
 
 

  
Abstract—Several planning techniques in artificial 

intelligence have been used to perform web service composition 
(semantic or not), but this process typically uses heuristics 
based planners combined with search techniques usually too 
expensive in time solution. In this article, we propose the use of 
case-based reasoning to reduce the computation times of 
composition; the model aims to infer from past experience a 
solution that would guide the selection process during a Web 
services composition. The proposed methodology also uses a 
classification defined by an algorithm of semantic similarity 
technique, in order to compare the new problem, with all 
previous problems. The previous problem with greatest 
similarity is accompanied by its corresponding solution and is 
used to specify which goals already achieved and what remain 
to achieve for the new problem. The result demonstrates greater 
efficiency, reducing the search space spending less time.   
 

Index Terms—Composition of semantic web services, 
planning in artificial intelligence and case-based learning, 
INDYGO. 
 

I. INTRODUCTION 
From the perspective of service composition, there are few 

approaches which integrate learning models to improve 
various aspects of the task of Web service. A particular model 
which proposes the use of planning in Web service 
composition is the concurrent planning and execution model 
(INDYGO) [1], [2], which Universidad Nacional at Medellin 
Campus designed and implemented, and aims to produce 
semantic web service compositions in real time while 
handling incomplete data. This model, like most service 
composers, carries out solutions without taking into account 
experiences of previous solutions. Due to this, it was deemed 
valuable to propose within the INDYGO model the 
implementation of case-based learning techniques to enable 
the improvement of its efficiency in matters concerning the 
composition process itself that the planner is in charge of. It is 
important to highlight that even though the model adjusts to a 
previous development, this proposal may also be easily 
adapted and implemented in other approaches which under 
AI planning techniques enable semantic Web service 
composition since it is in charge of formulating its solution 
relying on commonly known elements implemented within 
this dominion.   

To amplify the proposal, this document is organized as 
follows: section two revises the reference framework related 

 
Manuscript received June 16, 2013; revised August 7, 2013.  
Ingrid-Durley Torres is with the Institución Salazar y Herrera from 

Medellin, Colombia (e-mail: i.torresp@iush.edu.co).  
Jaime Guzmán-Luna is with the Director of  SINTELWEB  Research 

Group, Universidad Nacional de Colombia, Medellin Campus (e-mail: 
jaguzman@unal.edu.co). 

to the problem of service composition using AI planning 
techniques, specifically, centered on INDYGO. Section three, 
discusses and analyzes case-based learning concepts and 
proposes a representation of the solution starting from them; 
section four details the integration architecture of the CBR 
and INDYGO model and its functionality. Section five 
summarizes some results of the validation of the model, and 
section six presents conclusions and future work related to 
this proposal.    

 

II. A COMPOSITION OF SEMANTIC WEB SERVICES  

A. Semantic Web Services  
A Semantic Web Service (SWS) is a Web service whose 

internal and external description is in a language that has 
interpretable semantics well-defined by machines [3].  

With SWS, the aim is to: 1) Define exhaustive description 
models to describe Web services and its related aspects; 2) 
Support ontologies as the basic data model which enables 
machines to interpret data on the Web; 3) Define 
semantics-based technologies to automatize processes that 
use Web services. Currently, there are a series of languages 
which allow the specification of Semantic Web Services, 
highlighting: OWL-S [4].  

OWL-S (Ontology Web Language for Services), defines an 
ontology and a language for SWS named OWL-S. 
Particularly, an ontology of an OWL ontology language and 
mechanisms related to it, allow the description of Semantic 
Web Services in terms of concepts and complex relations 
among them, including classes, subclass relations, and 
cardinality constraints, among others. In a more detailed form 
OWL-S, includes: 1) ServiceProfile: it focuses on what SWS 
does, since it describes necessary properties for SWS, for its 
automatic discovery, as its capabilities, its input and output, 
and preconditions and effects (possibly conditional). 2) 
ServiceModel: it focuses on how SWS works, since it 
describes an SWS process model, which is the control and 
flow of data involved in the use of SWS. It is designed to 
allow automatic composition and the execution of SWS. 3) El 
ServiceGrounding: it focuses on accessing SWS in terms of 
communication protocol and in the processes of serialization.  
This allows connecting a description model of 
communication protocol levels and the description of 
messages in WSDL [5]. 

