.nist.gov/),

OWASP (https://owasp.org/), Build Security In

(https://buildsecurityin.us-cert.gov/), US-CERT

(http://www.us-cert.gov/), security related mailing lists,

research papers, etc. The generated inputs represented both

malicious and normal usage of the target/subject applications.

Illegitimate tautology based attack inputs, listed below in

Table I, consist of statements that are inherently true and are

used to force a query to return all results, ignoring any

WHERE conditionals.

Legitimate inputs, listed below in Table II, consist of SQL

keywords, operators, and troublesome characters, such as

single quotes and comment operators, but in a way that should

not cause an attack.

TABLE II: LEGITIMATE INPUTS

Legitimate inputs

Login Password

test ****

select * from tab ****

insert into user

values(\‟test\‟,\‟test\‟)

union select * from tab ****

insert ****

delete ****

from ****

where ****

group by ****

left join ****

create ****

right outer join ****

procedure ****

information_schema ****

view ****

like ****

and ****

or ****

!@#$$%^&*()*_!%2B\\\\\\:;[]{}><,

.

-%2B=_ ****

`~ ****

QWERTYUIOP ****

ASDFGHJKL ****

ZXCVBNM<>? ****

< > ****

//////// ****

UNION ****

Update Set ****

test@localhost.com ****

sec45%^ ****

rdharam *************

bobk ****

johns *******

davids ****

pabols ************

396

IACSIT International Journal of Engineering and Technology, Vol. 6, No. 5, October 2014

TABLE III: RESULTS OBTAINED WHEN ILLEGITIMATE TAUTOLOGY BASED

ATTACK INPUTS ARE PROVIDED TO THE INSTRUMENTED WEB APPLICATIONS

Illegitimate tautology based attack inputs
Attack

Detected
Login Password

' ' ' OR '1'='1 YES

' OR 1=1 -- ' ' ' YES

' 'aaa' OR 1=1 -- ' ' ' YES

' '111' OR 1=1 -- ' ' ' YES

' '333' OR true#' ' ' YES

' 'admin' OR 1<2 -- ' ' ' YES

' 'login' OR 4>2 -- ' ' ' YES

' ' ' OR 1=1 -- ' YES

' ' ' 'bbb' OR 1=1 -- ' YES

' ' ' '222' OR 1=1 -- ' YES

' ' ' '444' OR true#' YES

' ' ' 'password' OR 4>2 -- ' YES

' ' ' 'admin' OR 10<100 -- ' YES

' '
' or user_password between

'a' and 'z
YES

' or user_login between

'a' and 'z
' 'password' OR 4>2 -- ' YES

TABLE IV: RESULTS OF TESTING FOR FALSE NEGATIVES (RQ1)

Target/Subject

application

Total # of

tautology based

attack inputs

Total # of attacks

detected on

instrumented web

application

Events 15 15

Classifieds 15 15

Employee Directory 15 15

TABLE V: RESULTS OBTAINED WHEN LEGITIMATE INPUTS ARE PROVIDED

TO THE INSTRUMENTED WEB APPLICATIONS

Legitimate inputs
Query

Successful
Login Password

test **** YES

select * from tab **** YES

insert into user

values(\‟test\‟,\‟test\‟)
**** YES

union select * from tab **** YES

insert **** YES

delete **** YES

from **** YES

where **** YES

group by **** YES

left join **** YES

create **** YES

right outer join **** YES

procedure **** YES

information_schema **** YES

view **** YES

like **** YES

and **** YES

or **** YES

!@#$$%^&*()*_!%2B\\\\\\:;[

]{}><,.
**** YES

-%2B=_ **** YES

`~ **** YES

QWERTYUIOP **** YES

ASDFGHJKL **** YES

ZXCVBNM<>? **** YES

< > **** YES

//////// **** YES

UNION **** YES

Update Set **** YES

test@localhost.com **** YES

sec45%^ **** YES

rdharam ************* YES

bobk **** YES

johns ******* YES

davids **** YES

pabols ************ YES

C. Discussion of Results

 In this section, we discuss the results obtained when the

runtime monitor is instrumented into target/subject web

applications i.e. Events, Classifieds, and Employee Directory

respectively. To address RQ1 (i.e. the effectiveness of the

Runtime Monitoring Framework to detect and prevent

tautology based SQLIA), we instrumented each target/subject

application with runtime monitors and ran all of the attack

inputs listed in Table I. For every application, we observed

whether the tautology based SQLIA was detected and

prevented by the runtime monitor. (As previously discussed,

when the runtime monitor detects an attack, it stops the

execution of the web application. Therefore, it is easy to

accurately detect the occurrence of an attack.) The results

397

IACSIT International Journal of Engineering and Technology, Vol. 6, No. 5, October 2014

