
  

  
Abstract—Designing two-way slabs under transverse 

concentrated loads is one of the challenges in designing such 
structures. No certain method can be found in the design codes 
or references for designing two-way slabs subjected to 
concentrated loads. However, plastic method can be the best 
method for designing such cases of two-way slabs. This method 
requires various formulas for different conditions of RC slab 
and so, is practically not simple and not usable in designing 
offices. In this paper, plastic method is used for different 
conditions of RC slabs and also various dimensions, in order to 
derive the essential formulas followed by calculating the 
positive and negative moment coefficients for concentrated 
loading located in different points of a two-way slab. The 
efficiency of this method is shown by a numeric example at the 
end of the paper. 
 

Index Terms—Concentrated loading, plastic method, RC 
two-way slab, yield lines.  

 

I. INTRODUCTION 
Accurate analysis of two-way slabs having different 

continuity conditions at their edges is very difficult and for 
practical purposes is almost impossible. Thus, there are 
several simplified methods for determining the moments, 
shear forces and support reactions [1]-[2]. The methods used 
for designing RC members are mostly based on elastic 
analysis of the structure subjected to the ultimate loads 
though, the actual behavior of an indeterministic structure is 
that when one or more member reach its bending resistance, 
the elastic diagrams of this part will change to some extend 
and so, the elastic analysis results cannot be used anymore. In 
such case if the structure has sufficient ductility, each time 
that the section reaches its bending resistance, the bending 
moments will redistribute until some plastic hinges or plastic 
lines form and, the structure becomes unstable. In such 
circumstances, the structure cannot resist any more load and 
collapses (see Fig. 1). Such type of analysis in which the 
bending moment diagrams at the failure point are used as a 
basis for the design, is called plastic analysis [3]. Although 
there are some other methods for analyzing and designing RC 
slabs subjected to concentrated load such as finite elements, 
finite difference methods, and also using the plate’s theory 
method, but still the best and most practical available method 
is the plastic method. 
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Fig. 1. Failure mechanism in a slab. 
 
In plastic method which is also known as the yield lines 

method, it is assumed that the resistance of the slab is 
determined by bending only, and the other factors such as 
shear or displacement should be considered separately. 

It must be noted that in the yield lines method the behavior 
of the slab can be considered better. Many of slab systems 
which cannot be analyzed with other methods such as 
equivalent frame method, direct method and moment 
coefficients method because of the slab specific shape or 
loading type, can be designed by plastic method. In fact, by 
the plastic method it is possible to design any type of slabs 
with any shape subjected to any type of loadings. 

Yield lines method is used for slabs which are reinforced at 
any direction, which means that the section area of the 
reinforcement is assumed constant per unit length, although 
the value of the reinforcement can vary in the upper face or 
the bottom face of the slab. It is also possible to use the yield 
line analysis for slabs with non-uniform reinforcement 
distribution, though it may be more difficult [3].  

 

 
Fig. 2. Triangular failure schema for concentrated load. 

 

II. YIELD LINE PATTERN FOR CONCENTRATED LOAD 
In the case of existence of a concentrated load, the schema 

of failure may include the yield lines around of the load. The 
failure schema that contains the curved yield lines for the 
negative moment and the radial yield lines for the positive 
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moment would be more critical than the failure schema with 
triangular segments among the yield lines [1], However, in 
this paper the triangular failure schema is used for the 
concentrated load and the calculations are based on this type 
of schema, (see Fig. 2). 
 

III. EQUATIONS FOR MOMENT COEFFICIENTS CALCULATION 
In this section, the relations of the plastic method for the 

rectangular slabs having simple or fixed supported edges are 
obtained. For this purpose, the internal work is considered 
equal to the external work based upon the following 
equation, 

∑ ∑ =+ δθθ Plmlm xyuyyxux

     

(1) 

where uxuy mm ,  are moments per unit length about the x and 

y axes, respectively, xy θθ , are the yield lines’ rotation angles 

about the x and y axes, respectively, xy ll ,  are the yield lines’ 

lengths along the x and y axes, respectively, P is the 
concentrated load and δ  is the displacement under the 
application point of the concentrated load. In this work, the 
slab is assumed to be isotropic, therefore, uuyux mmm == . 

For a rectangular slab with simple supported edges, the 
following relation can be obtained from (1), 
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where, 
b
ar = . For rectangular slabs with fixed supported 

edges, (1) results in the following equation, 
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By similar calculations the relations needed for other 
conditions of the slab edges, can be determined. 

