
  

  
Abstract—Traditionally, construction quality control relies 

on final inspection and rework if the output is not 
fit-for-purpose. However, this reactive approach does not 
guarantee compliance with the requirements. By focusing on 
checking to completed product, a proactive approach to prevent 
poor quality is thus hampered. Studies have shown that poor 
quality of key resources commonly results in a number of 
production-related problems. The premise of this paper is that 
inadequate resources, such as deficient material, will not only 
result in unacceptable product quality but also in wasted time 
for handling and repair. It investigates the causal relationship 
between process input (i.e. resource) and output quality, as the 
basis for a pro-active control scheme. A field test was executed 
to look specifically at the quality of a prefabricated material, 
steel reinforcing bars (rebar), as it relates to its staging for final 
assembly. A discussion of correlations between attributes of 
input quality regarding rebar and the productivity of placement 
will complete the paper. 
 

Index Terms—Causality analysis, dynamic quality control, 
multiple regression analysis, preventive control, resource 
control. 

  

I. INTRODUCTION AND BACKGROUND 
Quality control is vital for completing a project 

successfully [1]. In the 1950s, Deming [2] emphasised the 
significant effect of input (or resource) quality on other 
managerial aspects such as productivity, safety, and cost. As 
of today, the construction quality control is performed mostly 
through product inspections to assert if the final quality is 
acceptable according to the predefined requirement and/or 
standards [3]. This kind of reactive approach makes it 
impossible to identify and eliminate production problems that 
can result from poor resource quality. Bernold has shown that 
the deficiency of critical resource, such as an unskilled 
equipment operator, will impact the efficiency of an entire 
process [4]. Within an Input-Process-Output (IPO) 
framework, the collection of resources required to start and 
maintain an operation are considered process inputs or 
simply inputs. The objective of a competent manager is to 
secure high quality resources and control their use without 
creating process wastes that includes idleness, injuries and 
squandering materials.  

To ensure the effectiveness of managerial control, this 
presented work applies a proactive dynamic quality control 
(DQC) approach. The DQC relies on feed-forward 
information about the marshalled process inputs (resources) 
in order to predict problems. When input characteristic is 
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expected to affect the process output, this preventive control 
should be able to forecast an expected difficulty and 
recommend actions to avoid process disruptions beforehand 
[5]. The alternative is a corrective control approach to fix a 
problem reactively, which is more expensive and inefficient 
in the majority of cases[2], [5], [6].  

Because DQC is predictive in nature, it depends on 
intelligence that allows it to link the characteristics or quality 
of process inputs to the quality of the output. The knowledge 
can be based on causal relationships between input and 
output. This relationship has been established through a 
causality analysis designed to understand the essential 
mechanism of the process, and the future effect of the process 
inputs. The comprehensive understanding of process is one of 
the most significant requirements for preventive control not 
only in construction but also in medicine as prevention is 
much more effective than treatment. For example, a vaccine 
against the disease is able to be to protect people from further 
infection. 

The establishment of causalities has to consider the 
importance of individual and cluster relationships. In 
addition, priority of control need to be set [7] as it is almost 
impossible to deal with all required resources simultaneously. 
The following sections will present a causality model before 
discussing the hypotheses for this paper. 

 

II. THEORETICAL REVIEW AND HYPOTHESES 

A. Schematic Causality Model 
As most construction operations are repetitive in nature, 

the Input-Process-Output (IPO) modelling method is 
commonly used to study them. Fig. 1 integrates the IPO of a 
process with a structured map linking input factors with the 
output. Process inputs are clustered into work-in-process 
(WIP) and eight resource groups representing the 5M system 
which stands for Man (Humans), Machine (Equipment and 
Tools), Material, Management and Environment. Of course, 
each group has many members with similar characteristics. In 
particular, Group 1: Humans includes all about operators, 
drivers, labourers, supervisors, etc.  

Following the principles of the fishbone diagram method, 
each resource group is analysed separately, and the relevant 
main impact factors are graphed as arrows that feed into the 
associated master bone. For example, a crane operator, 
belonging to Group1: Humans, will control the upcoming 
process involving cranes in many ways. Besides, a human 
performance is ruled by a series of aspects such as motivation, 
health condition, education, and experience.  

