
  

  
Abstract—We aim to design a human-interface system to 

control a brick-breaking game using electromyographic (EMG) 
signals elicited by wrist movements. By measuring EMG signals, 
it is possible to predict the next stage of movement or force 
before motion. We filtered EMG signals through a finite 
impulse response filter with a cut-off frequency of 2.2 Hz. The 
resulting signal is very similar to the actual tension. We 
calculated subtraction between flexor and extensor muscles to 
obtain movement of the wrist. After simple calibration, the 
participant was able to control a paddle to break bricks in real 
time using wrist movements. Consequently, we succeeded in 
controlling the paddle of the game. The proposed system is 
expected to use as a rehabilitation tool or an entertainment 
system. 

 
Index Terms—EMG signals, human computer interface, 

rehabilitation, wrist movement. 
 

I. INTRODUCTION 
Muscle contraction is the fundamental unit of body motion 

and position control. Coordinated contractions by several 
muscles allow for various movements of human limbs. 
Human limb movements are controlled by the central 
nervous system (CNS). The CNS activates the muscles 
needed to perform a desired movement, and this activity can 
be observed using electromyographic (EMG) signals. It is 
well known EMG signal reflects the motor command from 
the CNS. By measuring EMG signals, it is possible to predict 
the next stage of movement or force before motion. Therefore, 
it is also possible to use EMG signals as an input device for a 
human interface system.  

There are some approaches to using EMG signals for 
control of prosthetic arm or robotic hand and control 
command of human interfaces [1]-[5]. Saponas et. al. (2009) 
have used EMG signals to classify gestures on free space [6]. 
They demonstrated the ability to discriminate finger gestures 
involved finger pinching, holding a mug, and carry a bag 
using only EMG signals from the forearm. They used 10 
EMG sensors worn in a narrow band around the upper 
forearm to differentiate position, pressure, tapping, and 
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lifting gestures across five fingers.  However, the command 
was corresponded to the specific gesture for controlling 
environments, not continuous motion in this approach.  

The Bio-muse has been represented as an interface to 
musical synthesizers [7]. The Bio-muse translated the 
amplitude of EMG signals to MIDI signals directly. This has 
been demonstrated as an interface to music synthesizers. 
However, it takes time for beginners to generate the desired 
sound.  

These two approaches are opposite extremes. Both of 
continuous motion and force control plays an important role 
in the human-computer interface (HCI) area. Therefore, the 
measurement of both extrinsic posture and intrinsic force are 
necessary for effectively interfacing a computer with a 
human. 

Here we propose an intermediate system using EMG 
signals elicited by wrist motion. The proposed system 
enables a user to control the size (intrinsic force) and position 
(extrinsic posture) of a paddle and play a brick-breaking 
game using only wrist movement. This system can be 
controlled in the same way as normal input device instead of 
joystick.  

 

II. METHODS 

The brick-breaking game is composed of a laptop, an AD 
converter, and an EMG amp as shown in Fig. 1. To create the 
system, a series of preliminary experiments were first carried 
out to aim at data collection used for algorithm prototyping in 
MATLAB and DAQ-toolbox. The application fetches EMG 
data from the A/D-converter (NI USB-6009; National 
Instruments) of a 2.5 GHz i5 processor laptop (ThinkPad; 
Lenovo).  

The user sat on a chair in front of the desk and the laptop 
displayed the brick-breaking game. We performed simple 
calibration prior to playing because there are personal 
differences on EMG activities. After attaching an EMG 
sensor, the user was asked to shake his wrist approximately 3 
s.  

EMG

Laptop

paddle

 
Fig. 1. Experimental setup 
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 We calculated the minimum and maximum of each EMG 
signals. Then, the position and size of the paddle was 
calculated from the EMG signals. After the calibration, the 
user could play the brick-breaking game with hand motion. 

A. Quasi-Tension 
Surface EMG signals are spatiotemporally convoluted 

action potentials of the muscle membranes, and involve not 
only descending central motor commands, but also reflex 
motor commands generated from sensory feedback signals. 
The muscle activation, therefore, is presumed to contribute to 
an increase in muscle tension and stiffness.  

We recorded EMG signals using surface active electrodes 
in a bipolar configuration (Bagnoli™; Delsys). EMG signals 
were sampled at 2 kHz with a 16-bit resolution. The signal 
was digitally rectified, integrated for 0.5 ms, sampled at 
200Hz, and passed through a second-order, low-pass filter 
(cut-off frequency: 2.2 Hz). 

Producing a signal from on referenced as fEMG(t) with an 
impulse response of the following form [8]-[12]: 
 

             (1) 

  
where hj is the FIR filter, j is discrete time and EMG 
represents the rectified and integrated EMG signal. The 
second-order frequency response of the filter H(s) is defined 
as 

                         (2) 

 
where ωn  and  denote natural frequency and damping 
coefficient, respectively.  
 

