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Abstract—The flexural behavior of reinforced concrete 

beams is a well-known problem. In the classical studies about 

this subject, shear strength is neglected or taken into account by 

simple formula from the linear theory of elasticity, neglecting 

flexure and shear interaction. For this reason, these classical 

methods allow to predict only the flexural fracture modes, not 

the shearing fracture modes. 

We present in this paper an analytical model able to analyze 

reinforced concrete structures loaded in combined bending, 

axial load and shear in the frame of non linear elasticity. In this 

model, the expression adopted for the section’s stiffness matrix 

does not take into account a constant shearing modulus G=f(E) 

as in linear elasticity, but a variable shearing modulus which is 

a function of the shear variation using simply formula.   

In this part, we present a calculus model of reinforced concrete 

beams on the three dimensions (3D). This model of computation 

is then expanded to spatial structures in the second part. A 

computing method is then developed and applied to the calculus 

of some reinforced concrete beams. The comparison of the 

results predicted by the model with several experimental results 

show that, on the one hand, the model predictions give a good 

agreement with the experimental behavior in any field of the 

behavior (after cracking, post cracking, post steel yielding and 

fracture of the beam). 

 

Index Terms—Beams, concrete, modeling, non linear 

elasticity, shear modulus. 

 

I. INTRODUCTION 

The flexural behavior of reinforced concrete beams is a 

well-known problem: we may refer for instance to references 

[1]-[6]. In these classical studies about this subject, shear 

strength is neglected or taken into account by simple formula 

of the theory of linear elasticity.  

We present an analytical model able to analyze reinforced 

concrete beams loaded in combined bending, axial load and 

shear, in the frame of non linear elasticity. In this model, the 

expression adopted for the stiffness matrix [Ks] of the section 

takes into account a variable shearing modulus, which is a 

function of the shear variation (and not a constant shearing 

modulus G = f (E) as in linear elasticity) using a simply 

formula.  

A computer program, based on methods given and detailed 

in [3], [4], [7], [8], is then developed and in which leads to the 

following main results: the history of displacements of 

structural nodal points, the nodal forces (including the 

reactions of the supports) and the internal effort in a local 

system of axes. 
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II. GENERAL HYPOTHESIS 

The structure is discretized into beams elements. Elements 

are decomposed into intermediate sections in order to 

evaluate the non linear behavior of concrete and 

reinforcement. The transverse section of the beam is 

decomposed into concrete layers and longitudinal 

reinforcement. The deformation of the section follows 

Bernoulli‟s principle. 

A step-by-step procedure is adopted to simulate the 

applied monotonic loading at each stage; iterative loops are 

completed until reaching force balance state during this 

iterative procedure for equilibrium of external loads. 

The following systems of axes are introduced to study the 

equilibrium of an element: a fixed global system attached to 

the structure; a local system concerning the initial position of 

the element; an intrinsic system linked to the deformed 

position of the element and an intermediate system related to 

the translation of the local system to the origin of the intrinsic 

system.  

The evaluation of the displacement field of the elements is 

made by numerical integration of deformations section by 

section. The deformations of a section are calculated by use 

of the intrinsic system. It is assumed that deformation and 

displacements are small. The geometrical non linearity 

concerning the deformation of the element is neglected as 

well as the nodal deformation at the junction of several 

elements. The second order effects due to node displacements 

are introduced by a non linear transformation of 

displacements at element ends from the intrinsic system to 

the intermediate system.  

 

III. CONSTITUTIVE MODEL OF MATERIALS 

A. Compression Behavior of the Concrete 

Many mathematical models of concrete are currently used 

in the analysis of reinforced concrete structures. Among 

those models, the monotonic curve introduced by Sargin [9] 

was adopted in this study for its simplicity and computational 

efficiency. In this model, the stress strain relationship is:   
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where bc is compressive stress, bc is compressive 

strain, cjf  is concrete compressive strength, 0 is concrete 

strain corresponding to cjf , '
bk is parameter allow to 

adjusting the shape of the descending branch of the curve. For 
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a normal concrete, it generally takes by 1'  bb kk , bk  is 

parameter adjusting the thick ascending limb of the law and is 

given by the following equation: 

cj

c
b

f

 E
 = k 0  

where cE  is the longitudinal strain modulus of concrete. 