B. INDYGO-SWS Composition  
INDYGO proposes the application of techniques for web 

semantics and the planning of artificial intelligence in a web 
service composition model which faces ambiguity problems 
in the description of services and the handling of incomplete 

Ingrid-Durley Torres and Jaime Guzmán-Luna 

Applying Case-Based Learning to Improve the Efficiency 
in the Web Service Compositions 

IACSIT International Journal of Engineering and Technology, Vol. 6, No. 3, June 2014

227DOI: 10.7763/IJET.2014.V6.702



 
 

information in the context of the Web. To deal with the 
aforesaid problems, the model allows the use of OWL-S 
services and implements a planning technique which handles 
the semantics of an open world in its reasoning process.  As a 
result of this work, we obtained a web service composition 
system which includes: i) a module which interprets OWL-S 
services and converts them into a PDDL planning problem; ii) 
a planning module which handles the problem of incomplete 
knowledge and iii) a service execution module which 
interacts concurrently with the planner to execute each one of 
the services on the composition plan.   

The planning algorithm, itself, is based on the idea of 
decomposing the original PP planning problem in n 
independent sub-problems. In which PP = <F, L, A, So, G, 
m>, where F is a set of numerical variables; L is a set letters 
or facts; A is a set of possible actions, So is the initial state of 
the problem, G is the set of objectives of the problem and m is 
the optimization criterion (metrics of the problem). So that it 
is subdivided in PPi =< F, L, A, So, Gi, m>, i=1….n, where n 
corresponds to the number of objectives of the problem 
(n=|G|). Hence, a Pi plan, is different for each one of the sub 
problems. Finally, existing conflicts among said plans are 
studied to decide which action from which plan shall be the 
first to be executed (a0).  The planner sends a0 to the executor 
when it requests it while the planner assumes the success of 
this operation and continues selecting the next action to 
execute (anext); to expedite the process when the execution of 
a0 finishes, the planner updates its internal representation of 
the world and gets ready to send (anext) to executor just as 
long as the expected effect coincides with the real effect. 
Since state varies continuously during the execution of a plan, 
a term S (current state of the world) is introduced to refer to 
the model the planner has of the world at this moment. At the 
beginning of the planning process, the current state coincides 
with the initial problem (So = S).  The new current state S is 
calculated as: result (anext, So, 0);  modification of the current 
state S takes place considering that the execution of anext shall 
have the expected effects, that is, assuming there are no 
external factors (δ = 0). This model of operation is called 
assumption-based planning [6]: actions are deemed 
determinists (δ = 0); to simplify the real problem, and an 
alternative action is recalculated when the real effect of the 
actions does not coincide with the expected effect (δ ≠ 0). In 
case one of the actions fails during its execution, the executor 
informs the planner this failed event so that the planner may 
perform a new calculation for an alternative action while the 
executor waits, and after a respective time, it may ask the 
planner for the corresponding action.   

All this process repeats continuously until the user decides 
to stop the execution of the planning agent or until all 
objectives are fulfilled and the planner returns a special NOP 
(no operation)-type action, which corresponds to an action 
without preconditions or objectives. In this case, it is 
considered a successful composition plan. 

 

III.  CASE-BASED LEARNING   

A. Definition of Case-Based Learning  
Case-based reasoning - CBR, is not more than just another 

problem-solution paradigm related to learning machines in 

AI [7], but it is precisely its differences with other AI 
approaches which make it so special. Instead of solely relying 
on general knowledge of the problem dominion, or carrying 
out actions  throughout the relations among problem 
descriptions and conclusions, this paradigm is capable of 
using specific knowledge of previous experiences, in other 
words,  situations of a concrete problem (cases). 

Before the proposal of a problem not dealt with previously, 
there is an attempt to locate a previous similar case and adapt 
its solution to the situation of the new problem.   