IV. INTRODUCING DIFFERENT SLAB EDGES CONDITIONS 
In this paper different conditions of the slab edges are 

taken the same as are defined in [4] numbered 1 to 9. In all of 
these conditions of the slab edges, the four edges are 
supported and the fixing conditions only are different (see 
Fig. 3). 

 

 
Fig. 3. Different slab edges conditions. 

 
Case 1: None of the edges are fixed (see Fig. 3-a). 
Case 2: All of the four edges are fixed (see Fig. 3-b). 
Case 3: The two shorter edges only are fixed (see Fig. 3-c). 
Case 4: The two adjacent edges only are fixed (see Fig. 

3-d). 
Case 5: The two longer edges only are fixed (see Fig. 3-e). 

Case 6: One of the longer edges only is fixed (see Fig. 3-f). 
Case 7: One of the shorter edges only is fixed (see Fig. 

3-g). 
Case 8: One of the longer edges only is not fixed (see Fig. 

3-h). 
Case 9: One of the shorter edges only is not fixed (see Fig. 

3-i). 
 

V.  MOMENT COEFFICIENTS TABLES 
Base upon the equations provided in the previous section, 

the values of moment coefficient are calculated for various 
ratios of dimensions of two-way slabs from 0.55 to 1, 
concentrated load located in different positions of the slab, 
and different conditions of the edges supports as shown in the 
Tables I to IV as samples. Similar tables can be prepared for 
the other cases. The location of the concentrated load is 
defined by the parameters m and n as shown in Fig. 2. 

It must be noted that the factors calculated for parameters 
m and n in the tables are in values of 0.1 to 0.5 only, because 
the moments for intervals of 0.5 to 1 are the same, regarding 
geometry of the slab.  
 

VI. NUMERICAL EXAMPLE 
A rectangular RC slab having dimensions of 8.5m × 5.5m 

for which only two adjacent edges are fixed supported is 
subjected to a concentrated load of 900kN at a point as shown 
in Fig. 3. In this example, the weight of the slab is not 
accounted for. Reinforcements for positive and negative 
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In which um  is the positive moment per unit length along 
the yield lines and the other parameters are defined as in Fig. 
2. If it is assumed that Pfmu .= , then the factor f can be 
found from the following equation, 

   

In which, −
um  is the negative moment per unit length for 

the fixed supported edges and +
um  is the positive moment per 

unit length. In this paper it is assumed that the reinforcement 
in the slab is such that the slab edges can resist negative 
moment about 1.5 times of the positive moment 

)5.1( +− = uu mm . So, (4) results in, 



  

moments at the edges are calculated as follows. 
Parameters needed for calculating the factor f can be found 

as follows, 

 
TABLE I: CONCENTRATED LOAD COEFFICIENTS FOR SLAB CASE 1 

  r 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 
m n f 

0.1 

0.1 0.038 0.0397 0.0411 0.0423 0.0432 0.0439 0.0444 0.0448 0.0449 0.045 
0.2 0.0423 0.0449 0.0473 0.0494 0.0513 0.0529 0.0544 0.0556 0.0567 0.0576
0.3 0.0438 0.0468 0.0495 0.0521 0.0544 0.0565 0.0584 0.0601 0.0617 0.063 
0.4 0.0445 0.0476 0.0505 0.0532 0.0557 0.0581 0.0602 0.0621 0.0639 0.0655
0.5 0.0446 0.0478 0.0508 0.0536 0.0561 0.0585 0.0607 0.0627 0.0645 0.0662

0.2 

0.1 0.0572 0.0585 0.0594 0.0599 0.06 0.0599 0.0595 0.059 0.0584 0.0576
0.2 0.0676 0.0706 0.0731 0.0752 0.0768 0.078 0.079 0.0796 0.0799 0.08 
0.3 0.0715 0.0753 0.0787 0.0816 0.084 0.086 0.0877 0.089 0.0901 0.0908
0.4 0.0732 0.0774 0.0811 0.0844 0.0873 0.0897 0.0918 0.0935 0.0949 0.096 
0.5 0.0737 0.078 0.0819 0.0853 0.0882 0.0908 0.093 0.0948 0.0963 0.0976

0.3 

0.1 0.0677 0.0685 0.0687 0.0686 0.0681 0.0674 0.0665 0.0654 0.0642 0.063 
0.2 0.0827 0.0856 0.0878 0.0895 0.0906 0.0913 0.0916 0.0916 0.0913 0.0908
0.3 0.0887 0.0926 0.096 0.0987 0.1008 0.1024 0.1036 0.1044 0.1049 0.105 
0.4 0.0913 0.0958 0.0997 0.1029 0.1055 0.1077 0.1094 0.1106 0.1115 0.112 
0.5 0.0921 0.0967 0.1007 0.1041 0.107 0.1093 0.1111 0.1125 0.1135 0.1141