mailto:!@#$$%^&*()*_!%2B\\\\\\:;[]{}><,.
mailto:!@#$$%^&*()*_!%2B\\\\\\:;[]{}><,.
mailto:test@localhost.com

obtained when illegitimate tautology based attack inputs

(Login and Password) are provided to the instrumented

subject/target applications are shown in Table III. The Attack

Detected column in the table will have “YES” value if the

attack is detected successfully by the runtime monitor, else it

contains a “NO” value. As the table shows, for all subjects the

runtime monitor was able to correctly identify all attacks as

tautology based SQLIA, that is, it generated no false

negatives.

As shown in Table IV, the runtime monitor successfully

detected all illegitimate tautology based SQLIA performed on

the target/subject web applications i.e. Events, Classifieds,

and Employee Directory.

 To address RQ2 i.e. Does Runtime Monitoring Framework

identify legitimate accesses as tautology based SQLIA and

prevent from executing on the database? (False Positive), we

ran legitimate inputs listed in Table II on the instrumented

target/subject web applications, and assessed whether runtime

monitor identified any legitimate query as an attack. Table V

summarizes the results obtained when legitimate inputs are

provided to the instrumented web applications. The Query

Successful column will have a “YES” value in case of a

successful query execution, else it contains a “NO” value. The

results of the assessment were that runtime monitor correctly

identified all such queries as legitimate queries and reported

no false positives.

As shown below in Table VI, the monitor successfully

allowed the legitimate queries to be executed on the target

web applications without falsely detecting them as attack.

TABLE VI: RESULTS OF TESTING FOR FALSE POSITIVES (RQ2)

Target/Subject

application

Total # of

legitimate

inputs

Total # of legitimate

inputs detected as attacks

on instrumented web

application

Events 35 0

Classifieds 35 0

Employee Directory 35 0

 To address research question 3 (RQ3) i.e. what is the

runtime overhead imposed on the instrumented web

application by Runtime Monitoring Framework? (Runtime

Overhead) we ran the legitimate inputs on the uninstrumented

target/subject web applications and measured its response

time. We then ran the same legitimate inputs on the

instrumented version of the subject applications and recorded

the response time. The difference in the response time

obtained from the two versions of the application is

determined as the overhead imposed by the framework. We

performed our experiments five times and recorded the

average time to ensure accuracy. Only the legitimate test input

data is used for overhead calculation, because using the attack

set would cause different paths of execution between the two

versions, where the attacks would be successful in the original

application, but be prevented in the instrumented application,

leading to incorrect timing comparisons [29].

 We compared our results with recently proposed work,

CANDID [30] and WASP [31]. CANDID automatically

transforms web applications to render them safe against all

SQLIAs. It dynamically mines the programmer-intended

query structure on any input and detects attacks by comparing

it against the structure of the actual query issued. WASP is

based on dynamic tainting and has been widely used to

address security problems related to input validation.

Traditional dynamic tainting approaches mark untrusted data

from user input as tainted, track the flow of tainted data at

runtime, and prevent this data from being used in potentially

harmful ways. We found that the runtime overhead imposed

by the Runtime Monitoring Framework on target applications

is no more than 4% which is comparatively less than the

average overhead of WASP listed as 6% and CANDID which

is 6.2%. Table VII below shows the comparison results

obtained.