B. CBR Life Cycle  
The classic case-based reasoning model [7], [8], divides a 

reasoning cycle into four stages: 1) Retrieving (Retrieve): 
aimed at finding and obtaining a previously saved case; the 
objective of this phase is to recover cases whose experience 
are potentially useful to resolve a new problem. This stage 
generally requires a combination of search and match 
techniques [9]; similarity measures are usually useful tools to 
find a case close to the search conducted. 2) Reusing (Reuse): 
this is the phase in charge of generating a new solution to the 
problem consulted starting from cases recovered in the 
previous stage [10]. 3) Revising (Revise): once the system 
has a solution adapted to a user’s search, it is essential to 
assess how useful it is to solve the problem at hand; thus, 
revision work is based on an analysis of this solution within 
its own application framework in the real world. 4) Retaining 
(Retain): this phase is presented as the final phase of the CBR 
cycle in which the product obtained in the previous stages 
(solution of the problem) is included in the knowledge of the 
system. Even though there are various approaches related to 
this task, a widely accepted simplistic one is aimed at the 
storing of a new case which has been assigned to search the 
user’s problem and the solution adapted by the system.   

C. Methodology of Classification 
As it was previously cited, a case must contain information 

both of the problem and of a respective solution. Thus, in 
general, we have a case which may be considered a record of 
a previous experience of a problem. Information stored 
regarding an experience depends both on dominion and the 
purpose for which the case is used. A description of a 
problem must include: 1) Goals that must be reached to 
resolve a problem. 2) Restrictions for these goals. 3) 
Characteristics of the situation of the problem and relations of 
parties. Other important information which must be stored 
includes the description of the solution which shall be used 
when we find ourselves in a similar situation.   

The knowledge we need to resolve a specific problem is 
found grouped in a few cases or even in just one of them.   

In tune with these considerations, and without detouring 
from the dominion of service composition, then you can say 
that a case may be defined as tuple:   

                          ci ={dsc,ctx,prob,sol,hist} 

In which: 
dsc: is a textual case description. ctx: represents a set of 

context-related characteristics of a case as role, case creator, 
etc. prob: is the definition of the composition problem 
defined by a composer’s mechanism. sol: denotes a solution 
to composition problems and hist: historical case record. 

IACSIT International Journal of Engineering and Technology, Vol. 6, No. 3, June 2014

228



 
 

Based on this formal definition and on the context of the 
knowledge schema presented in this topic, it is clear that the 
structure of a case for the proposed model must be a 
construction able to store information related to the dominion 
and the planning problem and the composition carried out for 
that problem in addition to context elements and a historical 
record of the context. In this sense, an OWL-S platform offers 
a suitable interphase for the representation of this knowledge. 
Hence: (i) solution of the case: it could be represented by a 
Process Model which describes a service that includes a 
previously–achieved composition solution, and a Service 
Profile, which allows the representation of both 
preconditions, inputs, outputs and effects related to a 
composed service. (ii) The problem: shall be represented by 
all OWL specifications, which associate the context of 
corresponding ontologies to participating services. Besides 
the user’s requirement specification is expressed with a 
specification of a Process Model which must be fulfilled. 
Thus, the base of CBR knowledge shall be presented by a set 
of all previous successful correct solution compositions of 
Process Models. Such Process shall at the same time store a 
user’s requirement, which shall be expressed as an objective 
state to reach a solution and the initial state which was 
defined to initiate the process.   

Additionally, there is a type of reasoning implemented 
which is based on the transformational CBR cycle which is 
based on retrieving a case from a case database which most 
resembles the current problem.  A search a user introduces is 
understood as a user’s requirement; in other words, a Process 
Model which must be built with the objective you wish to 
fulfill, and lastly, cases which are also represented by the 
Process Models of previous solutions, which were valued by 
a similarity function. In this case, one to one of the Process 
Models of the cases of the case data base are compared with a 
user’s until reaching a Process Model case which has the 
most elements in common with the requirement a user 
actually formulated. That retrieved case shall be adapted (if 
required), afterwards so that it may include all the elements 
expressed in a user’s requirement (if all are not at least the 
possible maximums since there would be occasions in which 
it would not be possible for all of them to appear).  