B. Idealization of the Tensile Behavior of Concrete 

The parameter On the other hand, we assume that concrete 

is linearly elastic in the tension region. Beyond the tensile 

strength, the tensile stress decrease with increasing the tensile 

strain. In this field, we have adopted the monotonic concrete 

stress-strain curve introduced by Grelat for describe this 

decreasing branch (see Fig. 1) [1]. Ultimate failure is 

assumed to take place by cracking when the tensile strains 

exceed the yielding strain of the reinforcement. In this model 

monotonic concrete tensile behavior is described by (2).  
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where ct  is the tensile stress of concrete, c  is the tensile 

strain of concrete, tjf  is the tensile strength of concrete, ct  

is the tensile strain corresponding to tjf , rt is the ultimate 

strain of the steel. 

C. Reinforcement Constitutive Law 

Reinforcing steel is modeled as a linear elastic and plastic 

paler; the constitutive curves are shown on Fig. 2. Extreme 

deformations are laid down by regulation Eurocodes is 10
o
/oo 

[10]. 
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where s is the steel stress, s is the steel strain, aE  is steel 

young modulus, ef is yield stress of steel, e is the yield 

strain of steel, u is the ultimate strain of steel. 

 

IV. CONCRETE SHEAR MODULUS 

In the classical studies about this subject, shear strength is 

neglected or taken into account by simply formula of the 

theory of linear elasticity. Some advanced methods [2], [3], 

[6], [8], [11]-[17] calculate a variable concrete shear modulus 

by solving a complex system of equations; namely 

equilibrium equations, compatibility equations and 

constitutive laws of the materials One simple empirical 

equation for the calculation of the post-cracking shear 

modulus was proposed in [18]. In this study, we distinguish 

three phases of behaviour (see Fig. 3). Then we propose 

formulas to calculate the shear modulus of concrete defined 

by a parametrical study about some experimental results 

presented by Vecchio and Collins [16]. Shear modulus is 

calculated by the linear elasticity before concrete cracking 

and it is functions of reinforcement and concrete after 

concrete cracking and after plasticization of steel. 
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Fig. 1. Model for calculating the tensile behavior of concrete 
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Fig. 2. Idealized stress-strain of the steel 

A. Experimental Observations 

Fig. 3 shows the curves of shear stress (τ) as a function of 

shear strain (γ) testing of the walls tested by Vecchio and 

Collins [16]. The curve comprises a linear phase elastic 

values γ ≤ γfiss (Phase 1): the transverse deformation modulus 

(G) is calculated by the linear theory of elasticity. In the 

second part (phase 2), for values of γ between γfiss and γplas, 

the transverse deformation modulus (G) depends on the 

characteristics of the concrete and the steel see (6). The phase 

3, for values of    γ ≥ γplas, corresponds to the plasticization of 

steels: the modulus G also depends on the characteristics of 

the materials see (7).  
 τ 

Phase 2  

Phase 1 

 

Phase 3  

 

   γfiss                      γplas                     γfr            γ 
 

Fig. 3. Shape of the experimental curves (stress-shear strain) 
 

where   is shear stress,   is shear strain, fiss is the shear 

strain corresponding to cracking concrete, plas is the shear 

strain corresponding to steel plasticization, fr is the shear 

strain corresponding to cracking of steel. 

B. Calculation of Transverse Deformation Modulus G 

(Proposed Equations) 

Phase 1: Before cracking of concrete, the theory of linear 

elasticity is valid, the transverse deformation modulus G is a 

function of longitudinal deformation modulus Ec of concrete, 

and it is given by (5). 