TABLE VII: COMPARISON WITH OTHER TECHNIQUES

Technique Runtime Overhead

Runtime Monitoring Framework 4%

CANDID 6.2%

WASP 6%

 In this section, we discussed the evaluation and results

obtained to assess the effectiveness and efficiency of Runtime

Monitoring Framework. We addressed the following three

research questions: False Negatives (RQ1), False Positives

(RQ2), and Runtime Overhead (RQ3). We also compared our

approach with other techniques i.e. CANDID and WASP. The

framework successfully allowed the legitimate inputs to be

executed on the target/subject web applications; furthermore,

it detected illegitimate attack inputs. During runtime, the

instrumented monitors observed the behavior of the

application for every given user input and detected a possible

SQLIA in case of an attack input; the execution of the

application was then stopped as an immediate preventive

measure. Thus, based on the behavior of the application

during runtime, SQLIAs were effectively detected and

prevented by the instrumented monitors. Also, the results of

the evaluation performed clearly demonstrated the success of

the framework to detect and prevent tautology based SQLIAs.

The framework also imposed a low runtime overhead on the

target applications.

IV. RELATED WORK

 This section discusses the related work that has been

accomplished by the research community in providing new

techniques to detect and prevent SQLIAs. We also discuss

state-of-the-art of SQLIA detection and prevention

techniques and classify them into two categories namely: (A)

Pre-deployment Techniques and (B) Post-deployment

Techniques.

A. Pre-Deployment Techniques

 Pre-deployment techniques consist of methodologies that

are used to detect SQLIAs and their vulnerabilities during

coding time and testing time of an application development

cycle. Static analysis techniques detect SQLIAs and their

vulnerabilities during coding time without the need of code

execution. Different testing approaches such as black-box

testing and white-box testing can be used as analysis methods

in testing time for detecting attacks and their vulnerabilities

[32]. In this section, we discuss the techniques that can be

categorized as pre-deployment and compare them with our

approach.

 Huang et al., [33] proposed WAVES, a black box

technique for testing web applications for SQL Injection

398

IACSIT International Journal of Engineering and Technology, Vol. 6, No. 5, October 2014

Attacks. The technique identifies all points in a web

application that can be used to inject SQLIAs using a web

crawler. It then builds attacks that target those spots based on

a list of patterns, and then monitors the application‟s response

to the attacks by utilizing machine learning to improve its

attack methodology.

 Wasserman and Su [34] proposed a static analysis

framework that operates directly on the source code of the

application to detect and prevent SQLIAs. This approach

consists of two main steps. First, static analysis is performed

to approximate the set of possible queries that the program

generates for a particular query variable at a particular

program location. The result for each query variable is a finite

state automaton which represents a conservative set of

possible string values that the variable can take. In the second

step, the part of the generated automaton corresponding to the

WHERE clause of the generated queries are analyzed to

check whether there is a tautology, and the existence of a

tautology indicates the presence of a potential vulnerability.

 Livshits and Lam [35] discuss a static analysis technique to

detect SQL injection vulnerabilities in web applications. In

this approach, users describe vulnerability patterns of interest

using Program Query Language (PQL) which is an

easy-to-use language with Java-like syntax. The

user-provided specifications of vulnerabilities are then

automatically translated into static analyzers which find all

potential matches of vulnerabilities in the code statically. The

advantage of static analysis is that it can find all potential

security violations without executing the application. The

primary limitation of this approach is that it can only detect

known and specified vulnerability patterns of SQLIAs and

cannot detect SQL injection attacks patterns that are not

known beforehand. In our approach no user-defined

specifications are used and SQLIAs are detected based on the

behavior of the application.

 Kosuga et al., [36] proposed Sania designed to be used in

the development and debugging phase of web applications to

detect SQL injection vulnerabilities. To discover SQL

injection vulnerabilities, Sania analyzes SQL queries issued

in response to the HTTP requests between web application

and database, and discovers vulnerable spots in SQL queries

in which an attacker can insert malicious strings. It then

generates attack requests based on the context of potentially

vulnerable spots in the SQL queries. Parse trees of the SQL

queries are generated and compared.

 All the above mentioned techniques are used to detect and

prevent SQLIAs in web application during its pre-deployment

i.e. either during coding time or testing time of the application

development cycle. Thus, in spite of the existence and the

implementation of above discussed pre-deployment

techniques, web applications are still vulnerable to SQLIAs

because hackers are successfully able to circumvent the

employed techniques. Hence detecting and preventing

SQLIAs on web applications after it is deployed in the real

world i.e. post-deployment technique is essential.

B. Post-Deployment Techniques

 Post-deployment techniques consist of methodologies that

are used to detect SQLIAs and their vulnerabilities during

operation time i.e. in the real world field after the product is

released [32]. In this section, we discuss the methodologies

that can be categorized as post-deployment, and compare

them with our approach.

