
  

  
Abstract—An adaptive time-stepping scheme in accordance 

with the local convergence of computation often involves 
computationally expensive procedures. As a result, many 
computer simulators have avoided utilizing such an adaptive 
scheme, while its advantages are well recognized; the scheme 
not only efficiently allocates computational resources, but also 
makes the results of the computation more reliable. In this 
paper, we propose a fast adaptive time-stepping scheme, 
ATLAS (Adaptive Time-step Learning and Adjusting Scheme), 
which approximates such an expensive yet beneficial scheme by 
using support vector machines (SVMs). We demonstrate that 
ATLAS performs quite favorably when compared with 
computations without it. ATLAS can incorporate existing 
solvers and other fast but unreliable adaptive schemes to meet 
the different criteria required in various applications.  
 

Index Terms—Adaptive time step control, machine learning, 
ordinary differential equations, severe accident analysis.  
 

I. INTRODUCTION 
The numerical time-stepping method plays a vital role in 

the fields of computation and applied science. It 
approximately integrates ordinary differential equations 
(ODEs) and solves initial value problems. The method can be 
written as 

1( ) ( ) ( )n n ny t y t h Y+ = + Φ                           (1) 

where h represents the time-step size, y∈Rl×1 is the 
dynamical system’s state, Y∈Rl×(n+1) contains the history of y 
up to the time tn+1, and Φ:Rl×(n+1)→Rd determines the time 
stepping scheme. A straightforward choice for function Φ is 
the derivative of y at tn, which leads to the explicit Euler’s 
method: 

( )( )
( ) ( )n
n n

dy t
Y f y t

dt
==Φ                               (2) 

If f in (2) is Lipschitz continuous in y and continuous in time 

t, by relying on Banach fixed point theorem, one can show 
the existence of a unique solution [1]. For such a problem, 
interval analysis may present the bounds of a numerical 
solution’s error to the exact unique solution [2].  

While such rigorous analyses have been conducted for the 
specific problems one by one [3]-[5], practical interest has 
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been placed on how to decide time-step size h in (1) [6]-[8]. 
The problem of selecting h can be divided into two parts: how 
to set tentative h to calculate yn+1 and how to accept or reject h 
after obtaining provisional yn+1. The former issue has been 
addressed by control theoretic approaches such as 
proportional-integral (PI) controller or simpler feedback 
controllers [7]. The objective of the approach is to maintain 
the local error or the changing rate under a particular 
tolerance. Also, time-step controlling functions have been 
arbitrarily defined based on analysts’ experiences in order to 
map dynamical systems’ states into particular time-step sizes 
[9].  

On the other hand, the later problem, regarding the criteria 
of acceptable h, has been dealt with by utilizing constraints 
imposed by physical modeling properties such as Courant 
Friedrichs-Lewy condition [10]. Also, absolute or relative 
changes of systems’ states were used as criteria [8], [9]. 
These two approaches are preferred mostly by computer 
simulators that require fast calculation since these add only 
negligible computational cost in general. However, these 
approaches do not address the errors of computed solutions, 
and thus no information is given to discuss the accuracy of 
the computation.  

The local error method is computationally more expensive, 
but it verifies the numerical calculation results to some extent. 
The method aims to keep estimated local errors within a 
certain tolerance range, which renders the computed results 
reliable by assuming local errors are not amplified over time 
and the estimated errors are close to the exact errors. One way 
to estimate a local error is to compare the solutions computed 
by different orders’ methods, which is done by adaptive 
Runge-Kutta methods and Bulirsch-Stoer method. Though, 
both methods depend on the assumption of high-order 
differentiability of y, and the latter works well only with 
smooth functions [11]. Comparing the solutions obtained 
with different time-step sizes leads more reliable local error 
estimators if these assumptions are without support. Indeed, 
as a time-step size gets close to 0, a local error should 
converge to small values, although confirming this involves a 
computationally expensive procedure. Therefore, while 
many computer simulators prefer computationally cheap 
methods to decide an acceptable h, the simple but expensive 
method can increase the reliability of the computation. 