Process output can be assessed using a variety of measures 
to include: a) production, b) productivity, c) quality, d) 
physical waste, e) delays, f) damages, g) noise, h) dust, and i) 
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injuries. The experimental analysis in this paper measured the 
productivity from observing workers. One has to expect that 
each outcome will be linked to its own list of resource factors 

to each with a different influence on process output. 
Naturally, this causality model is a simplification but is 
useful in explaining this module of the DQC model. 

 

 
Fig. 1. Partial Causality Diagram for Dynamic Quality Control 

 
In order to focus the experimental work, only a selected 

number of resource inputs were chosen: a) WIP, b) labourers, 
c) consumable material, and d) workspace. For the 
assessment of process output, the time study of workers 
placing rebar was conducted. To guide the experimental work, 
the following hypotheses were formulated. 
 
H1: Work in Progress (WIP) has a significant causal 
relationship with process productivity. 
 

H2: Labourers in the resource group 1: Humans have a 
significant causal relationship with process productivity. 
 
H3: Consumable material in the resource group 6: Material 
has a significant causal relationship with process 
productivity. 
 

H4: Workspace in the resource group 7: Environment has a 
significant causal relationship with process productivity. 
 

H5: Process productivity is able to be estimated by the 
causality analysis. 

B. Statistical Causality Analysis for Dynamic Quality 
Control (DQC) 
In this section, a statistical method is introduced to 

compute dimensional causality between process input and 
output. It is important to be consistent in the modelling 
analysis, and the data from process inputs gathered by 
observation should be measurable and repeatable. 
Furthermore, cases that require multivariate causality 
analysis require the statistical model to investigate and grasp 
the multiple relationships sufficiently.  

The following equations (1)-(3) represent mathematical 
models based on the causal relationship in Fig. 1. These 
equations are able to assign the weight of process input, 
which depicts its future effect on process output. For these 
reasons, in the manufacturing industry, the stream of 
variation (SoV) method has been actively applied to analyse 
causal relationships in the multi-stage processes. SoV 
analysis is conducted to reduce the variation across the 
process and to identify the variation flow and behaviour 
mathematically [8]. One the other hand, this research focuses 
on the features of process input to estimate its negative effect 
on process output. 

The features of process input are represented by Kij that 
stands for Aij, Bij, Cij…, and Nij. With these variables, process 
output is calculated as the matrix in Equation 1. Based on this 
matrix, Equation 2 presents the general causality equation. 

 

PO = ێێێۏ
ଵଵܣۍێ ଵଶܣ ଶଵܣଵଷܣ ଶଶܣ ଷଵܣଶଷܣ ଷଶܣ ଷଷܣ ⋯ ⋮ଷܣଶܣଵܣ ⋱ ⋮ܰଵ ܰଶ ܰଷ ⋯ ܰ ۑۑۑے

ێێێۏ ېۑ
ݔ⋮ଷݔଶݔଵݔۍ ۑۑۑے

ې   ێێێۏ
ݓ⋮ଷݓଶݓଵݓۍ ۑۑۑے

ې
 (1)

  

ܱܲೕ ൌ ൦  ሺܭ
ୀଵ;ୀଵ;ୀଵ

∙ ሻ൪ݔ   ݓ

ܯ ܹೕ ൌ ଵଵܣൣ ∙ ଵݔ  ܣଵଶ ∙ ଶݔ  ܣଵଷ ∙ ଷݔ  ⋯  ܰሺିଵሻ  ∙ ିଵݔ  ܰ  ∙ ሿݔ  ݓ
(2)

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 5, October 2013

542



  

ܱܲ ൌ  ൦  ሺܭ
ୀଵ;ୀଵ;ୀଵ

 ∙ ሻ൪ݔ    ݓ

ܹܲ ൌ  ሼሺܭ ∙ ሻݔ  ሺܭ௨ ∙ ሻሽݔ
ୀଵ ൩  ݓ 

(3)

where,   , , , , ,ij c ucK K K K A B C

and N Process Input

= = …

=
∪  

Kc: Controllable Resource Element 
Kuc: Uncontrollable Resource Element 

PO: Amount of Process Output 
wn: Inherent Process Error (Noise Factor) 
 
Equation (3) describes an equation that consists of 

controllable and uncontrollable variables. This equation is 
derived from Equation 2. Unlike noise factor (wn), some 
resource elements are impossible to control when their errors 
are accumulated. Kuc signifies this uncontrollable variable. 
To sum up, this sort of mathematical model is able to 
designate dimensional effects of process input.  