Valeur et al., [37] proposed an Intrusion Detection System

(IDS) based on a machine learning technique to detect

SQLIAs. The proposed system uses anomaly-based detection

approach and learns profiles using a number of different

models to find the normal database access performed by web

applications. During the training phase, profiles are learned

automatically by analyzing a number of sample database

accesses. During the detection phase, anomalous queries that

lead to SQLIA are identified.

Kemalis and Tzouramanis [38] proposed a novel

specification-based methodology SQL-IDS for the detection

of exploitation of SQL injection vulnerabilities. This

approach focuses on writing specifications that describe the

intended structure of SQL queries that are produced by the

web application. It then automatically monitors the execution

of the application for the SQL queries that violate the

pre-defined query specification rules. The approach detects

and prevents the application from all forms of SQLIAs and

also eliminates the need to modify the source code of the

application. SQL-IDS incur high computation cost while

comparing the new query with the predefined structure at

runtime.

Halfond and Orso [39] proposed a model-based technique

called AMNESIA for detection and prevention of SQLIAs

that combines the static and dynamic analysis. During the

static phase, models for the different types of queries that an

application can legally generate at each point of access to the

database are built. During the dynamic phase, queries are

intercepted before they are sent to the database and are

checked against the statically built models. If the queries

violate the model then a SQLIA is detected and further

queries are prevented from accessing the database. The

accuracy of AMNESIA depends on the static analysis for

building query models.

 Buehrer et al., [40] presented a novel runtime technique to

eliminate SQL injection. The technique is based on

comparing at runtime the parse tree of the SQL statement

before inclusion of user input with that resulting after

inclusion of input. SQLGuard requires the application

developer to rewrite code to use a special intermediate library

or manually insert special markers into the code where user

input is added to a dynamically generated query. SQLGuard

uses a secret key to delimit user input during parsing by the

runtime checker and so the security of the approach is

dependent on the attacker not being able to discover the key.

Haldar et al., [41] proposed a framework called Java

Dynamic Tainting for tagging, tracking and detecting the

improper use of improperly validated user input also called

tainted input in web applications. The data originated from

the client is marked as tainted, and this attribute is propagated

throughout the execution of the program. Tainted flag is

associated with strings and data originating from methods that

get user input, called sources, that are marked tainted. Strings

derived from tainted strings are also marked tainted. Finally,

methods that consume input or execute some form of code

(scripts, SQL), called sinks, are prevented from taking in

tainted arguments.

 Boyd and Keromytis [42] proposed SQLrand, which is an

approach based on instruction-set randomization. The

standard SQL keywords in queries are modified by appending

399

IACSIT International Journal of Engineering and Technology, Vol. 6, No. 5, October 2014

a random integer value during the design time of the

application. During runtime, a proxy that sits between the

client and the database server intercepts the SQL queries and

de-randomizes the query by removing the inserted random

integer before submitting the queries to the database.

Therefore, any malicious user attempting an SQLIA will not

be successful as the user input inserted into the randomized

query will be classified as a set of non-keywords resulting in

an invalid expression.

 Bisht et al., [30] exhibit a novel and powerful mechanism

called CANDID for automatically transforming web

applications to render them safe against all SQLIAs. The

proposed technique dynamically mines the

programmer-intended query structure on any input and

detects attacks by comparing it against the structure of the

actual query issued.

 Halfond et al., [31] proposed a highly automated approach

for dynamic detection and prevention of SQLIAs. The

approach is based on dynamic tainting which has been widely

used to address security problems related to input validation.

Traditional dynamic tainting approaches mark untrusted data

from user input as tainted, track the flow of tainted data at

runtime, and prevent this data from being used in potentially

harmful ways. Unlike any existing dynamic tainting

techniques, the proposed approach is based on the novel

concept of positive tainting i.e. identification and marking of

trusted instead of untrusted data. The proposed approach

performs accurate taint propagation by precisely tracking

trust markings at the character level, and it performs

syntax-aware evaluation of query strings before they are sent

to the database and blocks all queries whose non-literal parts

(i.e. SQL keywords and operators) contain one or more

characters without trust markings.

