

Abstract—Although evolution is a critical aspect of software

product line engineering, the body of knowledge surrounding it
is still inadequate. The contribution of this paper is to show how
the practice of feature separation practice addresses the
evolution challenges, specifically in a telecommunications
software product line case study. The main idea behind feature
separation is to achieve a one-to-one relationship between
features in the feature model to feature realizations in code,
which keeps feature realizations separate in the code. This not
only prevents the software product line architecture from
deteriorating, but in fact improves it. To apply this in an
industrial context, it is necessary to also take into account
schedule pressures and legacy artifacts. Application into the
telecommunications software product line case study shows
significant productivity and architecture improvements.

Index Terms—Software product line, evolution, variability,
feature separation, architecture, aspect orientation.

I. INTRODUCTION
The basic idea behind software product lines is to take a set

of core assets and to assemble product variants quickly [1].
The ability to deal with the variability between products,
known as variability in space, is a critical aspect of software
product line architectures with many approaches exist in
academic literature [2], and more diverse methods exist in
practice [3]. These methods often involve building a feature
model that describes the variations between products.

Another important aspect is evolution, also known as
variability-in-time, which is to software product lines. While
evolution of traditional software engineering occurs in the
maintenance phase, software product lines evolve throughout
its lifecycle [4]. Elsner et al. [5] highlighted that the body of
knowledge surrounding evolution is relatively inadequate
compared to variability in space. Botterweck et al. [6]
demonstrated how a set of change operators could take one
version of the feature (requirements) model to yield another
version of the feature model. However, research into the
evolution of feature realization artifacts (e.g. source code)
under a legacy setting is nevertheless limited. This paper is an
effort to close this gap.

A. Objective of Paper
The goal of this paper is to demonstrate an approach,

known as feature separation, to deal with software product
line evolution in an industrial setting. This involves a
telecommunications software product line (developed using
C/C++) case study. We examine its resulting challenges

Manuscript received March 1, 2013; revised May 9, 2013.
Pan-Wei Ng is with Ivar Jacobson International, Singapore (e-mail:

panwei@ivarjacobson.com).

pertaining to evolution, and how they are addressed using
feature separation, which is based on our earlier work on
aspect orientation [7], except that we now apply it to the
context of software product lines and without using an aspect
oriented programming techniques. Unlike [6], which is
primarily about the evolution of feature models (i.e. the
requirements space), our contribution is about the
co-evolution of requirements and especially realization.

The key idea in our approach, which we call feature
separation, is to attempt to align both the structure of
requirements (i.e. the feature model) and the structure of the
realizations (i.e. source code). By doing so, changes to
successive releases can be separated from one another, and
hence developed in parallel on a single mainline branch in the
software version control system. This effectively transforms
the problem from one that is variability-in-time to
variability-in-space, where variability mechanisms are
well-known. Moreover, it improves the cohesion of the
realization, and thus has a positive impact on the software
architecture.

Dealing with evolution is not easy, especially for our
legacy large scale product line. It involves changes to both
technical and management practices, which we will be
discussing in this paper.

II. CONTEXT AND PROBLEMS
Fig. 1 shows the layered architecture of the

telecommunication software product line in our case study. It
includes both hardware and software. Each block has its own
core assets and variants. Different engineering departments
with 100s of engineers are responsible for each separate
block.

Each release introduces in the order of 100KLOCs of
changes and takes a relatively long period (9 months) to
develop and test on target hardware. Usually, the hardware is
also upgraded as well. To prevent different releases from
affecting one another, releases work, Fig. 2, on different
branches in their version control system.

Sub-Domain
Hardware

Domain Specific Platform

Infrastructure Platform

Data
Processing

Product
Series

Specific

Generic

Hardware

Software

Protocols
Commands
Interfaces

OS abstraction

Chips, Boards

Fig. 1. Layered software architecture.

Feature Separation: An Approach for Product Line
Evolution

Pan-Wei Ng

IACSIT International Journal of Engineering and Technology, Vol. 6, No. 2, April 2014

99DOI: 10.7763/IJET.2014.V6.674

Release 6
(new release)

branch merge

start release

start release

Release 4
(under maintenance)

Release 5
(current release)
(about-to-be-released)

branch merge

start release
Service

pack

Fig. 2. Branching and merging

Ideally, the current release (e.g. Release 5) should always

have high source code at all times. However, this cannot be
guaranteed, especially since full verification requires
hardware testing and integration testing of the various blocks
in the layered architecture, which are at different stages of
completion. Thus, the development of a new release (e.g.
Release 6) does not start with a quality version, but instead
has to merge changes and fixes from the previous version
regularly. This poses significant effort and problems to the
development teams because of the following:
1) The developer in Release 6 who performs the merge is

usually not developer who made the code change in
Release 5.