0.4 

0.1 0.0731 0.0735 0.0734 0.0728 0.072 0.0709 0.0697 0.0684 0.0669 0.0655
0.2 0.0908 0.0935 0.0955 0.0968 0.0976 0.098 0.0979 0.0975 0.0969 0.096 
0.3 0.0981 0.102 0.1052 0.1077 0.1096 0.1109 0.1117 0.1122 0.1122 0.112 
0.4 0.1013 0.1059 0.1097 0.1128 0.1152 0.1171 0.1184 0.1193 0.1198 0.12 
0.5 0.1023 0.107 0.111 0.1143 0.1169 0.1189 0.1205 0.1215 0.1222 0.1224

0.5 

0.1 0.0747 0.075 0.0748 0.0741 0.0732 0.072 0.0707 0.0692 0.0677 0.0662
0.2 0.0934 0.096 0.0979 0.0991 0.0998 0.1 0.0998 0.0993 0.0985 0.0976
0.3 0.1011 0.105 0.1081 0.1105 0.1123 0.1135 0.1142 0.1145 0.1145 0.1141
0.4 0.1046 0.1091 0.1128 0.1159 0.1182 0.12 0.1212 0.122 0.1224 0.1224
0.5 0.1056 0.1103 0.1142 0.1174 0.12 0.122 0.1234 0.1243 0.1248 0.125 

 
TABLE II: CONCENTRATED LOAD COEFFICIENTS FOR SLAB CASE 2 

  r 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 
m n f 

0.1 

0.1 0.0152 0.0159 0.0164 0.0169 0.0173 0.0176 0.0178 0.0179 0.018 0.018 
0.2 0.0169 0.018 0.0189 0.0198 0.0205 0.0212 0.0218 0.0223 0.0227 0.023 
0.3 0.0175 0.0187 0.0198 0.0208 0.0218 0.0226 0.0234 0.0241 0.0247 0.0252
0.4 0.0178 0.019 0.0202 0.0213 0.0223 0.0232 0.0241 0.0249 0.0256 0.0262
0.5 0.0179 0.0191 0.0203 0.0214 0.0225 0.0234 0.0243 0.0251 0.0258 0.0265

0.2 

0.1 0.0229 0.0234 0.0238 0.0239 0.024 0.024 0.0238 0.0236 0.0233 0.023 
0.2 0.027 0.0282 0.0292 0.0301 0.0307 0.0312 0.0316 0.0318 0.032 0.032 
0.3 0.0286 0.0301 0.0315 0.0326 0.0336 0.0344 0.0351 0.0356 0.036 0.0363
0.4 0.0293 0.031 0.0325 0.0338 0.0349 0.0359 0.0367 0.0374 0.038 0.0384
0.5 0.0295 0.0312 0.0327 0.0341 0.0353 0.0363 0.0372 0.0379 0.0385 0.039 

0.3 

0.1 0.0271 0.0274 0.0275 0.0274 0.0272 0.027 0.0266 0.0262 0.0257 0.0252
0.2 0.0331 0.0342 0.0351 0.0358 0.0362 0.0365 0.0366 0.0366 0.0365 0.0363
0.3 0.0355 0.0371 0.0384 0.0395 0.0403 0.041 0.0415 0.0418 0.0419 0.042 
0.4 0.0365 0.0383 0.0399 0.0412 0.0422 0.0431 0.0437 0.0442 0.0446 0.0448
0.5 0.0368 0.0387 0.0403 0.0417 0.0428 0.0437 0.0444 0.045 0.0454 0.0457

0.4 

0.1 0.0292 0.0294 0.0293 0.0291 0.0288 0.0284 0.0279 0.0273 0.0268 0.0262
0.2 0.0363 0.0374 0.0382 0.0387 0.0391 0.0392 0.0392 0.039 0.0387 0.0384
0.3 0.0392 0.0408 0.0421 0.0431 0.0438 0.0444 0.0447 0.0449 0.0449 0.0448
0.4 0.0405 0.0424 0.0439 0.0451 0.0461 0.0468 0.0474 0.0477 0.0479 0.048 
0.5 0.0409 0.0428 0.0444 0.0457 0.0468 0.0476 0.0482 0.0486 0.0489 0.049 