 All the above mentioned techniques are used to detect

SQLIAs and their vulnerabilities during its post-deployment

(operation time) i.e. in the real world field after the product is

released. Machine Learning Techniques that includes IDS,

and SQL-IDS discussed above are mainly dependent on the

accuracy of the profiles obtained during the training phase,

and it is possible that a few of the SQLIAs may go unnoticed

causing threat to the database. In order to overcome this

limitation, in our approach we monitor the legitimate behavior

of the application during its execution and eliminate the need

for a training data set to detect and prevent SQLIAs. Java

Dynamic Tainting requires modifications to the runtime

environments which in turn affects their portability. In our

approach, we embed a runtime monitor into the relevant

module of the application that monitors its behavior for a

given user input, and no change to the runtime environment is

required to detect and prevent SQLIAs. AMNESIA and SQL

Guard construct syntactic models like parse trees and FSA by

using static analysis technique to identify the intended

structure of SQL queries in the absence of user inputs; these

approaches then use dynamic analysis, and detect SQLIAs at

runtime if the dynamically generated query, which includes

user inputs, deviates from the statically generated syntactic

models. In our proposed approach, pre-deployment testing

techniques are used to find the valid/legal behaviors of the

application in the presence of user input. During runtime, the

developed monitors observe the execution of the application

and any deviation is determined as a possible SQLIA.

Instruction Set Randomization techniques such as SQL rand

requires developers to randomize SQL queries present in the

application by appending a random integer value. In our

proposed approach, SQL queries are written using standard

keywords, and runtime monitors are developed and

instrumented into the source code automatically. Also, the

need for the deployment of proxy is eliminated.

 Based on the above analysis and limitations of various

pre-deployment and post-deployment techniques, discussed

in this section, we designed a framework that utilizes the

artifacts obtained from pre-deployment testing of applications

for the development and instrumentation of runtime monitors.

Thus, SQLIAs are effectively detected and prevented based

on the behavior of the application during its execution.

V. CONCLUSION

In this paper, we presented a Runtime Monitoring

Framework to detect and prevent SQL Injection Attacks. The

framework first uses pre-deployment testing of web

applications to develop and instrument monitors into them.

Then, at runtime, the monitors observe the behavior of the

application and check it for compliance with the obtained

valid/legal execution paths. Any deviation in the

application‟s behavior will be identified as a possible SQLIA,

notify the administrator of the attack, and the execution of the

application is stopped as an immediate preventive measure.

We also presented an evaluation of the framework performed

on a set of web applications from SQL Injection Application

Testbed. We targeted the subjects with a large number of both

legitimate and SQL injection attack inputs, and assessed the

ability of the framework to detect and prevent the attacks

without stopping any legitimate accesses to the database. The

framework was able to detect most of the attacks without

generating any false negatives, and successfully allowed all

the legitimate inputs to access the database without generating

any false positives. Moreover, our technique imposed a low

overhead on the subject applications compared to other

techniques. Thus, using our framework, we ensure that the

quality and security of web application is achieved not only

during its pre-deployment, but also during its

post-deployment phase. We aim to extend our work to detect

and prevent other types of SQLIAs.

REFERENCES

[1] Silobreaker. [Online]. Available:

https://www.owasp.org/index.php/Top_10_2013-Top_10

[2] Sony Hacked Again in Lulzsec Breach. [Online]. Available:

http://www.zdnet.com/sony-hacked-again-in-lulzsec-breach-4010022

607/

[3] Zdnet. [Online]. Available:

http://www.zdnet.com/blog/btl/6-46-million-linkedin-passwords-leak

ed-online/79290

[4] Nvidia Confirms Hackers Swiped Up to 400,000 User Accounts.

[Online]. Available:

http://www.zdnet.com/nvidia-confirms-hackers-swiped-up-to-400000

-user-accounts-7000000903/

[5] 8.24 Million Gamigo Passwords Leaked After Hack. [Online].

Available:

http://www.zdnet.com/8-24-million-gamigo-passwords-leaked-after-h

ack-7000001403/

[6] G. J. Halfond, J. Viegas, and A. Orso, “A classification of SQL

Injection Attacks and countermeasures,” in Proc. the IEEE

International Symposium on Secure Software Engineering, pp. 13-15,

2006.