 

 
Fig. 2. Experimental Causality Model in Rebar Placement Work 

 

III. EXPERIMENTAL CAUSALITY ANALYSIS OF REBAR 
PLACEMENT WORK 

A. Description of Construction Site 
The experimental analysis in this paper focused on the 

rebar placement work for a multi-story building. The 
construction site is located in Kensington, New South Wales 
2052, Australia. As mentioned earlier, four process inputs 
were the subject of this experiment, which are WIP, labourers, 
consumable material (rebar) and workspace. For the process 
outputs, the sequence of workers placing rebar was observed. 
According to previous research [4, 9], rebar placement work 
is comprised of fourteen specified works as shown in Table I. 
Again, this list is sorted into three classifications, 
value-adding work effort, contributory work effort, and 
process waste. On the basis of this list, the time study was 
conducted focusing on beams in rebar placement work. Three 
beams were selected, and the man-hour spent was measured.  

B. Correlation Analysis and Hypothesis Testing (H1-4) 
Fig. 2 describes the structural causality model between 

process input and output. It also presents hypotheses in this 
experiment schematically. This model was organised by 

latent variable and observed variable. Correlation analysis 
was conducted within observed variables directly, so no 
estimation error was considered. Seven process inputs are 
designated into four input latent variables, and three output 
latent variables comprise thirteen outputs as shows in Fig. 2. 
In total, 91 hypotheses were verified as shown in Appendix.  

TABLE I: REBAR PLACEMENT WORK IN CONSTRUCTION 
Category of Work Classification 

A Direct Work Value-Adding Work Effort (η1)

B Carrying tools and materials within 
the staging area Contributory Work Effort (η2)

C Work related communications Contributory Work Effort (η2)
D Staging/rehandling with crane Contributory Work Effort (η2)

E Measuring and other minor 
contributory work Contributory Work Effort (η2)

F Walking empty-handed Process Waste (η3) 
G Searching for rebar Contributory Work Effort (η2)

H Obtaining tools and rebar outside 
the staging area Contributory Work Effort (η2)

I Waiting for tools, materials, etc. Process Waste (η3) 
J Correcting/replacing rebar Contributory Work Effort (η2)
K Idle (unexplained) Process Waste (η3) 
L Non-work related communications Process Waste (η3) 
M Reviewing the Drawings Contributory Work Effort (η2)
N Not observable NA 
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Table II represents the hypothesis testing of the 
relationship between labourers and process output. Among 
thirteen hypotheses, eight hypotheses have statistically 
significant results. Firstly, H2-1 is accepted, and the 
correlation coefficient is 0.624. This means a high available 
number of workers will increase the value-adding work effort. 
In regard to contributory work effort, four hypotheses were 
verified. All hypotheses are rejected. This means that the 
contributory work effort has a negative effect on available 
number of workers. For example, it is demonstrated that 
Category H (obtaining tools and rebar outside the staging 
area) reduced the number of workers at the level of -0.267. 

Three hypotheses on process waste were verified. H2-32 is 
accepted, and H2-33, 34 were rejected. Category K 
(Unexplained Idle) increased, as the number of available 
workers increased (0.262). On the other hand, Category I 
(Waiting for tools, materials, etc) and L (Non-work related 
communications) were influenced negatively by the number 
of workers at the levels of -0.223 and -0.432 respectively. 
The hypothesis testing of H2 shows that the labourers are 
important to increase the value-adding work effort at the level 
of 0.624. Therefore, Category L (non-work related 
communications) should be controlled by priority, by the 
highest correlation coefficient (-0.432). 

TABLE II: HYPOTHESIS TESTING OF H2 
[H2] Labourers have positive causal relationship with 
process output. Co. Sig. 