In this paper, we adopt the support vector machine (SVM) 
to approximate a reliable but computationally expensive local 
error method in order to increase efficiency. The proposed 
scheme obviates the need to calculate the local errors along 
with the control theoretic approach by maintaining a similar 
level of accuracy with a much lower computational cost. The 
paper focuses on the global time-stepping scheme applied to 
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all segments or components of a model. Thus, we do not 
address the solutions’ projection method to maintain 
synchronization for locally adaptive time-steps (see [12] for a 
recent review of this literature). In the following, we first 
propose the new adaptive time-stepping scheme with SVMs, 
and then demonstrate the applicability of the scheme with a 
simple thermal-hydraulic model.  

 

II.   ATLAS: ADAPTIVE TIME-STEP LEARNING AND 
ADJUSTING SCHEME 

A. Overview 
The suitability of various numerical methods has been 

studied for decades. Recently, machine learning (ML) was 
introduced to automatically identify appropriate methods to 
solve particular problems [13]. The previous study presented 
ways to use ML to match one numerical method to each 
problem. In contrast, we take advantage of ML to adaptively 
use various numerical methods and time-step sizes h within a 
problem. Due to its characteristics, we call the new proposed 
scheme Adaptive Time-step Learning and Adjusting Scheme 
(ATLAS).  

ATLAS consists of three components: 1) local 
convergence verification and data generation, 2) offline 
learning with SVMs, 3) adaptive time-stepping with SVMs. 
We discuss the details of each component in the following. 

B. Local Convergence Verification and Data Generation 
When a large complex computer simulator has just been 

developed, it is unclear if the simulator maintains 
computational convergence property; whether or not the 
solutions converge as h gets close to 0. As a result, sensitivity 
analyses regarding h may be conducted to verify the property 
and gain insights on acceptable step size h (e.g. see [9]). For 
adaptive time-stepping schemes, the sensitivities have been 
studied for values of tolerance instead of h (e.g. see [14]). 
These sensitivity analyses are to check the global 
convergence property. However, it should be important to 
confirm the local convergence property as well. This is 
because if the local convergence fails, one can easily know 
which local part of the calculation contains problems. In 
addition, when local convergence is not achieved, the 
sensitivity analysis may mistakenly conclude the global 
convergence, as h and tolerance cannot be very small 
globally for an entire execution.  

The first component of ATLAS verifies the local 
convergence property of computation, and while doing so, it 
generates data for the SVM to learn from. The procedure of 
this component is outlined in Fig. 1. Here, xi and di are the 
input features and the corresponding target outputs for the 
SVM. A simple example of convergence criteria used in the 
If statement in Fig. 1 is ||yr - yN|| / ||yN || < TOL (tolerance) for r 
= 0 to r = N - 1. In this case, if N = 1 and (b) is always selected, 
this procedure becomes just a control theoretic approach with 
the local error method (plus data generation). On the other 
hand, if N is set to be large and the convergence criterion 
requires an asymptotical convergent behavior for absolute 
and/or relative errors by considering machine epsilon, the 
procedure verifies the local convergence property more 

strongly. As we will discuss shortly, the more reliable the 
local convergence verification is in this step, the better the 
accuracy of ATLAS becomes in the end. Thus, the first 
component of ATLAS is supposed to be adjusted in 
accordance with the targeted accuracy and speed of ATLAS. 

 
Inputs: N, TOL 
Initialization: set t, y(t), i, and LS—Label of Solver 
Repeat with i=i+1 
  for r=0 to N: tr ← t0 × 0.5r  
  for r=0 to N: yr ←Integrates ODE with tr (t to t+ t0) 
  xi ←[ t0, y(t)T, LS]T 

If {y0,y1,…,yN} meets a convergence criteria 
    di ← +1 
    y(t + t0) ← y0 (or yN) 

      t ← t + t0 
    Set the next t0 with a control theoretic approach 
    t0← t0 × 2 
    else 
     di ← −1 
     Execute the following (a) OR (b) 

(a) Adopt a higher order solver & Change LS 
(b) t0 ← t0 × 0.5 

     end if  
Until (t <= the end calculation time) 