Since for each case, it is enough to store an index of 
previous solutions and their relation with a web address 
where the solution composition plan is found (composed  
service), at this point it is viable  to think that the BDs are 
adequate technology for the task of retrieving known 
solutions of problems; even though it has limitations 
regarding the characterization of the dominion, the 
advantages are sufficiently in accordance with the 
representation of the composition problem you wish to 
conduct as a case. Furthermore, considering that the 
characteristics which shall be represented are not at all 
numerous (an Id and a web service URL). 

Regarding a knowledge representation technique, a 
sequential flat memory search technique has been chosen, 
even though the recovery of cases is made slow and does not 
always act as the most expensive in reference to other 
representation techniques; moreover, new solution storage  
comes out cheaper since it only depends on its addition via 
the identification of an index.    

A case retrieval process has decided to incorporate, two 

techniques tending to filter most exactly the degree of 
similarity of a new problem with previously stored case 
solutions. The first of these techniques is semantics, which 
using specifications immersed in the description of (OWL-s) 
services enables expediting the recovery process itself 
preselecting just those cases which coincide with the exact 
semantic specification of the problem. In addition to a 
semantic technique, we have decided to include another 
simpler technique, which via a mathematical similarity 
function, makes it possible to evaluate from a previous 
selection the degree of similarity of that case, in which the 
sum of all the weights of the characteristics adjust at a higher 
value with the new case. Hence, the possible number of 
instantiated cases which coincide with the new problem are 
extensively reduced rendering a result equal to a highest 
degree of coincidence.   

Finally, a case adaptation process is found; in this aspect, 
given the multiplicity of these elements in a composition 
process, represented by the type of data and the value of the 
same parameter both for input and output elements of their 
own services, it has been decided to implement a parameter 
adjustment technique which may initially identify that the 
parameters of the new problem coincide with the retrieved 
case. Once the different elements have been identified, you 
must resort to a transformational technique which enriches 
the previous solution with the new elements now generated. 
Thus, you avoid the recalculation of complete plans, when 
there are partially instantiated solutions. 

 

IV. PROPOSED ARCHITECTURE  
Then, a developed CBR follows a classic processing cycle 

(Retrieving, Reusing, and Validating Learning) as the one 
shown in Fig. 1. Hence, once a search has been formulated, 
expressed in the specification of a respective dominion (web 
services, enunciated in OWL-s), it is processed as follows:   

A. Case Retrieve Module   

It consists in selecting from the knowledge database those 
cases whose description most adjusts to the information 
presented in the new case. To do so, a semantic similarity 
measure has been chosen as a retrieval algorithm. The way 
that retrieval measure works is cited as follows.  
 

 
Fig. 1.  CBR model architecture  

IACSIT International Journal of Engineering and Technology, Vol. 6, No. 3, June 2014

229



 
 

 1) Semantic Technique Algorithm: a semantic algorithm 
is directly related to the ontological characterization of 
previously stored composition plans. The specification of the 
superior Web service ontology proposed herein has been 
retaken from INDYGO [4] and allows the  characterization of 
service functionality in terms of service input and output 
parameters along with their preconditions and effects. To do 
so, we have used the characterization of an instance of a 
service via a profile:Profile class, which describes a service 
in terms of its input (process:Input), outputs 
(process:Output), preconditions (expr:Condition) and results 
(process:Result). 

Inputs and outputs are defined in terms of parameter 
specification (that is a process:Parameter class). This type of 
parameter is also a subclass of a process:ProcessVar class 
which refers to a process variable which conducts the service. 
The latter class is composed of two fields: a parameter type 
(process:parameterType) and a parameter value 
(process:parameterValue), which are respectively any URI 
type (xsd:anyURI) and literal XML type (rdf:XMLLiteral). 