[7] W. G. Halfond and A. Orso, “AMNESIA: analysis and monitoring for

neutralizing SQL Injection Attacks,” in Proc. the 20th IEEE/ACM

400

IACSIT International Journal of Engineering and Technology, Vol. 6, No. 5, October 2014

http://www.zdnet.com/sony-hacked-again-in-lulzsec-breach-4010022607/

401

IACSIT International Journal of Engineering and Technology, Vol. 6, No. 5, October 2014

International Conference on Automated Software Engineering, pp.

174-183, 2005.

[8] I. Sommerville, Software Engineering, Addison Wesley, 2001.

[9] Build Security In, “Software security is testing,” Software Assurance

Pocket Guide Series: Development, vol. III, May 21, 2012.

[10] A. J. A. Wang, “Security testing in software engineering courses,” 34th

ASEE/IEEE Frontiers in Education, pp. F1C-13, 2004.

[11] P. Arcaini, A. Gargantini, and E. Riccobene, Runtime Monitoring of

Java Programs by Abstract State Machines, TR 131, DTI Dept., Univ.

of Milan, 2010.

[12] T. J. McCabe, “A complexity measure,” IEEE Transactions on

Software Engineering, vol. SE-2, no. 4, pp. 308-320, 1976.

[13] T. J. McCabe and A. H. Watson, “Structured testing: a software

Testing methodology using the cyclomatic complexity metric,” NIST

Special Publication 500-235, 1996.

[14] Y. Deng and J. Wang, “Testing web database applications,” ACM

SIGSOFT Software Engineering Notes, vol. 29, no. 5, pp. 1-10, 2004.

[15] L. Gregory, H. Schligloff, and M. Roggenbach, “Path testing, Advance

topics in computer science,” Testing, Swansea University, Wales, UK,

2002.

[16] M. New, “Data flow testing,” Advance Topics in Computer Science,

Swansea University, Wales, UK, 2002, 2012.

[17] J. Badlaney, R. Ghatol, and R. Jadhwani, “An introduction to data-flow

testing,” Department of Computer Science, North Carolina State

University, NCSU CSC TR-2006-22, 2006.

[18] T. Ball and J. R. Larus, “Using paths to measure, explain, and enhance

program behavior,” IEEE Computer, vol. 33, no. 7, pp. 57-65, 2000.

[19] E. Bodden, P. Lam, and L. Hendren, “Finding programming errors

earlier by evaluating runtime monitors ahead-of-time,” in Proc. the

16th ACM SIGSOFT International Symposium on Foundations of

software engineering, ACM, pp. 36-47, 2008.

[20] E. Bodden, “The design and implementation of formal monitoring

techniques,” in Proc. 22nd ACM SIGPLAN conference on

Object-oriented programming systems and applications companion,

ACM, pp. 939-940, 2007.

[21] D. Walker, S. Zdancewic, and J. Ligatti, "A theory of aspects," in ACM

SIGPLAN Notices, vol. 38, no. 9, pp. 127-139, 2003.

[22] K. Padayachee and N. Wakaba, "A taxonomy of aspect-oriented

security," Review of Business Information Systems (RBIS), vol. 12, no.

1, pp. 89-102, 2011.

[24] J. Viega, J. T. Bloch, and P. Chandra, "Applying aspect-oriented

programming to security,” Cutter IT Journal, vol. 14, no. 2, pp. 31-39,

2001.

[25] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.

Griswold, "Getting started with aspect, "Communications of the ACM,

vol. 44, no. 10, pp. 59-65, 2001.

[26] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.

Griswold, “An overview of aspect,” ECOOP 2001- Object-Oriented

Programming, pp. 327-354, 2001.

[27] BCF. [Online]. Available:

http://www-bcf.usc.edu/~halfond/testbed.html

[28] Z. Su and G. Wassermann, “The essence of command injection attacks

in web Applications,” ACM SIGPLAN Notices, vol. 41, no. 1, pp.

372-382, 2006.

[29] R. Mui and P. Frankl, “Preventing SQL injection through automatic

query sanitization with ASSIST,” in Proc. Fourth International

Workshop on Testing, Analysis and Verification of Web Software, vol.

35, pp. 27-38, 2010.

[30] P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan, “CANDID:

dynamic candidate evaluations for automatic prevention of SQL

Injection Attacks,” ACM Transactions on Information and System

Security, vol. 13, no. 2, 2010.