Fig. 1. Local convergence verification and data generation 
 

Another adjustable feature is the selection of solvers as 
indicated by (a) in Fig. 1. A natural choice is to use a family 
of Runge-Kutta methods for Φ in (1) as follows: 
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where a is the Runge-Kutta matrix, b is the weight and c 
represents the node. Also, s specifies the number of stages 
and one can find s being equal to the degree of order until 
fourth-order methods, which contributes to the popularity of 
the fourth-order Runge-Kutta. The derivation of a, b and c for 
the fourth-order can be found in [15]. Instead, one can also 
use a family of multistep methods for Φ. Due to (3), we can 
now change the order of our methods with a unified 
framework. A simple criteria to shift into a higher order 
method is whether t0 is small enough to take advantage of a 
higher order method such that 

( ) ( )0 0
( ) ( )( ) ( )p LS p LSs LS t s LS t LΟ − Ο ′′ >           (4) 

where LS and LS′ indicate labels of the currently adopted 
method and the next candidate method respectively. In 
addition, p returns the number of the method’s order, and L > 
0 is the criteria specified by users.  
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C. Offline Learning with Support Vector Machines 
In the second component of ATLAS, we use the input and 

desired output pairs (xi, di) obtained above to train and test the 
SVM. The SVM is a theoretically elegant supervised learning 
algorithm, yet a user-friendly tool. In this phase of ATLAS, 
the SVM aims to indirectly solve the primal problem, 

2

1

1
2, ,min || ||w b i

m

i

w Cξ ξ
=

+ ∑                          (5) 

subject to  1( ) )T
i i id w x b ξ+ ≥ −Ψ( ,  0iξ ≥ ,  1,...,i m=  

by finding the solution of the following dual problem [16] 
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i i
i
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Here, w and b are the adjustable weights, and ξ is the slack 
variable, which permits the functional margin—the right 
hand side of the first constrain in (5)—less than 1 at the cost 
of Cξ. Thus, (5) finds b and small w to keep large 

classification margins while neglecting outliers with ξ. In 
other words, (5) effectively finds the boundary between those 
with acceptable t and those with non-acceptable t. The Ψ 
in (5) maps x into a higher dimension to have a nonlinear 
decision boundary, and concretely we choose a kernel 
function k(xi, xj) := Ψ(xi)TΨ(xj) to do so as in (6). See Haykin’s 
book [16] for the detailed derivation and a rigorous 
explanation of the SVM in the context of the structural risk 
minimization based on the VC dimension theory. 

We solve (6) with sequential minimal optimization (SMO) 
algorithm [17]. A practical guide to use SVMs can be found 
in [18], and there are freely available SVM libraries, such as 
LIBSVM or Shark. Note that one can replace a control 
theoretic approach in Fig. 1 by the SVM trained in this step, 
and repeat data generation and offline learning phases so that 
the SVM can be corrected over this repetition process. 

D. Adaptive Time-Stepping with Support Vector Machines 
After the above two steps, we have a simulator ready to run 

fast with high accuracy. Concretely, at every time step, we 
use α learned with (6) to predict acceptable time-step sizes by 
calculating 

( ,( )) i i i
i

k xq x d x bα
∈Ω

′ +′ = ∑                         (7) 

where x′ is a column vector comprised of a tentative t′, the 

current systems’ state y, and a tentative method’s label LS′. 

We start with a maximum possible t′ and some LS′ and 

decrease t′ and change LS′ until q becomes larger than zero. 
This iterative procedure may take a relatively small 
computational time since the summation term in (7) is 
conduced only for a set of support vectors Ω due to 

Karush-Kuhn- Tucker dual complementarity condition [19]. 
Therefore, with a low cost, ATLAS adaptively determines 
time-step sizes and methods in accordance with the specified 
level of the required local convergence.  
 

