
  

  
Abstract—This study proposes a systematic approach to 

estimate the MR&R cost of bridges using a reliability-based 
model. The approach first identifies a group of similar bridge 
samples to describe how the target bridge deteriorates in terms 
of reliability indices. The cost is then accumulated while each 
MR&R action is assumed to be taken over its lifespan. 
Afterwards, Monte Carlo Simulation is applied to generate the 
probability distribution as a stochastic result. Bridge expansion 
joint is employed as an example to demonstrate and to validate 
the developed approach. Results show the estimation of 
maintenance cost for the expansion joint of the bridge example 
forms a lognormal distribution with a mean of 120,768 TWD. 
 

Index Terms—Bridge, cost estimation, deterioration. 
 

I. INTRODUCTION 
Deterioration is an inevitable process which requires 

maintenance, rehabilitation and repair (MR&R) to maintain 
at least a minimum satisfactory level of service quality. 
Proper budgeting for MR&R plan is essential for effective 
use of very limited government resources. Since the MR&R 
costs of bridges during their lifespan account for a significant 
portion of life-cycle cost [1], [2], adequate estimation of the 
cost will undoubtedly facilitate the priority evaluation of 
MR&R plans as well as the comparison of alternatives for 
new bridge projects. 

This study proposes a systematic approach to estimate the 
MR&R cost of bridges using a reliability-based model. 
Visual inspection data of bridge elements is used for 
prediction of deterioration. The performance of bridge 
elements is transformed into the reliability index. A 
stochastic approach is then introduced and the probabilities 
for what action should be taken at each time point is 
determined. The costs associated with different MR&R 
actions are summarized from past related contracts. Thus, the 
MR&R cost for each bridge element can be taken as the sum 
of costs for all actions activated over its lifespan. Afterwards, 
Monte Carlo Simulation is applied to generate the probability 
distribution as a stochastic result. Finally, a bridge element, 
expansion joint, is taken as an example to demonstrate the 
framework of the model. Likewise, the proposed model can 
be applied to all bridge elements and in turn, evaluate the 
MR&R cost for a whole bridge. 

 

II. MODEL DEVELOPMENT 
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The retrieval of "similar" samples is of vital importance to 
the accuracy of modeling since the deterioration process for 
different bridge categories can be very different due to a 
variety of uncertainties (see Fig. 1). For a given target bridge, 
there should be more or less a set of similar bridge samples 
stored in BMSs (Bridge Management Systems). The retrieval 
process generally consists of two steps: (1) attribute 
extraction and (2) sample retrieval with the common 
attributes. The purpose of attribute extraction is to extract 
features that meet criteria of having sufficient clues leading to 
bridge deterioration implied in databases, then return a set of 
attributes describing those features. Having attributes 
identified, bridge samples with attribute values similar to the 
target one can be retrieved [3]. 

The performance of bridge elements are usually visually 
rated based on levels of semantic descriptions. In Taiwan, 
conditions of bridge elements are assessed on a rating scale 
from 0 to 4 with respect to the degree (D) and the extent (E) 
of deterioration and its relevancy (R) to safety (known as the 
D-E-R rating scale, see Table I). By definition, D and E are 
physical measures of bridge conditions while R is comment 
made for further action. Therefore, a single condition index, 
namely NCI (New Condition Index), for prioritizing the 
condition states composed by D and E was proposed [4]. 
Since a greater D value indicates a severer condition state 
regardless of what E value is, NCI is defined as: 
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TABLE I: D-E-R RATING FOR VISUAL INSPECTION 
Ratings 

0 1 2 3 4 
D No such Element Good Fair Poor Severe
E Cannot be inspected <10% 10% ~30% 30%~60% >60% 
R Cannot be decided Minor Small Medium High 

 

 
Fig. 1. Deterioration process for different bridge categories 
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As formulated, NCI ranges from 1 to 4.75. It depicts 13 
levels of conditions for bridge elements. As a matter of fact, 
the measures of performance from the retrieved bridge 
samples form a probability distribution. The deterioration 
over time can be modeled by a group of distribution curves as 
shown in Fig. 2. Each curve in Fig. 2 represents the 
probability distribution of performance of a bridge element at 
a specific point of age. It is anticipated that the average 
performance of bridges grouped by the same ages is getting 
worse over time while the uncertainty is getting higher. 

The results of visual inspection can be used to update the 
bridge reliability [5]. In this study, the performance model in 
Fig. 2 can be easily transformed into a reliability index profile. 
Suppose the acceptable level of NCI is given to be λ, the 
reliability index, β, of bridge elements can be calculated as 
follows: 

σ
μλβ −= , where μ and σ are mean and standard deviation 

of NCI respectively. 
For each time point (e.g. each year), the reliability index 

can be calculated if the probability density functions (PDFs) 
are determined. Therefore, the reliability index profile can be 
obtained as the curve over the PDFs shown in Fig. 2. 