[H2-1] Labourers have positive causal relationship with 
value-adding work effort. .624 Sig** 

[H2-2] Labourers have positive causal relationship with 
contributory work effort. D, G, H, and J 

[H2-21] Labourers have positive causal relationship with 
B. -.053 Non-Sig

[H2-22] Labourers have positive causal relationship with 
C. -.031 Non-Sig

[H2-23] Labourers have positive causal relationship with 
D. -.254 Sig* 

[H2-24] Labourers have positive causal relationship with 
E. -.110 Non-Sig

[H2-25] Labourers have positive causal relationship with 
G. -.216 Sig* 

[H2-26] Labourers have positive causal relationship with 
H. -.267 Sig* 

[H2-27] Labourers have positive causal relationship with 
J. -.223 Sig* 

[H2-28] Labourers have positive causal relationship with 
M. -.116 Non-Sig

[H2-3] Labourers have positive causal relationship with 
process waste. K, I, and L 

[H2-31] Labourers have positive causal relationship with 
F. .108 Non-Sig

[H2-32] Labourers have positive causal relationship with 
K.  .262 Sig* 

[H2-33] Labourers have positive causal relationship with 
I.  -.223 Sig* 

[H2-34] Labourers have positive causal relationship with 
L. -.432 Sig** 
**Correlation is significant at the 0.01 level (2-tailed).  
**Correlation is significant at the 0.05 level (2-tailed). 

 
Considering WIP, all hypotheses could not have any 

statistically significant results. Furthermore, it was verified 
that consumable material has an effect on process output. In 
particular, accessibility of resources strongly influences 
value-adding work effort (H3-11; 0.545), Category D (H3-23; 
-0.368; staging/rehandling with crane), and Category G 
(H3-25; -342; searching for rebar). As accessibility improves, 
productivity will increase. However, Category D and G will 
decrease with better accessibility. Workspace has a positive 

causal relationship with value-adding work effort at the level 
of 0.252. The following section presents an estimation model 
for productivity (value-adding work effort) based on this 
causality analysis. 

C. Value-Adding Work Effort Estimation Model and 
Hypothesis Testing (H5) 
Multiple regression analysis (MRA) was applied to this 

estimation model. This model aims to estimate the 
value-adding work effort (i.e. productivity) by the causal 
relationship between process input and output. Table III 
shows the result of MRA. The analysis shows that all 
variance inflation factors (VIFs) are less than 10. Thus, it is 
considered that no multicollinearity exists [10]. 

 
TABLE III: MULTIPLE REGRESSION ANALYSIS (MRA) FOR HYPOTHESIS 

TESTING OF H5 

Model 

Unstandardised
Coefficients 

Standardised 
Coefficients Significance 

level 

Multicollinearity

B Std. 
Error Beta eVIF 

Constant 2.565 1.169  .038  
bLabourers .221 .092 .284 .024 2.538 

cRebar 
Weight -.003 .002 -.212 .083 2.518 

cAccessibility .267 .115 .251 .028 2.116 
cLength -.229 .193 -.143 .245 2.633 

dWorkspace .407 .511 .105 .433 3.183 
B -.718 .354 -.184 .054 1.509 
C -.469 .170 -.335 .011 2.685 
D -.333 .251 -.148 .197 2.261 
E .167 .232 .068 .480 1.666 
F -.119 .151 -.072 .437 1.513 
G -.429 .135 -.349 .004 2.186 
H -.512 .234 -.205 .038 1.604 
I -.238 .190 -.150 .222 2.610 
J -.214 .160 -.127 .195 1.652 
K -.083 .165 -.050 .622 1.837 
L -.276 .189 -.154 .157 2.038 
M -.115 .191 -.058 .552 1.673 

a. Dependent Variable: A 
b. Labourers: Available Number of 
Workers  
 

c. Consumable Material: Rebar 
Weight, Accessibility, and Length 
d. Workspace: Sufficiency 
e. Variance Inflation Factor (VIF)

 
Through the coefficients, the amount of influences of each 

variable on productivity is able to be identified. Focusing on 
process inputs, the labourers have the highest standardised 
coefficient, 0.284. This means adding one labourer increases 
productivity by 2.84%. Among process outputs, the 
coefficient for Category G (searching for rebar) was -0.349, 
and turned out to the most influential variable. 