III. EXPERIMENT 

A. Problem Description 
We demonstrate the advantages of ATLAS on a problem 

from the literature where existing adaptive schemes are likely 
inadequate. Specifically, for the demonstration, we 
developed a thermal-hydraulic model pictured in Fig. 2, 
which is a simplified version of severe accident analysis 
models [20]. As illustrated by the simulation codes in the 
field of severe accident analysis (e.g. MAAP or THALES2 
[21]), this type of problem needs very fast computation, and 
thus adaptive schemes with local error methods are usually 
not accepted [9], [20]. As a result, the simulation codes have 
required the extensive use of well experienced analysts’ 
insights in order to properly determine time-step sizes (these 
simulators ask users to define time-step adjusting functions 
[9]). Even with such an exhaustive procedure, trial-and-error 
is inevitable in some cases, and the justification of the 
time-step sizes being specified in that way is almost solely 
subjective.  

 
Fig. 2. A thermal-hydraulic model of a powe plant 

 
The meanings of the abbreviations in Fig. 2 are: reactor 

pressure vessel (RPV), suppression chamber (SC), drywell 
(DW), condensate storage tank (CST), high pressure coolant 
injection (HPCI), safety relief valve (SRV), and vacuum 
breaker (VB). The overall calculation flow is outlined in the 
following. First, the mass flow through a path or junction (e.g. 
SRV line) is determined by the orifice flow model 

2
( )

( ) ( )n
n ncA

dM
t t

dt
P

t ρ= %                       (8) 

where c is the orifice constant, A is the flow area, ρ denotes 
the fluid density, and P%  defines the pressure difference at the 
ends of the path. In accordance with the flow computed by 
(8) and the enthalpy of the flow, the heat H is updated. Then, 
we separate liquid/vapor phases with certain velocities. Also, 
heat transfer among the heat source in RPV, water/steam and 
non-condensation gases occurs. Note that we use the steam 
table for the water/steam and the ideal gas law for the 
non-condensation gases in the entire calculation. As a result 
of these changes, the pressures are updated to maintain the 
geometric volumes Vgeometric such that 
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, ,geometric non condensation
water steam

HV V P H Mv P
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⎝ ⎠

∑  

Here, Vnon-condensation is the sum of the non-condensation 
gases’ volumes, and v is the specific volume for water/steam 
as the function of P, H and mass M.  

The plant data and initial conditions were determined by 
reference to the construction permit application forms of 
BWR plants in Japan. We increased the heat sources’ 
temperature (oC) by making it equal to time (s) until 400 s, 
from where the temperature was fixed to be 400 oC. The end 
calculation time was set to be 1200 s. We let the HPCI inject 
water into RPV with the amount 378.88 kg/s, when the water 
level was less than 9.4 m. For the data generation phase of 
ATLAS, we instead used the injection amount 188.44 kg/s 
(50% of the base case above). Thus, this experiment 
demonstrates the efficiency of ATLAS when it is prepared 
with a different trajectory but in a similar scenario. This is 
particularly important, since researchers and analysts 
frequently encounter the need to run simulations in a short 
amount of time by changing parameter values like this case 
(i.e. in sensitivity analysis, uncertainty analysis, and accident 
management support systems [22]). Preparing ATLAS for 
more general scenarios would require a well-organized 
sampling of the relevant scenarios’ data, which we do not 
discuss in this paper, leaving it as future work. 

B. Experimental Results 
We first report the results in the preparation phases of 

ATLAS. For the case with 188.44 kg/s of HPCI, we 
conducted Local Convergence Verification and Data 
Generation outlined in Fig. 1 by using the infinity norm of 
relative errors with TOL = 0.001 and N = 5 as the 
convergence criteria. Also, we used 1st and 4th order explicit 
Runge-Kutta methods (we call them “Euler” and “RK4” 
hereinafter) to be selected with (4), following the convention 
in the popular computer codes, MAAP and MELCOR. With 
this setting, the local convergence was confirmed, and 
130,208 learning data sets were obtained. In the phase of 
offline learning with the SVM, we divided the data into 
training data (60%), cross-validation data (20%), and test 
data (20%). With the training and cross-validation data sets, 
we conducted grid-search [18] to find appropriate values of 
the parameters C in (5) and σ in the Gaussian redial basis 
function (RBF) kernel. As a result, C and σ were set to be 
1000 and 1.0 respectively. For the test data sets, the overall 
accuracy turned out to be 93.11%, but the accuracy to 
classify positive data sets (i.e. d = 1) was 41.68% (too 
conservative). Therefore, as stated in the previous section, we 
used this trained SVM to conduct Data Generation phase 
again so that we could get more positive data sets around 
where this tentative SVM conservatively outputs too small t. 
Then, we obtained 216,722 data sets in total. With the same 
parameter values and 30% of 216,722 data sets, we obtained 
the overall test accuracy of 98.79%: correctly classifying 
positive pairs with 98.68% and negative sets with 99.84%. 