A precondition is represented in terms of a Condition class 
of an ontology Expression (expr:Condition). Since this 
Condition class agrees with an OWL-S specification, it is a 
subclass of Expression of the ontology Expression 
(expr:Expresion), which is composed by the following fields: 
an Expression language  (expr:LogicLanguage) which allows 
the specification of  the URI reference (xsd:anyURI) where 
you can find the specification of the logic language that shall 
be used  in the expression of a condition. The body of 
expression (expr:expresionBody) which enables the 
description the body itself of the expression associated to a 
condition.  

Results (process:Result) have effects represented in terms 
of an Expression class defined in an Expression ontology 
(expr:Expresion), which has previously been explained.   

On the whole, with the above conceptualization, it is 
possible to perceive that: a dominion may be expressed as an 
OD ontological specification. Likewise, the problem shall be 
expressed as a conjunction: of an ontological specification of 
an initial state (OEI) and an ontological specification of a 
target state (OGS).  With this representation, now, it is 
possible to represent the following algorithm.   

2) Similarity technique algorithm: First, a new 
composition problem named NPNC, is composed by a 
dominion specification (ODNPNC), an initial state (OEINPNC) 
and a target state (OGSNPNC).  Such a problem must be 
compared with a previously resolved problem and also stored 
under the name of NPPCi (where i corresponds to a solution 
storage index) also defined by a dominion specification 
(ODNPPC), an initial state (OEINPPC) and a target state 
(OGSNPPC). Thus, this way you compare: 

NPNC(OEINPNC ) <--> NPPCi(OEINPPC)                     (1) 
 

NPNC(OGSNPNC ) <--> NPPCi (OGSNPPC )           (2) 

To do so, you evaluate the semantic similarity measure 
defined as: 

SimSemOEI = ைாூಿುಿ಴∩ ைாூಿುು಴ைாூಿುಿ಴∪ ைாூಿುು಴  ^ SimSemOGS= ைீௌಿುಿ಴∩ ைீௌಿುು಴ைீௌಿುಿ಴∪ ைீௌಿುು಴ 
                                                                    (3) 

Then : 

               SimSemTotal = ௌ௜௠ௌ௘௠ೀಶ಺ାௌ௜௠ௌ௘௠ೀಸೄ ଶ                      (4) 

This process is carried out for each previously stored 
solution, in other words since:  

 NPPC(i=0….n)    simSemi
Total = ௌ௜௠ௌ௘௠೔ೀಶ಺ାௌ௜௠ௌ௘௠೔ೀಸೄ ଶ        (5) 

and for each one, you conduct a comparison process, 
generating a SimSemi

Total equation for each i comparison. 
Each value is orderly stored in a temporary file so that once 
all the previously stored problems are compared, you may 
measure semantic similarity having the greatest value to be 
retrieved and later adapted.   

B. Case Storage or Storage Module   
A case storage module works with two specific databases: 

1) the first is named Index Base, which is in charge of storing 
an index which acts as a sole identifier assigned by the system 
for each stored case and the web address aims at the Process 
Model which defines a previously resolved compound web 
service. The problem of indexation is an answer to a data 
accessibility problem, and it refers to a correct selection of 
the most important attributes as case structure and 
organization, and the retrieval indexes of the most important 
cases. An index of a case library is in its most elemental 
implementation a pointer towards a case. Then, accessibility 
shall depend on the combination of tasks and the current 
situation, and on the correct selection of attributes which 
distinguish one case from another marking something 
important of a case which distinguishes it from the rest. In 
this work that attribute shall correspond to the abstract 
ontology of a Process Model which represents a compound 
web service composition.  In other words, an index within an 
Index Case Base is generated for each abstract ontology 2) 
The second database, named Case Base, defines contents as 
such for each Process Model, in other words, instantiated 
ontologies belonging to each case. These shall be associated 
to an index of one of previously stored abstract ontologies. It 
is important to consider that there shall be no instance which 
is not associated to one of the Index indexes.  