2) If a developer in Release 5 or Release 6 redesigns the
same code, merging becomes complex. Very often,
Release 6 has to re-implement the change. This makes
developers very reluctant to take initiatives to improve
their codes.

3) After merging, there is significant effort to conduct
testing and bug fixing, both of which are error-prone.

4) Artifacts in a new release (e.g. Release 6) can be very
different from that in the current maintenance (e.g.
Release 4). Thus separate teams are needed, which is an
overhead.

Merging, a fundamentally non-value-added work is
error-prone and consumes significant resources and time.
The observation is that if no release branching occurs, then
release merging can be eradicated. Thus, it was suggested
that all releases ought to work on a single mainline. However,
there are two important barriers:
1) Examining the codes shows the presence of tangling and

scattering. The realization of requirements (i.e. features)
are scattered across different parts of the software, which
is built by different members. There is very little
assurance that changes originating from one release do
not affect the behavior of the previous release if releases
were to work on the same mainline.

2) Release managers like the use of separate branches
because it allows changes in each release to be
completely isolated and they feel they have good control
of the release schedule and quality. Thus, they oppose
the idea of working on a single mainline.

One possible solution is to ensure that there is no overlap
between successive releases. However, due to the long time
frame to stabilize the hardware, which is developed in
parallel, and market needs for large number of features, the
overlap in this particular software product line cannot be
eliminated.

III. THE SOLUTION: FEATURE SEPARATION
Our recommended solution taken was to preserve the

separation of features (and their variants) in requirements all
the way to code and test. This allows the development
different releases on the same mainline without affecting
each other. Our approach is known as feature separation. Its
basic idea is to preserve the separation of features seamlessly
to code and test, which was first discussed in [7]. The
contribution of our paper is to demonstrate how this solution
is applicable on a large scale legacy system – specifically a
legacy software product line evolved under tight
development schedules.

A. The Basic Idea of Feature Separation
Fig. 3 shows a traditional development approach, whereby

a product version requires changes to 2 existing features.
These two features are realized by different parts of the
source code (e.g. different folders or files). Regardless of the
size of the change, the system has to be tested.

The many-to-many relationships (i.e. scattering) depicted
in Fig. 3 create a number of problems. Firstly changes are
amplified necessitating extensive testing effort. Secondly, the
complex relationships pose a traceability overhead, which the
teams are reluctant to pay because they have to test the whole
system anyway. Thirdly, inexperienced developers who have
yet to learn the relationships tend to introduce bugs into the
product.

Fig. 4 shows an alternative approach using feature
separation. A product version is still free to select different
feature variants in the feature model. However, features,
source code and tests are structured such that they are aligned
to one another, thus reducing scattering. The ideal case
occurs when there is one-to-one relationship from features to
code and test.

The application of feature separation requires:
1) A good feature model structure whereby source code and

test structures can be aligned. This is achieved through
the use of several feature patterns.

2) A systematic approach to align source code with the
feature model structure. This is achieved through feature
separation mechanisms

In addition, it is important to have strategies to deal with
legacy code and ways to manage the evolution of the
software product line (i.e. from feature model, to source code
and test.)

Product
Version

Feature
Model

TestSource
Code

Fig. 3. Traditional development.

Product
Version

Feature
Model

TestSource
Code

Fig. 4. Feature separation

IACSIT International Journal of Engineering and Technology, Vol. 6, No. 2, April 2014

100

B. Feature Separation Patterns
As mentioned, feature separation requires establishing

well structured feature model. This feature model can be
constructed using several feature patterns, which are
categorized as follows [7]:
1) Peer features – These are features that have separate and

distinct from the user point of view, but their realization
touches the same pieces of code. In general, there would
be mechanisms like dispatchers to invoke these distinct
features. There would be reusable elements that are
invoked by the features.

2) Extension features – These are features that are
enhancements of existing features. In the simplest case,
it requires that existing code invoke the extension code.
In more complicated case, extension features may
decorate (modify) the behavior of existing code.

3) Feature interactions – This is a combination of peer and
extension features whereby two features by themselves
are separate and distinct. However, when both features
are activated, they modify each other’s behavior. One
possible solution is to treat them as extensions of one
another. Alternatively, a coordination layer is added
between them.