Having ATLAS prepared above, we measured the 
accuracy and the speed of ATLAS in comparison with those 
of Euler and RK4. Fig. 3 shows the CPU time versus the 
number of significant correct digits (denoted by ‘scd’), which 

is a conventional measure of computational accuracy and is 
defined to be -log10(||relative error||∞) [23]. The reference 
solution for scd was computed by the procedure in Fig. 1 with 
TOL = 1×10-4, N = 3 and the minimum t = 2-9. It took 73000 
s to compute the reference solution. To vary ATLAS’s speed 
and precision, we scaled t determined by ATLAS by using 

( t × 2-u )u′ as time-step sizes with nine sets of factors u, u′ ≥ 

0: u = {0, 0, -0.2, -0.2, -0.4, -0.4, -0.6, -0.6, -0.8} and u′ = 
{1.0, 1.4, 1.7, 1.8, 2.0, 2.2, 2.5, 2.6, 3.0}. As it can be seen in 
Fig. 3, ATLAS outperformed the original Euler and RK4 
without the adaptive scheme. The chief reason why mere 
Euler and RK4 could not keep up with ATLAS in terms of 
scd was that the heat contained in non-condensation gases in 
RPV was miscalculated at several points where smaller 
time-step sizes were required to obtain the reference solution. 
Because of this, the increases of their scd seem to stop around 
1.4, while their overall accuracies (parameters other than the 
heat) continued to very slowly improve. 

 
Fig. 3. Cost versus precision with infinity 

 
Fig. 4. RPV pressure 

 

 
Fig. 5. Time-step sizes used by different schemes 
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To get a close look at the efficiency of ATLAS, we present 
the behaviors of RPV pressures (Fig. 4) and time-step sizes 
(Fig. 5), both of which are from computations at the y-axis ≈ 
1200 s in Fig. 3. The calculation time for each scheme is 
listed in parentheses in the legend. “Solution” and 
“Learning” in the legend indicate the reference solution and 
the solution of the scenario used for ATLAS’ preparation 
phases. The result of ATLAS was closest to the reference 
solution with the lowest cost, even though ATLAS was 
prepared in a different scenario (Fig. 4). Fig. 5 shows that 
ATLAS effectively adjusted time-step sizes. Here, ATLAS 
almost always used RK4 when time-step sizes were less than 
0.1. The minimum time-step size used by ATLAS was less 
than that by the original RK4, but ATLAS used less time for 
computation due to the proper adjustments of the time-step 
sizes (Fig. 5). Note that the time-step sizes for the reference 
solution were restricted by the minimum size t = 2-9 to 
maintain a feasible computation time, and it used RK4 most 
of the time. 
 

IV. CONCLUSION 
In this paper, we introduced a novel time-stepping scheme, 

called ATLAS, with which one can solve the initial value 
problem with low computational cost and high accuracy. 
Since ATLAS requires preparation with selected scenarios, 
an instant application due to this paper’s result would be 
uncertainty analyses and database-driven simulations such as 
in [22]. However, an underlying idea of ATLAS is that the 
local errors essentially depend only on local system’s states 
for a simulator, and thereby applying ATLAS to scenarios 
other than ones used in the preparation is possible. Thus, 
future work may present the methods of sampling various 
scenarios’ data sets to make ATLAS robust in the state space. 
Also, future work involves the examination of ATLAS 
combined with other traditional control theoretic approaches. 
The combination would be able to take advantages of both 
types of adaptive schemes.  
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