Cases are stored sequentially in a simple list, a file, which 
shall be transferred to a persistent storage in a database. This 
technique is commonly known as sequential flat-memory 
search. Thus, every time you wish to store a case, it shall be 
added after the last index previously recorded. While to 
retrieve a case, it shall be necessary to work sequentially (that 
is, one to one and in a given order) each one of the cases 
previously stored.    

C. Case Monitor (Monitor of Cases)  
Before storing a case, the system must monitor that it 

effectively is associated to a successful execution. To do so, 
the model has included an event listener module, in charge of 
evaluating the correct execution of the composition plan, 
specifically known as a valid plan. A valid P plan (valid_plan 
(P, I, G, {δi})), is that which is successful when executed on 
an initial state I, reaching a G target state.  

 valid_plan(P,I,G,{δi})=V↔result(P,I,{δi})=S’∧goalstate(S’, G) 
=V                               

(6) 

IACSIT International Journal of Engineering and Technology, Vol. 6, No. 3, June 2014

230



 
 

Sequence {δi} equals {δ0, δ1, …., δn} and defines a 
succession of unforeseen situations that have taken place 
during the execution of the plan. This sequence makes that 
the execution of the same plan to resolve the same problem 
does not always render the same result. 

D. Case Adapter (or Case Adapter Module) 
A case adapter module initiates, once it is determined, a 

case which most resembles a current problem to adopt it to 
adjust to peculiarities. That is to say, the solution proposed 
via a retrieved case is sent to the planner module to replan the 
context of a composition. The functionality of this model acts 
under the following principles: 1) Previous problem 
descriptors are compared with a new problem’s descriptors, 
and differences are drawn from them. 2) Specialized 
adjustment heuristics are applied to a previous solution to 
create a new solution. Those aforesaid heuristics shall capture 
relations between problem characteristics and solution 
parameters. 

In this case, a composition process cycle repeats for 
different elements, in accordance with the structure of a 
retrieved case, passing through a Case Monitor Module.  

Once the success of the execution assessed in the Case 
Monitor has been compared, a previous solution is enriched 
and adjusted with new parameters, and finally, it is stored as a 
new case in the case database (Storage Case).   

Once you know how the composer system works, the 
following step is to design a model which may integrate the 
exposed CBR model with the INDYGO model previously 
detailed.  

V. INTEGRATION MODEL 
An integrated model was named JABY and as detailed in 

Fig. 2, this architecture is divided into three large modules; 
one is represented by a CBR model, another corresponds to 
web service composition architecture, adapted from 

INDYGO, and lastly, an integrator wrapper module in charge 
of carrying out respective conversions in the specification 
language of each one of the first two modules. At the same 
time, each module is subdivided into a set of elements 
belonging to its functionality.  

The functional schema of the module functions as follows:  
once a user has deployed an application, the user must specify 
that user’s system composition requirement, expressed in 
three associated parameters: 1) a description of an  initial 
state represented by a URL of the initial ontology, described 
in OWL; 2) a description of a target state represented by a 
URL of a final ontology, also expressed in OWL; 3) The 
supply of a  *.txt-extension file, with a list of the URL of the 
OWL-S of services recorded in the repository and which 
potentially participate in a composition plan. After the 
parameters are received, they are transferred to a retrieval 
module, which is in charge of identifying and extracting 
objects found in the definition of an initial state with the 
purpose to conduct a search for relevant cases for a set of 
objects (instances). The above was done to reduce the 
number of cases to evaluate semantically; and thus, save and 
expedite calculations in latter stages of retrieval.  Once the 
lists of relevant cases have been obtained for each instance of 
an initial state of the definition of a user’s search, they are 
intersected in such a way that you obtain a list  in which each 
case belonging to it is relevant for all instances of the initial 
state a user defines.   

This case list is sent to a semantic evaluator, which 
calculates for each case the semantic similarity value 
between a user’s search and serviceProfile definitions of a 
stored case.   

Using the values of the semantic similarity value, the 
system selects the case with the largest semantic similarity 
value; if there happens to be more than one case with an equal 
semantic similarity value, the system shall select the first of a 
sequential order. 