Phase 2: After concrete cracking and before plasticization 

of steel, the transverse deformation modulus G is based on 

the characteristics of concrete and steel; curve analysis (τ-γ) 

of experimental tests on walls, tested by Vecchio and Collins 
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[16] has allowed us to establish a relationship between the 

transverse deformation modulus G to the characteristics of 

material see (6) and Table I. 

 
TABLE I:  DETAIL OF EXPERIMENTAL AND TESTS AND VERIFICATION OF TRANSVERSE DEFORMATION MODULE G- 

PHASE 2: AFTER CONCRETE CRACKING AND PHASE 3: AFTER PLASTICIZATION STEELS.

specimen fcj (MPa) ρl fel ρtfet 

Phase 2: After concrete cracking 
Phase 3: After plasticization 

steels 

G1exp (MPa) G1calc (MPa) G1exp/G1calc 
G2exp 
MPa) 

G2calc 
(Mpa) 

G2exp/G2calc 

PV1 34,5 8,62 8,11 1020 1224,78 0,83 800 663,09 1,21 

PV3 26,6 3,20 3,20 344 232,15 1,48 350 125,68 2,78 

PV4 26,6 2,55 2,24 228 148,29 1,54 500 80,28 0,62 

PV5 28,3 4,61 4,61 279 453,15 0,62 450 245,33 1,83 

PV6 29,8 4,75 4,75 806 456,94 1,76 350 247,38 1,41 

PV7 31 8,09 8,09 909 1273,94 0,71 800 689,70 1,16 

PV10 14,5 4,93 2,76 682 565,84 1,21 300 306,34 0,98 

PV11 15,6 4,19 3,07 568 498,46 1,14 200 269,86 0,74 

PV12 16 8,37 1,20 455 379,15 1,20 200 205,27 0,98 

PV18 19,5 7,69 1,30 262 309,26 0,85 200 167,43 1,20 

PV19 19 8,17 2,13 511 554,05 0,92 200 299,96 0,67 

PV20 19,6 8,21 2,63 625 665,08 0,94 250 360,07 0,70 

PV21 19,5 8,17 3,91 909 991,10 0,92 300 536,57 0,60 

PV22 19,6 8,17 6,40 1140 1612,57 0,71 900 873,03 1,03 

PV25 19,2 8,32 8,32 1920 2176,63 0,88 800 1178,41 0,68 

PV26 21,3 8,14 4,67 909 1078,28 0,84 504 583,77 0,86 

PV27 20,5 7,89 7,89 1360 1834,02 0,74 600 992,92 0,60 

 

 
 (a)  Phase after cracking of the concrete 

 

 
 (b)  Phase after plasticization of the steels 

Fig. 4.  Evaluation of the module G from the experimental trials 

 

 
Fig. 5. Comparison of calculated values of G relative to experimental 

values of G for two phases (2 and 3) 

Phase 3: This phase corresponds to the plasticization steels, 

the transverse deformation modulus G is function as material 

characteristics see (7) and Table I. 

 

We note:        
cj

ellett

f

ff
w


                  (4) 

 

where t  is transverse reinforcement ratio, l is 

longitudinal reinforcement ratio, etf is yield stress of 

transverse reinforcement, elf  is yield stress of longitudinal 

reinforcement, cjf is the concrete compressive strength. 

In Fig. 4 we trace G, experimental values, depending on the 

parameter w. Of all the tests analyzed, we find that the lines 

wG 604 and wG 327 include all the experimental points. 

Therefore, we propose the relationship given in (5), (6) and (7) 

for the calculation of the transverse module G. 