(a) Extensor carpi radialis

 (b) Flexor carpi ulnaris  
Fig. 2. The electrode positions in EMG measurement. 

 

The impulse response of H(s) is 
 

                (3) 

 
The coefficients hj in equation (1) were acquired by 

digitizing h(t) [8]. Then, the filtered EMG (fEMGi) signals, 
so-called ‘quasi-tension’, were normalized [8].  

The proposed system used 2 muscles of forearm as shown 
in Fig. 2. We measured EMG activities on extensor carpi 
radialis and flexor carpi ulnaris. 

B. Total Cocontraction Level 
Total cocontraction level (TCL) is calculated in order to 

control the size of the paddle during the experiment. TCL is 
defined as the summation of the absolute values of muscle 
tension:  

 
      TCL = fEMGi

i
∑                             (4) 

TCL is proportional to joint stiffness [9]-[10].  

C. Transformation from EMG to Control Command 
The control algorithm of the paddle represented could be 

explained as follows. 
First, a user registers the maximum and minimum values 

of the quasi-tension by shaking his/her wrist left side to right 
side. It took only 3 seconds. Next, quasi-tensions are 
normalized with the previously registered maximum and 
minimum value using equation (5).  
 

    nfEMGi = fEMGi − fEMGmin

fEMGmax − fEMGmin

               (5) 

 
Then, wrist joint angle is estimated by subtracting the 

quasi-tension of the flexor muscle from that of the extensor 
muscle.  
 

   Anglewrist = nfEMGextensor − nfEMGflexor          (6) 
 

Finally, the estimated angle is changed x position required 
for controlling the horizontal motion of the paddle. And also 
the size of the paddle is determined by TCL. 

 

 

Fig. 3. The brick-breaking game using EMG signals 
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III. RESULTS 
To evaluate the effectiveness of the proposed system as a 

HCI, a expert player performed two successive sessions: one 
for the calibration; and one for the control tasks involved to 
control the position and size of paddle. The calibration 
session was the same as described above II-C. After 
calibration, the participant was asked to play the 
brick-breaking game. In Fig. 3, we show the participant plays 
the brick-breaking game system. The player shakes his wrist 
on the air as if he controls a joystick, but the paddle is moved 
according to his wrist motion. 

The EMG signals and paddle trajectory are shown in Fig. 4. 
These data were captured by the instruction irrelevant to 
playing the game. A total of 48,000 data points (24 s) of EMG 
and paddle data were recorded. Fig.4 shows only 3 ~ 9 s data 
because it involve well characteristic of the proposed system.   

Typical plots of the EMG signals of wrist joint related 
muscles are shown in Fig. 4 (a) and (b). The EMG signals, 
which are solid thin lines, show the muscle activation during 
the task. Solid thick lines through the EMG signals are fEMG 
represented ‘quasi-tension’. In Fig. (c) and (d) shows the 
position and size of the paddle, respectively. The vertical 
label of (d) represents the pixel size of the paddle. 

The participant could move his wrist to each of left and 
right target corners according to the instruction. The gray 
areas in the EMG signals show the cocontraction of muscle. 
As can be seen at EMG and fEMG plots, this cocontraction 
and S/N ratio of the EMG signals usually caused some 
deterioration of posture estimation. Despite that, the 
estimated posture (c) agrees well with the instruction. In 
addition, this cocontraction could succeed in control the size 
of the paddle. It could also provide easy to control the paddle 
in corner area.  
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Fig. 4. The typical plot of controlling tasks. 

IV. DISCUSSION 
A human interface that uses the EMG signal can be 

considered to have three strong advantages. First, the existing 
human interface could not measure the force during arm 
movement. In fact, it is difficult to measure the amount of 
force exerted by the wrist. On the contrary, the proposed 
method is possible to estimate the amount of exerted force 
because the quasi muscle tensions are obtained from EMG 
signals. In addition, the usage of TCL allows the estimation 
of joint stiffness. These points bring to large expectation to 
realize a humanlike movement for an active virtual human by 
using the internal force and stiffness of joints. Second, the 
EMG interface is independent of the part of the muscles; it 
allows that the physically disabled people could use the 
muscles of the shoulder or neck instead of their lost wrist 
muscles. Third, the EMG interface can be implemented 
without any delay since the EMG signal occurs before the 
motion. Existing human interfaces, such as a mouse and a 
data glove, measure a human movement after it is completed, 
and hence, they encounter certain difficulties in functioning 
in the case of some high-speed motions. On the other hand, 
while using the EMG interface allows to overcome the above 
problem. 
 

V. CONCLUSION 
We succeeded in controlling the position and size of the 

paddle by using the EMG signals the wrist muscle. This 
simple method provides the feasibility of the EMG interface 
to estimate both force and stiffness of joint. It also suggested 
a novel framework for an EMG-driven robot and a 
rehabilitation system.  
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