0.5 

0.1 0.0299 0.03 0.0299 0.0296 0.0293 0.0288 0.0283 0.0277 0.0271 0.0265
0.2 0.0373 0.0384 0.0392 0.0396 0.0399 0.04 0.0399 0.0397 0.0394 0.039 
0.3 0.0404 0.042 0.0432 0.0442 0.0449 0.0454 0.0457 0.0458 0.0458 0.0457
0.4 0.0418 0.0436 0.0451 0.0463 0.0473 0.048 0.0485 0.0488 0.049 0.049 
0.5 0.0422 0.0441 0.0457 0.047 0.048 0.0488 0.0493 0.0497 0.0499 0.05 

 

 
Fig. 4. Numerical example. 
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So, the factor f from the Table IV is determined as 0.0574, 
thus, 

 
.0.0574 0.0574 900 51.66u

kN mf m
m
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As the negative moment is assumed 1.5 times of the 

positive moment, therefore, the negative moment per unit 
length is calculated as follows, 
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TABLE III: CONCENTRATED LOAD COEFFICIENTS FOR SLAB CASE 3 
  r 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 

m n f 

0.1 

0.1 0.0282 0.0284 0.0284 0.0283 0.0281 0.0277 0.0273 0.0268 0.0263 0.0257
0.2 0.0347 0.0359 0.0367 0.0373 0.0377 0.0379 0.0379 0.0379 0.0377 0.0374
0.3 0.0374 0.039 0.0403 0.0413 0.0421 0.0427 0.0431 0.0434 0.0435 0.0434
0.4 0.0386 0.0404 0.0419 0.0432 0.0442 0.045 0.0456 0.046 0.0463 0.0465
0.5 0.0389 0.0408 0.0424 0.0437 0.0448 0.0457 0.0464 0.0468 0.0472 0.0474

0.2 

0.1 0.0375 0.0369 0.0361 0.0352 0.0343 0.0333 0.0323 0.0313 0.0303 0.0294
0.2 0.0501 0.0505 0.0506 0.0503 0.0499 0.0492 0.0485 0.0476 0.0467 0.0457
0.3 0.0558 0.0569 0.0576 0.0579 0.0579 0.0577 0.0572 0.0566 0.0559 0.0551
0.4 0.0585 0.06 0.061 0.0617 0.0619 0.0619 0.0617 0.0613 0.0607 0.06 
0.5 0.0593 0.0609 0.0621 0.0628 0.0632 0.0632 0.0631 0.0627 0.0622 0.0615

0.3 

0.1 0.0418 0.0406 0.0394 0.0381 0.0368 0.0355 0.0342 0.033 0.0318 0.0307
0.2 0.058 0.0578 0.0572 0.0564 0.0553 0.0542 0.053 0.0517 0.0504 0.0491
0.3 0.0658 0.0663 0.0664 0.0661 0.0655 0.0646 0.0636 0.0625 0.0613 0.06 
0.4 0.0695 0.0705 0.0709 0.071 0.0706 0.07 0.0692 0.0682 0.0671 0.0659
0.5 0.0706 0.0718 0.0723 0.0724 0.0722 0.0717 0.0709 0.07 0.0689 0.0677

0.4 

0.1 0.0438 0.0424 0.0409 0.0394 0.0379 0.0365 0.0351 0.0338 0.0325 0.0313
0.2 0.0618 0.0613 0.0604 0.0592 0.0579 0.0565 0.055 0.0535 0.052 0.0505
0.3 0.0708 0.071 0.0707 0.07 0.069 0.0679 0.0666 0.0652 0.0637 0.0622
0.4 0.0752 0.0758 0.0759 0.0755 0.0748 0.0738 0.0727 0.0714 0.07 0.0686
0.5 0.0765 0.0773 0.0775 0.0772 0.0766 0.0757 0.0746 0.0734 0.072 0.0706

0.5 

0.1 0.0443 0.0429 0.0413 0.0397 0.0382 0.0367 0.0353 0.034 0.0327 0.0315
0.2 0.063 0.0623 0.0613 0.0601 0.0586 0.0571 0.0556 0.054 0.0525 0.051 
0.3 0.0724 0.0724 0.072 0.0712 0.0701 0.0689 0.0675 0.066 0.0644 0.0629
0.4 0.0769 0.0774 0.0774 0.0769 0.0761 0.075 0.0737 0.0724 0.0709 0.0694
0.5 0.0783 0.0789 0.079 0.0787 0.0779 0.0769 0.0757 0.0744 0.0729 0.0714