 

)1(2 
 cE

  G                )0( fiss                         (5) 

604w  G                  )( plasfiss                (6) 

27w  G 3             )( frplas                 (7) 

 

where 00003.0fiss ; 0025.0plas ; 006.0fr ;  is the 

Poisson‟s ratio, it‟s taken equal 0.2  

The Fig. 5 shows the relationship Gexperimental / Gcalculus for 

phases 2 and 3 depending on the compressive strength of 

concrete. 

We give in Tables I the comparison of G values calculated 
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with (6) and (7) and the experimental values for all walls 

studied.  

where G1exp is the shear modulus observed experimentally in 

the post-cracking stage, G2exp is the shear modulus observed 

experimentally after plasticization of steels, G1calc is shear 

modulus calculated using (6), G2calc is shear modulus 

calculated using (7). 

 

(a) Local and Intrinsic coordinate system                          

(b)  Global coordinate system  

yG 

xG 

zG 

o 

 x     y J

0 

I  

z 

yo 

xo 

zo 

Jo Io 

 
Fig. 6. Geometry of the deformed element 

 

Fig. 7. General organization of the calculus method 

 

V. PROCEDURE FOR CALCULATING THE EQUILIBRIUM STATE 

OF THE ELEMENT 

The structure is discretized into finite elements. Elements 

are bars with two nodes and each node has six degrees of 

freedom: three translations and three rotations. 

 

The notations used in the remainder of this chapter are 

explained in appendix. 

 

The equilibrium Equation of the section in the intrinsic 

system is given by (8); the transversal strain modulus G is 

calculated using (5), (6) and (7). 

  K  F ss 


                    (8) 

 

Equation (8) is solved by an iterative method. Its solution 

may be written as: 

 

s
-
s FK      


 1                                  (9) 

 

B. Calculating the Element Stiffness Matrix in the Intrinsic 

System 

Loads acting over the section are functions of the applied 

forces at element nodes. Their expression is given by:
 

 

ns F  L(x)=F


                                 (10) 

If the length variation of the element is neglected, the 
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A. Equilibrium of the Section

We consider the global coordinate system xGyGzG and 

xoyozo is the local coordinate system related to the initial

position of element. Under the effect of loading, Io node

(respectively Jo) of the element is moved I (respectively J).

The notion of intrinsic coordinate system, noted xyz axis

which connects the first node I to node J is introduced (see 

Fig. 6).



  

expression of the deformation vector nS


  of the element, in 

the intrinsic system, is given using the virtual work theorem 

which stipulates that the virtual work of the section‟s 

deformations increase is equal to the virtual work of the 

section‟s loads increase. The expression is shown as: 

 

dx )x(δ )x(L   S
L

T
n


 0

                            (11) 

                            

Thus, we may write the equilibrium equation of the 

element in the intrinsic system as follows:  

 

nnn S K  F


                                      (12) 

 

The stiffness matrix Kn of the element, in the intrinsic 

system, is evaluated as follows by combining the 

relationships (9), (10), (11) and (12): 
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L
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T-
n dx L(x) K x)(L  K

0

11                       (13) 

 

C. Resolve Global Equilibrium of the Beams Element 

The second order effects are introduced by transforming 

the equation from intrinsic system to intermediate system. In 

fact, the relationship between the expressions of the 

displacement in intrinsic and intermediate systems, using a 

geometrical transformation matrix  B , is given by (14). 

   

un S B  S


                                (14) 

 

The equilibrium equation in the intermediate system is 

given as follows: 

 

un
T

u S )D B K B (   F


                     (15) 

 

The geometric transformation matrix D is calculated by 

neglecting the displacement contribution and the non-linear 

term.  

In the local system, using transformation matrix T0, the 

element equilibrium may be written as:  

 

L0n
T

0L S T )D  B K B(T   F


            (16) 

                                                                   

The element stiffness matrix LK in the local system may 

finally be written as: 

 

 D)T  B K (B T  K 0n
T

0L                    (17) 

 

Using the rotation matrix G  T , the equilibrium equation for 

the global system may be written as: 

 

GGGG L
T
GG SK   ST K T    F


           (18) 

D. Organizational Computing  

 The procedure described above to determine the 

equilibrium state of the element is shown in Fig. 7.  