4) Framework features. All software systems run on top of
some underlying framework. Framework features are
generally crosscutting. They are invoked just before
invoking each functional feature. Thus, this is a special
case of extension features by merely extending the
framework itself.

The idea is to keep the different kinds of features separate
at requirements time. In practice, this needs considering the
design limitations as well.

C. Feature Separation Mechanisms
Once an initial feature model exists, evolving a software

product line is merely a simple act of attaching new features
(according to the patterns above) to the feature model. While
attaching a new feature node, the development team will also
attach a new corresponding realization element.

Fig. 5 shows a simple example whereby a Transmission
feature in Release 5 is being enhanced by a history tracking
feature in Release 6. Through simple inheritance, history
tracking in source code is kept separate from that of the
transmission feature. Separate factory classes in a product
configuration folder instantiate the required class for each
release. With such a seamless separation, the resulting from
requirements in Release 6 are isolated from that in Release 5.

class Transmitter {
void process() {

analyze() ;
calculate() ;
notify() ;

}
}

class TransmitterWHistory :
public Transmitter {

void process() {
createData() ;
storeData() ;
T::process() ;

}
}

Source
Code

Feature
Model

Transmission

History
Tracking

Rel. 5

Rel. 6

Fig. 5. Example of achieving feature separation through object inheritance

Inheritance is but one of the many techniques to achieve
feature separation. Issues involving multiple-inheritance
could be solved through C/C++ templates, and mix-ins.
There are other design patterns and idioms that available.

D. Dealing with the Legacy Code
As mentioned earlier, our software product line case study

involves significant legacy code that limits the ability to
apply feature separation directly. Some artifacts (i.e. source
code) through years of change have degenerated significantly,
exhibiting severe tangling, scattering and duplication.
Developers in this product line case study needed guidance to
balance between achieving ideal feature separation and
meeting their schedule deadlines.

As such, we identified a number of evolution strategies
categorized according to whether the existing artifact is
well-structured (Fig. 6) or poorly structured (Fig. 7). In these
figures, the shaded part represents the artifact for the
to-be-released version (e.g. Release 5), and the white part
shows the change being introduced by the new version (e.g.
Release 6). A rectangle shape denotes good structure and an
odd-shape denotes poor structure.

Our identified evolution strategies are described as:
1) Unstructured insertion – This is essentially squeezing

new code into the existing code. This is forbidden since
it turns good code into bad code. It is a habit which
developers need to break. However, at times when
schedule pressures are tight, this is inevitable.

2) Structured insertion – This is structured way of adding
new code, but it results in code bloat and god classes.
Though not recommended, it is still not as bad as the
previous case.

3) Unstructured extraction – This creates a new
function/class to introduce the change in the new release.

4) Structured extraction – This is a more elaborate form
than and is used when interfaces are well-understood or
when multiple variants are conceived.

5) Partial Re-Design – This re-designs part of the code and
keeps the enhancement separate.

6) Complete Re-Design – This is a complete re-design, and
is most risky. This requires both the developers of both
releases to work together.

Developers work with release managers to determine
which of the above strategies to use.

Unstructured

insertion
Structured
insertion

Simple
Extraction

Structured
Extraction

Fig. 6. Evolution strategies (when existing artifact is well-structured)

Unstructured
insertion

Structured
Insertion

Structured
Extraction

Partial
Re-Design

Complete
Re-Design

Fig. 7. Evolution strategies (when existing artifact is poorly-structured)

IACSIT International Journal of Engineering and Technology, Vol. 6, No. 2, April 2014

101

E. Managing Feature Development
As mentioned earlier, the manager of the current release

(Release 5) who is about to be released does not like to have
his work subject to changes which he could not control. One
the other hand, the manager of the newer release (Release 6)
favors mainline development because he can escape the
merging work.

Feature Current
State

Modification
Approach Risk

F1

F2

F3

F4

Release 6 impact on Release 5

Fig. 8. Managing risks in evolution

To help alleviate current release (Release 5) manager’s

concerns, Release 6 manager shares his list of features, which
has information about the current state of the feature –
whether the codes to implement it is structured or
unstructured, what is the modification strategy, as explained
earlier, and the risk (high, medium low).

With this information, both release managers are able to
schedule when features are being developed. The idea is
prevent risky features from being introduced into the
mainline near any release date. Risky changes are schedule
way before a release date or after a release date. Usually,
large risky changes are broken down first.

F. Measuring Feature Development
During the evolution of the product line, measures are

tracked to ensure smooth development and to detect
problems that may occur. These measures are depicted in Fig.
9.