p 1 3 7 11 12A α β (Labourers) β (Accessibility) β C β G β H= + + + + +
(4) 

Equation 4 represents the estimation model from the MRA. 
The R-squared of this MRA is 0.863. This means that the 
estimation of this model is able to explain 86.3% of actual 
productivity. In other words, the 86.3% of dependent variable 
is determined by the independent variables of this analysis. 
Table III offers the result of the external model validation. It 
shows that the estimated productivity is 39.7% compared to 
the measured productivity of 39.5%. 
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TABLE IV: EXTERNAL VALIDATION OF ESTIMATION MODEL 
 Actual Productivity Estimated Productivity
N 20 20 
Mean .395 (39.5 %) .397 (39.7 %) 
Std. Error of Mean .024 .022 
Median .400 .409 
Std. Deviation .109 .099 
Minimum .200 .237 
Maximum .600 .545 
Sum 7.900 7.951 

 

IV. SUMMARY AND CONCLUSION 
Reactive inspection is still the main approach to ensure 

quality in construction. This paper discusses a proactive 
approach that applies the principles of dynamic quality 
control (DQC) and the casual relationship between process 
input quality and output quality. Based on the presented work, 

it is focused on the problem of establishing valid relationship 
functions. It is shown how the causality analysis is able to 
provide feed-forward information to activate pro-active 
control action. In addition, the analysis defines the extent of 
the effect of process input on output. Thus, DQC is able to 
prioritise different process inputs.  

The rebar placement process was selected as an example to 
demonstrate the concept. The causality analysis resulted in 91 
hypotheses that were subsequently tested with data that had 
been collected on a construction site. With a level of 0.624, 
the number of workers turned out to be the most influential 
resource factor impacting the amount of value-adding output 
factor (production). In a second step, the causality functions 
were used to predict the productivity of rebar placement. This 
model fitted the actual value well at the level of 86.3 %. The 
estimated productivity has only 0.2% difference compared to 
actual productivity.   

APPENDIX 
[CORRELATION COEFFICIENTS] 
Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
(1)ANo 1         
(2)Wei -.155 1        
(3)Acc .190 .062 1       
(4)Len .151 -.554** -.141 1      
(5)Suff -.044 .188 .600** -.274* 1     
(6)A .624** -.223* .545** .010 .254* 1    
(7)B -.053 -.073 -.126 .109 -.149 -.231* 1    
(8)C -.031 -.063 -.008 .250* -.035 -.184 -.022 1    
(9)D -.254* -.080 -.368** .165 -.158 -.361** -.053 -.145 1    
(10)E -.110 -.037 .071 -.122 .103 .020 -.069 .308** -.116 1    
(11)F .108 .134 .132 -.214* .067 .086 -.193 -.197 .123 -.137 1    
(12)G -.216* .281* -.342** -.317** -.138 -.435** .017 -.189 .158 .037 .028 1    
(13)H -.267* -.008 .075 -.012 .081 -.236* .025 -.148 -.070 -.147 .078 .046 1   
(14)I -.223* -.070 -.115 .086 .102 -.180 -.065 -.312** .317** -.043 -.113 -.069 .297** 1  
(15)J .262* -.047 .079 .043 .128 .171 -.127 -.148 -.071 -.178 -.039 -.142 -.141 .039 1 
(16)K -.119 .139 -.155 -.051 -.200 -.124 .016 -.072 .035 -.023 .007 -.055 -.265* -.233* .117 1
(17)L -.432** -.050 -.099 -.050 -.062 -.220* -.151 -.131 -.084 -.022 -.210* -.058 .238* .106 -.124 .037 1 0.00
(18)M -.116 -.123 .041 .097 -.092 -.013 .045 .194 -.135 -.205 -.036 -.226* .034 -.261* -.262* -.061 .177 1

**Correlation is significant at the 0.01 level (2-tailed). 
(1)ANo: Available Number of Workers 
(2)Wei: Rebar Weight 

**Correlation is significant at the 0.05 level 
(2-tailed). 
(3)Acc: Accessibility  
(4)Len: Length 

 
(5)Suff: Workspace Sufficiency 
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