 

VI. COMPARISON WITH EXPERIMENTAL RESULTS  

A. Tests of Stuttgart (Beams ET) 

To validate our approach, we compare the load – 

deflection curves obtained with the present model and the 

experimental curves deduced from the shear tests tested by 

Stuttgart in [19]. These beams have different cross-sections 

(see Fig. 8) and Table II summarizes the main mechanical 

characteristics of the materials used. 
 

TABLE II: MATERIAL PROPERTIES OF STUTTGART TESTS 

Concrete 

(MPa) 

Longitudinal 
reinforcement 

(MPa) 

transversal 
reinforcement 

(MPa) 

Ec = 23800 Ea = 210000 Ea = 200000 

fcj = 28.5 fel = 420 fet = 320 

 

 

50 110 450 

4 Ø 20 

2 Ø 10 

200 1050 900 1050 200 

F F 

3
5

0
 

 
(a)  Schematic of loading and detail of reinforcement in beams 
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3
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    b 

4 Ø 20 

2 Ø 10 
Stirrup 

 Ø 6/110 

 3
5
0
 

300 

           

Stirrup 

 Ø 6/110 

3
0
0
   4 Ø 20 

2 Ø 10 

 
             (b) Beam ET1                   (c)  Beam ET2  (b=100 mm) 
                                                     (d)  Beam ET3  (b=150 mm) 

Fig. 8. Stuttgart shears test setup, specimen geometry (mm) in [19] 

. 

 
(a)  Beam ET1 

 

 
(b)  Beam ET2 
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 (c) Beam ET3 

 

Fig. 9.  Numerical and experimental load-deflection curves 

 for the Stuttgart beams 

 

The superposition of the calculated curves to the 

experimental curves for the three beams ET1, ET2 and ET3, 

is given in Fig. 9. The comparison is made on the one hand 

with respect to the experimental results and also relative to 

the calculation in the case where G is considered the field of 

linear elasticity. 

It appears that in the case of highly stressed beams in shear, 

it is essential to take into account the shear deformations in 

nonlinear to better approximate the experimental curves. 

B. Tests of CEBTP (Beams OG) 

These are two identical beams with respect to the 

dimensions and reinforcement (see Fig. 10). The beam 

"OG3" made with normal concrete and the beam "OG4" 

made with high strength concrete were tested by Fouré [20]. 

The main characteristics of the materials are summered in 

Table III. 

 
TABLE III: PRINCIPAL CHARACTERISTICS OF THE MATERIALS 

Beams    OG3    OG4 

 
 

Concrete  

fcj = 52.5 MPa 
Ec = 39900 MPa 

ε0 = 1.7  

ftj = 3.35 MPa 

fc j= 71 MPa 

Ec = 46900 MPa 

ε0 = 1.9  
ftj = 4.05 MPa 

Longitudinal 

And  Transversal 

Reinforcement  

Ea = 205000 MPa 

fel =  575 MPa 

fet = 575 MPa 

Ea = 210000 MPa 

fel = 590 MPa 

fet = 590 MPa 

 

 

150 mm                    9sp. =150 mm                   16    16     9 sp. =150 mm 

 

P P 
Ø 6 9 Stirrups Ø 6           2 Ø 6      3 Stirrups 

         Ø 4 

2 Ø 1 6 

 
L = 3.30 m 

A 

A 

 
(a) Schematic of test of beams OG 

 

 151 mm 

2
5
 m

m
 

2
5
 m

m
 

 2 Ø 6 

  2 Ø 16 

 

2
4
5

 m
m

 

151 mm 

2
5
 m

m
 

2
5
 m

m
 

 2 Ø 6 

  2 Ø 16 

 

2
4

4
 m

m
 

 
  (b) Cross section A-A (OG3)      (c) Cross section A-A (OG4) 

Fig. 10. Geometry and reinforcement of OG beams; tests of CEBTP [20]. 