 

 
Fig. 2.  CBR- INDYGO integration model 

A chosen case is sent to an adapter module along with input parameters initially provided by a user; then, the 

IACSIT International Journal of Engineering and Technology, Vol. 6, No. 3, June 2014

231



 
 

adapter component conducts an evaluation of the 
completeness of the case proposed related to its objectives. 
That is to say, a user’s objectives are not fulfilled by 
executing a selected case when a list of missing objectives 
resulting from this evaluation is empty; an adaptation process 
was avoided and the selected case is sent directly to a monitor 
module. On the other hand,  a new final ontology is 
constructed using the missing objectives with which along 
with a service list and a definition of an initial state, the 
architecture of semantic web service is invoked  to obtain a 
sequence of semantic web services, in such a way that they 
may allow the complementation of remaining objectives. At 
the same time, this sequence is delivered to the system as an 
OWL process Model which is integrated to a partial solution 
retrieved from a selected case.   

 Finally, the solution plan which integrates a partially 
retrieved solution and an adaptation carried out along with a 
composition architecture is sent to a monitor module which 
for each specification of the anatomic process (atomic 
process de OWL) within the solution plan locates a WSDL 
descriptor related to the inside of grounding and constructs an 
SOAP message to invoke a service. The response to the 
SOAP request a posteriori to the service execution is 
validated by the monitor to evaluate the usefulness of the 
case.   

Once the execution process of each one of the actions that 
make up the plan have concluded their invocation and a 
user’s request has been fulfilled satisfactorily, the module 
stores it in the case database and the indexes of the process 
composed which contain a sequence and a list of atomic 
services which represent the process model of an executed 
composed service, as well as the description of the 
composition request then user delivered. 

 

VI. A CASE STUDY 
To evaluate the proposed prototype, a series of tests were 

conducted with the aim to compare the efficiency and 
scalability of reaching JABY goals, with a basic INDYGO 
composer. To do so, several versions of the satellite dominion 
were constructed. The cases the CBR stored were more 
complex than the ones formulated by a user in that user’s 
search. The following is a description of objectives 
associated to a user’s search, (see Fig. 3 and Fig. 4), and 
objectives associated to cases to be retrieved in which case 
they make a partial contribution of 1 and 2 objectives.   

Table I compares INDYGO and JABY processing times 
for the various levels of completeness of a retrieved cases (1, 
2) objectives.   
 

TABLE I. SCALABILITY OF SATELLITE DOMINION OBJECTIVES 
N° of 

Operations INDYGO JABY CASO 1 
(GOAL 1) 

JABY CASO 2 
(GOAL 2) 

5 303,575 144,547 50,946 

50 306,299 151,047 76,345 

75 306,893 161,89 84,3 

100 366,510 187,215 102,369 

250 315,509 215,828 137,584 

500 328,184 247,459 182,752 

 

 
Fig. 3. Case 1- Objective representation diagram  

 

 
Fig. 4. Case 2- Objective representation diagram 

 
Fig. 5 shows the relation that there is between the 

completeness of a problem and INDYGO and JABY 
processing time. Although the computer cost that comes 
along with the adaptation of a case, turns out to be high in 
comparison with the processing time consumed by INDYGO 
in the construction of a solution starting from scratch, it is 33% 
less for the first case and 50% less for the second case. This is 
why it is more beneficial.   

 

 
Fig. 5. Objective completeness diagram  

 

VII. CONCLUSIONS 
In this work, we start from the fact that conceptually 

intelligent agents and (semantic) web services were 
conceived with totally uneven purposes, and as such, it is 
understood (as a hypothesis) that they must remain in two 
different levels of abstraction. The main idea which 
substantiates the technology of agents is not that intelligent 
agents are able to provide services, but that they are 
conceived as autonomous entities which incorporate 
intelligence and cognitive capabilities which enable them to 
show pro-active behavior aimed at objectives and to establish 
interaction processes, either competitive or cooperative, with 
other entities to fulfill their design objectives. Ontologies as 
such are components which enable establishing 
communication between agents and Web services located at 
various levels of abstraction   fluently and without erroneous 
interpretations.  Another valuable element is constituted by a 
heuristic classification model which combines the three 
technologies (agents, ontologies and services), with (heuristic) 
AI techniques to allow the exploitation of dominion 
semantics and services resulting in a process of automatic 
SWS classification.   