[31] W. G. J Halfond, A. Orso, and P. Manolios, “WASP: protecting web

applications using positive tainting and syntax-aware

evaluation,"IEEE Transaction on Software Engineering, vol. 34, no.1,

pp. 65-81, 2008.

[32] A. Shakya and D. Aryal, "A Taxonomy of SQL injection defense

techniques," M. S. thesis, School of Computing, Blekinge Institute of

Technology, Karlskrona, Sweden, 2011.

[33] Y.W. Huang, S. K. Huang, T. P. Lin, and C. H. Tsai, “Web application

security assessment by fault injection and behavior monitoring,” in

Proc. the 12th International Conference on World Wide Web, ACM,

pp. 148-159, 2003.

[34] G. Wassermann and Z. Su, “An analysis framework for security in web

applications,” in Proc. the FSE Workshop on Specification and

Verification of Component Based Systems, pp. 70-78, 2004.

[35] V. B. Livshits and M. S. Lam, “Finding security errors in Java

programs with static analysis,” in Proc. the 14th Usenix Security

Symposium, vol. 14, pp. 18-18, 2005.

[36] Y. Kosuga, K. Kono, M. Hanaoka, M. Hishiyama, and Y. Takahama

“Sania: syntactic and semantic analysis for automated testing against

SQL injection,” in Proc.23rd Annual Computer Security Applications

Conference, IEEE, pp. 107-117, 2007.

[37] F. Valeur, D. Mutz, and G. Vigna, “A learning based approach to the

detection of SQL attacks,” in Proc. the Conference on Detection of

Intrusions and Malware and Vulnerability Assessment, pp. 123-140,

2005.

[38] K. Kemalis and T. Tzouramanis, “SQL-IDS: A specification-based

approach for SQL injection detection,” in Proc. the ACM Symposium

on Applied Computing, pp. 2153-2158, 2008.

[39] W. G. J. Halfond and A. Orso, “Combining static analysis and runtime

monitoring to counter SQL Injection Attacks,” ACM SIGSOFT

Software Engineering Notes, vol. 30, no. 4, pp. 1-7, 2005.

[40] G. T. Buehrer, B. W. Weide, and P. A. G. Sivilotti, “Using parse tree

validation to prevent SQL Injection Attacks,” in Proc. the 5th

International Workshop on Software Engineering and Middleware,

ACM, pp. 106-113, 2005.

[41] V. Haldar, D. Chandra and M. Franz, “Dynamic taint propagation for

Java,” in Proc. 21st Annual Computer Security Applications

Conference, IEEE, 2005.

[42] S. W. Boyd and A. D. Keromytis, “SQLrand: preventing SQL Injection

Attacks,” in Proc. the 2nd Applied Cryptography and Network Security

Conference, Springer Berlin, Heidelberg, pp. 292-302, 2004.

Ramya Dharam is a Ph.D. candidate in the

Department of Computer Science at the University of

Memphis. She received Ms in computer engineering

from Santa Clara University, USA in 2009, B. E. in

computer science and engineering from

Vishveshwariah Technological University, Bangalore,

India in 2007. Her research interests include software

engineering, software/security testing, cyber security,

and cloud computing.

 He has served on the Computer Science Faculty at

the University of Alabama in Huntsville and Alabama

A&M University. He has also served as the manager of

Software Quality Assurance at Teledyne Brown Engineering; Senior

Software Engineer and Executive Manager (Technical) at Intergraph

Corporation; and Technical Advisor, Computer Technologies Division, U.S.

Army Space and Strategic Defense Command. Dr. Shiva has consulted with

industry and government organizations in the areas of software engineering,

computer architecture, artificial intelligence, and expert systems. He has

authored a series of four books on Computer Design and Architecture.

 Dr. Shiva is a fellow of IEEE and a life member of ACM. He has received

research funding from NSF, NASA, U.S. Department of Defense, and ONR.

His current interests are game theoretic cyber security and secure software

engineering.

[23] R. Miles, AspectJ Cookbook, O‟ Reilly, December 27, 2004.

Sajjan G. Shiva is a professor and the chair of

Department of Computer Science at the University of

Memphis. He received Ph.D. and M.E.E. degrees in

electrical engineering from Auburn University, USA

in 1975 and 1971, and B.E. electrical engineering,

from Bangalore University, India in 1969.