 

The superposition of the calculated curves to the 

experimental curves for the two beams OG 3 and OG 4 is 

given in Fig. 11.  
 

 

 (a)  Beam OG3 with the normal concrete 
 

 
 (b)  Beam OG4 with the concrete of high strength  
Fig. 11.  Load-deflection curves for the OG beams 

 

 

The comparison is made on the one hand with respect to 

the experimental results and also relative to the calculation in 

the case where G is considered in the field of linear elasticity.             

Curves calculated by taking the current modeling approach 

better curves obtained experimentally. 

C. Tests of CEBTP (beams HZ)  

The computing method is used for calculation of HZ4 beam 

tested by Trinh at CEBTP [15]. The dimensions and 

reinforcement details of the beam are shown on Fig. 12 and 

the characteristics of the materials are given in Table IV. 

 

 

A                                  B 

 

P                                  P 

 
2.5 m                  2.5 m                 2.5 m               2.5 m 

 
 

(a) Schematic of loading of the beam HZ4 
 

 
                                  (b) Section A                     (c) Section B 
 

Fig. 12. Dimensions and details of reinforcement for beam HZ4 tested by 

Trinh [15]. 
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  TABLE IV: STEEL AND CONCRETE CHARACTERISTICS  

                     Concrete         reinforcement 

 beam 
fc j 

(MPa

) 

ftj 

(MPa

) 

Ec 

(MPa) 
steel 

fel 
(MPa

) 

fet 

(MPa) 

Ea 

(MPa) 

 

HZ4 

 

32 

 

3.3 

 

32000 

HA20 424 424 19500
0 

HA25 450 450 23000

0 
     

The Fig. 13 shows the evolution of the beam deflection at 

the loading point as function of the applied load for the HZ4 

beam, in the experience, in proposed method and in a non 

linear calculus with shear stiffness preserve the linear elastic 

value.  

 
Fig. 13. Load-deflection curves for the beam HZ4 

 

The Fig. 13 clearly shows the importance of taking into 

account the variation of the shear modulus in the behavior of 

the beam that the failure occurred by shear. 

D. Hyperstatic Continuous Beam (Test of Pera) 

The computing method is used for calculation of the beam 

tested by Pera in [21]. The reinforcement details of the beams 

are shown on Fig. 14, and the characteristics of the materials 

are given in Table V. 

 P 

2.5 m                   2.5 m                             5 m 
 

(a) Diagram of loading of the beam 

 

 

2T8 
   2T8                                                       2T32 

 

2T32 

A 

A 
 

(b) Longitudinal section and details of reinforcement 

 

 

 Stirrup Ø 8             

(s =7cm) 

 
20 cm 

5
0
 cm

 

2T8 

2T32 

 
(c) Section A-A 

Fig. 14. Geometrical characteristics and Details of Beam in [21]. 
 

TABLE V: MATERIAL PROPERTIES OF PERA TEST 

Concrete 
Longitudinal and  

transversal reinforcement  

fc j 

(MPa) 
ftj  

(MPa) 
Ec 

(MPa) 
fel  
(MPa) 

fet   
(MPa) 

Ea  
(MPa) 

41 3.1 25000 368 368 200000 

 

The Fig. 15 shows the evolution of the beam deflection at 

the loading point as function of the applied load for beam, in 

the experience, in proposed method and in a non linear 

calculus with shear stiffness preserve the linear elastic value. 

 

 
Fig. 15. Load-deflection curves for Pera‟s beam 

 

The curve calculated with the present study approach very 

satisfactorily the experimental curve from the point of view 

of the effort and from the point of view distortion. 

E. Cranstan Frame 

The computing method is used for calculation of the frame 

tested by Cranstan in [4]. The reinforcement details of the 

frame are shown on Fig. 16, and the characteristics of the 

materials are given in Table IV. 