 
TABLE IV: CONCENTRATED LOAD COEFFICIENTS FOR SLAB CASE 4 

  r 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 
m n f 

0.1 

0.1 0.0183 0.0195 0.0206 0.0216 0.0225 0.0225 0.024 0.0247 0.0252 0.0257
0.2 0.0261 0.0279 0.0295 0.031 0.0324 0.0324 0.0347 0.0357 0.0366 0.0374
0.3 0.0302 0.0323 0.0342 0.0359 0.0375 0.0375 0.0403 0.0415 0.0425 0.0434
0.4 0.0326 0.0348 0.0368 0.0386 0.0403 0.0403 0.0432 0.0444 0.0455 0.0465
0.5 0.0339 0.0361 0.0381 0.0399 0.0416 0.0416 0.0443 0.0455 0.0465 0.0474

0.2 

0.1 0.0219 0.0232 0.0244 0.0254 0.0264 0.0264 0.0279 0.0285 0.029 0.0294
0.2 0.0339 0.036 0.0378 0.0395 0.0409 0.0409 0.0433 0.0443 0.0451 0.0457
0.3 0.0412 0.0437 0.0459 0.0478 0.0496 0.0496 0.0523 0.0534 0.0543 0.0551
0.4 0.0458 0.0484 0.0507 0.0528 0.0545 0.0545 0.0574 0.0584 0.0593 0.06 
0.5 0.0484 0.051 0.0532 0.0552 0.0569 0.0569 0.0594 0.0603 0.061 0.0615

0.3 

0.1 0.0233 0.0246 0.0258 0.0269 0.0278 0.0278 0.0293 0.0299 0.0304 0.0307
0.2 0.0374 0.0395 0.0414 0.0431 0.0446 0.0446 0.0469 0.0478 0.0485 0.0491
0.3 0.0464 0.049 0.0513 0.0533 0.055 0.055 0.0576 0.0586 0.0594 0.06 
0.4 0.0522 0.055 0.0574 0.0594 0.0612 0.0612 0.0638 0.0647 0.0654 0.0659
0.5 0.0557 0.0584 0.0606 0.0625 0.0641 0.0641 0.0663 0.067 0.0675 0.0677

0.4 

0.1 0.0239 0.0252 0.0265 0.0275 0.0285 0.0285 0.0299 0.0305 0.0309 0.0313
0.2 0.0389 0.0411 0.043 0.0447 0.0462 0.0462 0.0485 0.0493 0.05 0.0505
0.3 0.0489 0.0515 0.0538 0.0558 0.0575 0.0575 0.06 0.061 0.0617 0.0622
0.4 0.0554 0.0582 0.0606 0.0626 0.0643 0.0643 0.0668 0.0676 0.0682 0.0686
0.5 0.0592 0.0619 0.0642 0.0661 0.0675 0.0675 0.0695 0.0701 0.0705 0.0706

0.5 

0.1 0.0241 0.0254 0.0266 0.0277 0.0286 0.0286 0.0301 0.0307 0.0311 0.0315
0.2 0.0394 0.0416 0.0435 0.0452 0.0467 0.0467 0.0489 0.0498 0.0504 0.051 
0.3 0.0496 0.0522 0.0545 0.0565 0.0582 0.0582 0.0608 0.0617 0.0624 0.0629
0.4 0.0563 0.0591 0.0615 0.0635 0.0652 0.0652 0.0676 0.0684 0.069 0.0694
0.5 0.0603 0.063 0.0653 0.0671 0.0686 0.0686 0.0705 0.071 0.0713 0.0714

 
1.5 1.5 51.66 77.49 . /u um m kN m m− += = × =  

 
Now the reinforcement of positive and negative moments 

can be determined based upon a design Code. In this example 
CCI (Concrete Code of Iran) [5] is used. The thicknesses of 
the slab h, and the effective depth d are taken as 18cm and 
15cm, respectively. The concrete’s compressive strength fc 
and steel’s yield stress fy are 21MPa and 400MPa, 
respectively. Thus, 
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The plan of the slab’s reinforcement is shown in Fig. 5: 
 

 
Fig. 5. Reinforcement of the example. 

 

VII. CONCLUSION 
As no practical method for designing two-way RC slabs 

subjected to concentrated load can be found in RC books, 
publications and codes, in this research using the plastic 
method (yield lines method) which is an appropriate method 
for designing the slabs subjected to concentrated load, 
moment coefficients for different conditions of slab edges 
supports and various slab dimensions and different points of 
application of the loadings have been provided that can be 
used for designing RC slabs practically at the engineering 
offices. 
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