Four levels of MR&R actions including 'do nothing', 
'routine maintenance', 'repair' and 'replacement' are taken into 
account in this study. To evaluate the probabilities for each 
action, this paper proposes a simple and rational solution 
solely based on the historic inspection data. First, four 
scenarios for bridge conditions are defined: (1) good, NCI < 
λ1; (2) fair, λ1< NCI < λ2; (3) poor, λ2< NCI < λ3; (4) severe, 
NCI > λ3. The λ1, λ2, λ3 are threshold levels set to meet the 
requirement for their corresponding MR&R actions. For each 
point of time, the probability of taking action i is denoted as 
pi. 

As the bridge condition for each year is a distribution of 
NCI values, the probabilities for bridge condition can be best 
fitted by a beta distribution defined on the interval [1, 4.75]. 
The λ1, λ2, λ3 just divide the area under the PDF into four 
parts, denoted as A1 to A4 as shown in Fig. 3. For any point 
of time, the probability for each MR&R level is identical to 
the probability for what scenario the condition of bridge 
element is determined. In other words, A1 indicates the 
probability for "do nothing" (i.e. p1) while A2 is for "routine 
maintenance" (i.e. p2) and so on. Therefore, the PDF for each 
point of time in Fig. 2 can be used to determine the 
probability for each maintenance option. 

 

 
Fig. 2. Schematic deterioration model 

As a result, the probability for taking "do nothing" is 
relatively larger than others at an early age of bridge (see Fig. 
4). On the other hand, the "replacement" is gaining a bigger 
chance while the bridge element is getting worse (see Fig. 5). 
Some studies showed that the prediction of deterioration 
could be rather worse if the probability is determined by 
experts [6]. In this study, the proposed method determines the 
probability objectively based on data themselves only. It 
provides a fair approach and reflects the stochastic nature. 

 

III. EXPERIMENTAL EXAMPLE OF COST ESTIMATION 
To establish the deterioration model, data on a total of 

2,128 bridges in the Taiwan National Freeway Bridge 
Management System are collected. With attribute value of 
expansion joint equal to "sliding finger joint" and length of 
maximum span roughly equal to 30 meters (70% of 
similarity), 376 bridge samples with expansion joints which 
have not experienced any maintenance service are retrieved 
following the approach for searching similar bridges 
proposed by Huang et al. [7]. Samples with the same age are 
grouped to form the PDF of performance for each year. The 
reliability index for each year is then calculated and forms a 
characteristic curve, the β profile, to represent the 
deteriorating process. As defined above, three levels of 
reliability indices, β1, β2, β3 can be calculated due to λ1, λ2, 
λ3 respectively, corresponding to different thresholds of 
performance level. As a result, three β profiles are drawn as 
shown in Fig. 6. 

 

 
Fig. 3. Probabilities of Taking Actions 

 

 
Fig. 4. Probabilities of taking actions for younger bridges 

 

 
Fig. 5. Probabilities of taking actions for elder bridges 

 
Costs for each level of MR&R actions are summarized 
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from past contractual documents provided by Taiwan Area 
National Freeway Bureau. Except for "do nothing," cost for 
each level of MR&R is represented by a log-normal 
distribution. Afterwards, Monte Carlo Simulation (MCS) is 
applied to simulate the deterioration and MR&R process over 
the lifespan. A 35-year of life span is considered in the 
working example. The reliability index, β1, profile for 250 
simulations are plotted. It is noted that "do nothing" and 
"maintenance" tend to be taken in the early age while "repair" 
and "replacement" occur more frequently after the middle of 
lifespan. Besides, "do nothing" can still possibly be taken 
even though the reliability index is very low, which perfectly 
reflects the nature of uncertainty. The MR&R cost for 
expansion joint can be accumulated by the costs associated 
with all actions taken over a 35-year life span. As each cycle 
of simulation may produce different maintenance history, the 
sum of cost can be treated as a random variable provided with 
the mean and standard deviation. The result of cost 
estimation is presented in Fig. 7. As a result, the estimation of 
maintenance cost for expansion joint forms a lognormal 
distribution with a mean of 120,768 TWD and standard 
deviation of standard deviation of 236,116 TWD (1 USD ≈ 
30 TWD). 

 
Fig. 6. Reliability index profile for expansion joint 

 

 
Fig. 7. Life-cycle MR&R cost for expansion joint 

 

IV. CONCLUSION 
This paper has proposed a systematic approach to estimate 

the maintenance costs of bridges during their service life 
using visual inspection data only. This study uses expansion 
joint as an experimental example to demonstrate the 
framework of the model. Monte Carlo Simulation is applied 
to compute the probability distribution of cost estimation. In 
a similar fashion, the proposed approach can be utilized to all 
other bridge elements to further evaluate the MR&R cost for 
a whole bridge.  
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