 

A 

264 cm 

1
9
3
 c

m
 

P/2                  P/2 

 
H 

 

(a) Dimensions of frame and detail of loading   

 

 

6Ø 9.5  

Stirrup Ø 8              

(s =7cm) 

 

  10.16 cm 

1
5
.2

4
 cm

 

 2Ø 9.5 

 
(b) Cross section at mid span 

Fig. 16. Geometrical characteristics and details of the reinforcement of 

the frame tested by Cranstan in [4]. 

 

TABLE IV: CHARACTERISTICS OF THE MATERIALS 

Concrete 
Longitudinal and  

transversal reinforcement 

fc j = 34 MPa 

ftj = 2.59 MPa 
Kb = 1.15 

K’b = 2.15 

ε0 = 0.0002 
Ec = 34 000 MPa 

fel = 278 MPa 
fel = 278 MPa  

Ea = 200000 MPa 

 

 

The Fig. 17 shows the evolution of the frame deflection at 

the mid span as function of the applied load for beams, in the 

experience, in proposed method and in a non linear calculus 
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with shear stiffness preserve the linear elastic value.   

 

 
Fig. 17.  Load-deflection curves for the Cranstan frame 

 

We can see at the experimental and numerical 

load-deflection response for this structure exhibit a good 

agreement for the various stages of the behaviour 

comparatively to the calculus with shear modulus is constant 

given by the linear elasticity.  

 

VII. CONCLUSION 

We presented a model based on the strip-analysis of the 

sections using a simply formula for the shear modulus tanked 

into a count not constant of the linear elasticity but variable 

with the variation of the shear strain. This model is able to 

predict the behaviour of beams with sections having unusual 

shapes or reinforcing details, loaded in combined bending, 

axial load and shear. 

Indeed, the predicting results of the model compared with 

the test results show that, on the one hand, the model 

predictions are in good agreement with the experimental 

behaviour in any field of the behaviour (after cracking, post 

cracking, post steel yielding and fracture of beam), and, on 

the other hand, the model permits to predict shearing fracture 

modes for reinforced concrete beams (see the beam HZ4, Fig. 

13) and flexion fracture mode (see Fig. 15 and 17). 

In perspective, it is to introduce this procedure in the case 

of other types of structures, such as; beams with external 

prestressing, concrete beams reinforced with metal fibers, 

tubular sections and beams - reinforced concrete walls 

APPENDIX 

The notations used in chapter V, which shows the 

procedure for calculating the equilibrium of the element, are 

described below. 

 sK is the section stiffness matrix in the intrinsic system. 

sF


 is vector of exterior loads increase of the cross section 

it„s expression is given by: 

 

 Tzyzys xMc  ,(x)V (x),V ,(x)M  ,(x)M  ,xN = F )()( 


 

 

Where N is the axial load increase, yM is the bending 

moment increase about y axis, zM  is the bending moment 

increase about z axis, yV is the shear increase in the y axis, 

zV is the shear increase in the z axis, Mc is the torsion 

moment increase. 

 


 is increase deformation vector of the section, given by 

the following equation:  
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where x is the abscissa of the cross section relative to intrinsic 

system coordinates.   is the length of the element after 

deformation. 

 

nF


  is nodal loads increase in the intrinsic system 

coordinates.  

uF


 is nodal loads increase in the intermediate system 

coordinates. 

LF


 is nodal loads increase in the local system 

coordinates. 

GF


  is nodal loads increase in the global system 

coordinates. 

nS


 is nodal displacements increase in the intrinsic system 

coordinates. 

uS


  is nodal displacements increase in the intermediate 

system coordinates.  

LS


 is nodal displacements increase in the local system 

coordinates. 

GS


 is nodal displacements increase in the global system 

coordinates. 

GK is the stiffness matrix of the element in the global 

system. 
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