Fig. 9. Managing the progress

Churn measures the amount of code changed by different

releases. It is used to check the actual period of overlap and
amount of code that has changed during the overlapping
period. The code churn by the current release represents
savings since this amount of code no longer needs merging.

Defect rates measure the quality and the effectiveness of
feature separation by identifying who detects defects versus
who is the source of defects.
1) Quadrant A – This is savings for Release 6 since Release

6 no longer needs to merge the fixes.

2) Quadrant B – This is savings for Release 5 since merging
from Release 6 to Release 5 is also eliminated.

3) Quadrant C – This is business as usual if Release 6
detects its own defects.

4) Quadrant D – This is a red light when Release 5 has
defects introduced by Release 6.

Complexity is about measures of tangling, scattering and
duplication. Through feature separation, files would become
smaller and the cyclo-metric complexity of each method
would go lower simply because tangling is reduced. Code
duplication would be reduced as well, but sometimes
developers may create to copies of the same code under
schedule pressure.

IV. THE EXPERIENCE AND RESULTS
We introduced the concept of feature separation to the

teams in the Data Transmission block (see Fig. 1), who had
about 80 developers assigned to Release 5 and the same
number of Release 6. The teams were distributed across three
different cities to be in close proximity with their product
variants.

The overlapping period between Release 5 and 6 occurs
was about 4 months. During this time, Release 5 introduced
200 KSLOC in new features, and fixed 1000 defects. This
amounted to savings of about 50 man months since merging
was eliminated. However, Release 5 detected 4 defects
introduced by Release 6. This was analyzed in detail and it
was found that the reason was because the corresponding
features were not well separated in code.

Overall, the development teams were very encouraged by
the results. Developers now put more emphasis on design
considerations, as opposed to merely implementing features.
Feature separation spread throughout the organization
quickly and was adopted by the entire software stack (see Fig.
1) across various departments.

Feature Separation is not the only practice which the teams
use. Both releases 5 and 6 had adopted an iterative style of
development. They also have a well fortified continuous
integration environment in place to detect low level problems
quickly, which gives developers feedback that their features
are separated adequately in code. This reduces risks and is in
fact is an important pre-condition for introducing feature
separation.

V. CONCLUSION AND FUTURE WORK
We have just shown how feature separation is used to deal

with the evolution of a telecommunication product line. The
results were promising and well received by the organization.

In our case study, human resources were organized by
releases. Now that the teams are working on the mainline,
there is no longer a necessity to split human resources by
releases. A new way to organize developers would be needed.
Moreover, testing for different releases would also be
conducted in parallel and on the mainline. This necessitates
changes to test planning. Thus, there is still a lot of room for
research and improvement to cover different aspects of
product line evolution.

IACSIT International Journal of Engineering and Technology, Vol. 6, No. 2, April 2014

102

IACSIT International Journal of Engineering and Technology, Vol. 6, No. 2, April 2014

103

REFERENCES

[1] K. Pohl, G. Bockle, and F. V. D. Linden, Software Product Line
Engineering, vol. 10. Springer, 2005.

[2] L. P. Chen, M. A. Babar, and N. Ali, “Variability management in
software product lines: A systematic review,” in Proceedings of the
13th International Software Product Line Conference, Carnegie
Mellon University, 2009, pp. 81-90.

[3] J. Bosch, “Maturity and evolution in software product lines:
Approaches, artefacts and organization,” Software Product Lines, 2002,
pp. 247-262.

[4] Pussinen, Mika, “A survey on software product-line evolution,”
Tampere University of Technology, 2002.

[5] C. Elsner, G. Botterweck, D. Lohmann, and W. S. Preikschat,
“Variability in time—product line variability and evolution revisited,”
2010.

[6] G. Botterweck, A. Pleuss, D. Dhungana, A. Polzer, and S. Kowalewski,
“Evofm: Feature-driven planning of product-line evolution,” in

Proceedings of the 2010 Icse Workshop on Product Line Approaches in
Software Engineering, ACM, 2010, pp. 24-31.

[7] I. Jacobson and P.-W. Ng, Aspect-Oriented Software Development with
Use Cases (Addison-Wesley Object Technology Series),
Addison-Wesley Professional, 2004.

Pan-Wei Ng received his Ph.D. from Nanyang
Technological University. He is a software
engineering coach and advisor with large
organizations in Asia Pacific helping them with
scaled agile transformations, product line
requirements, architecture and testing. He is the
author of “Aspect Oriented Software Development
with Use Cases” and “The Essence of Software
Engineering: Applying the SEMAT Kernel”.