IACSIT International Journal of Engineering and Technology, Vol. 6, No. 3, June 2014

232



 
 

ACKNOWLEDGMENT 
  This paper presents preliminary results of the project 

“apoyo al grupo de sistemas inteligentes web-sintelweb” con 
código quipú 205010011129, developed by the universidad 
nacional de colombia, in agreement with the gea group of 
institución universitaria salazar y herrera.   

REFERENCES 
[1] J. Guzmán and A. Ovalle, “Web services planning agent in dynamic 

environments with incomplete information and time restrictions,” in 
Proc. The 11th IEEE Internacional Conference 2008, Computational 
Science and Engineering Workshop, pp. 245-250, 2008. 

[2] J. Guzmán and D. Ovalle, “Web service composition: a semantic web 
and automated planning technique application,” Revista de Ingeniería 
e Investigación, vol. 28, no. 3, pp. 145-149, Dec.2008. 

[3] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services. 
Concepts, Architectures and Applications, Springer, 2004. 

[4] M. López, D. Mscherry, D. Bridge, D. Leake, B. Smyth, S. Craw, B. 
Faltings, M. Cox, and K. Forbus, “Retrieval, reuse, revision and 
retention in cased based reasoning,” The Knowledge Engieneering 
Review, Cambridge University Ed. Press., vol. 20-3, pp 215-240, 2006. 

[5] WSDL., Web Service Semantics. April 2005. [Online]. Available: 
http://lsdis.cs.uga.edu/library/download/WSDL-S-V1.pdf.  

[6] Koenig S. Tovey, C. A. Smirnov, and Y. V., “Performance bounds for 
planning in unknown terrain,” Springer-Verlang, vol. 1- 2, no. 147, pp. 
253-279, 2003. 

[7] A. Aamodt and E. Plaza, “Case-based reasoning: Foundational issues, 
methodological variations, and system approaches,” Computer Science 
and Artificial Intelligence, vol. 7, no. 1, pp 39-54, 1994. 

[8] A. Bregón, M. Aránzazu, J. Rodríguez, C. Alonso, B. Pulido, and I. 
Moro, “Early fault classification in dynamic systems using case-based 
reasoning,”  Lecture Notes in Computer Science, vol. 4177, pp. 
211-220, 2006. 

[9] B. Limthanmaphon and Y. Zhang, “Web Service Composition with 
Case-Based Reasoning, Database Technologies, Performance bounds 
for planning in unknown terrain,” in Proceedings of the 14th 
Australasian Database Conference (ADC2003), Australia, February 
2003. Pp-201-208. 

[10] OWL Services Coalition. OWL-S: Semantic markup for web services, 
2006 [Online]. OWL-S White Paper. Available: 
http://www.daml.org/services/owl-s/0.9/owl-s.pdf. 

 
 
 

Ingrid-Durley Torres received her Ms.C. degree 
from the Faculty of system engineering, Universidad 
Nacional de Colombia, Medellin Campus.  Where 
actually is Ph.D Student and working as teacher 
research at Institución Salazar y Herrera from 
Medellin, Colombia. Her topic investigation is 
Artificial Intelligence (planning, semantic web, 
e-learning). 

 
 

Jaime Guzman-Luna received B.Sc.in civil 
engineering, and then received his Ms.C and Ph.D. 
degrees in system engineering from the Universidad 
Nacional de Colombia, Medellin Campus. Where 
actually is Director of  SINTELWEB research group  
and working as teacher Universidad Nacional de 
Colombia, Medellin Campus, Colombia. His topic 
investigation are Artificial Intelligence (planning, 

semantic web, web services and robotic). 
  

IACSIT International Journal of Engineering and Technology, Vol. 6, No. 3, June 2014

233


