
  

  

Abstract—Thin spherical shells usually fail due to buckling. 
An empirical equation to predict their buckling load is derived 
based on the theorem of work done and energy released in the 
inversion of a section of a shell and nonlinear finite element (FE) 
modeling done using ABAQUS to determine their post-buckling 
behavior. It is observed that the initial buckling is sensitive to 
initial geometrical imperfections but the post-buckling load is 
little influenced. Therefore, the post-buckling load is used to 
predict a more realistic load as compared to classical buckling 
theory prediction 
 

Index Terms—Imperfections, non-linearity, post-buckling, 
thin spherical shells 
 

I.  INTRODUCTION 
Thin spherical shells are widely used in many engineering 

branches. Their failure is mainly due to buckling. In design, 
the buckling behavior of the shells is the determining factor 
[1] and the buckling load is closely associated with the 
establishment of its load-carrying capacity. Experiments to 
determine the buckling load of shells have shown that the 
load is usually overestimated by the classical buckling theory 
[2]. The explanation of this overestimation is mostly pegged 
on the concepts of non-linearity and imperfection sensitivity 
[3]. Nonlinear analysis helps to avoid over designing [4] by 
making it possible to study the post-buckling behavior of 
shells. This analysis is done by conducting finite element (FE) 
modeling. In this study, an approach based on the theorem of 
work done and the energy released in the inversion of a 
section of a shell inform of a dimple is adopted in order to 
derive an empirical formula for the prediction of the buckling 
load. This theorem is used because one of the post-buckling 
deformed shapes is a dimple. FE modeling using ABAQUS is 
conducted to validate the empirical formula. 

 

II.    EMPIRICAL PREDICTION OF THE BUCKLING LOAD 

A. Strain energy Released 
As observed by [5], buckling occurs when most of the 

strain energy, which is stored as membrane energy, is 
converted into bending energy required by large deflections. 
The total energy U is given as: 

b sU U U= +                     (1) 

where Ub is the bending strain energy and Us is the in-plane 
elastic energy. According to [6], if a tensile stiffness of order 
Young’s Modulus (E)×membrane thickness (t) is considered 
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before the buckling threshold is reached, a concentrated force 
(P) induces a bending deformation of amplitude w0, which 
extends over a distance d as shown in Fig. 1. Then, the 
in-plane strain is of the order of w0/R and the local mean 
curvature of the order of w0/d2. The bending energy and the 
in-plane elastic energy for the deformed surface of area d2 
are: 
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where k is the bending stiffness = Et3/[12(1-ν2)] and  
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As shown in Fig. 1, the radius of the inversed region can be 
expressed as: 
 

sinr R Rα α= ≈             (4) 
 

The deformation amplitude is: 
 

( ) 2
0 2 1 cosw R Rα α= − ≈            (5) 

 
Fig. 1. Inversion of a section of spherical shell 

 

Similarly, radial pressure (q) applied to a spherical shell 
changes the shape of the shell, which results in a strong 
in-plane stretch and bending of the membrane over a narrow 
strip of radius r and size d as shown in Fig. 1. Assuming that 
most of the elastic energy is concentrated in the strip as 
shown in Fig. 2, the order of magnitude of the displacement 
of a point within the strip is dα ≈ dr/R. The in-plane strain is 
given by (dr/R)/R and the mean curvature is (dr/R)/d2. 
Therefore, the out-of-plane bending energy and the in-plane 
elastic energy are given as: 
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and 
2 3 3

2 4
m

s
Et r drdU Et rd

R R
⎛ ⎞= =⎜ ⎟
⎝ ⎠

           (7) 

Therefore: 
 

3 3 3 3

2 4
b mEt r Et r d

U
dR R
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According to Holst and Calladine [7], Energy released in 
the inversion of a section of a spherical shell by a radial force 
is given by: 

2.5 1.5
0Et wU

R
=            (9) 

It can therefore be assumed that Eq. (8) and Eq. (9) are 
equal. 
 

 
Fig. 2. Strain energy magnitude concentration. 

B. Work Done in the Inversion of the Shell 
A force (F) does work (W) when the body undergoes a 

displacement (x) in the direction of the force. Thus, work can 
be expressed as: 

0

r
W Fdx= ∫             (10) 

 

Pressure (q) is force per unit area (A): 
 

Fq
A

=                (11) 

 

Substituting for F in Eq. (9): 
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Therefore: 
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C. Application of Theorem of Work and Energy 
According to the theorem of work done and energy 

released, the work done in the inversion of the shell is the 
same as the strain energy released [8]. Therefore: 
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Substituting Eq. (4) and Eq. (5) into Eq. (14) and solving 
for q: 
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The buckling load can now be finalized as: 
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where: 
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α is the angle subtended by the inversed region to the center. 
The value of C that is given by [9] who based their derivation 
on post-buckling load is used to give a more realistic 
buckling load. 
 
 

III. NON-LINEAR FINITE ELEMENT (FE) MODELING 
The post-buckling behavior of thin spherical shells was 

investigated by conducting FE modeling using ABAQUS. 
Several thin spherical shells made from mild steel of E = 206 
× 109 N/m2, fixed along the boundary, meshed with triangular 
shell elements-S3R [10] and subjected to uniform radial 
pressure were modeled. To facilitate the non-linear FE 
modeling, an initial geometrical imperfection in the form of a 
dimple was introduced. Riks method was used to trace the 
load-deflection curves, which are shown in Fig. 3. The 
summary of the buckling load obtained from the empirical 
formula that is the same as the average post-buckling load 
from the load-deflection curves is shown in Table I.    
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 c) L = 20m, f = 2.5m, R = 21.25m and t = 0.03m 
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 d) L = 20m, f = 1m, R = 50.5m and t = 0.02m. 

Fig. 3. Load deflection curves for different shells. 

 
TABLE I: VALUES OF THE BUCKLING LOAD FOR VARIOUS SHELLS 

Shell 
Geometrical parameters in m. Buckling load by the derived 

formula (kN/m2) 
Classical buckling theory load 

(kN/m2) 
Derived formula value Percentage (%) of 

Classical load L f t 

1 20 2.5 0.03 55 497 11 
2 30 3.0 0.04 36 262 14 
3 20 2.5 0.02 30 221 13 
4 20 1.0 0.02 5.4 39 14 

 

IV. DISCUSSION AND VALIDATION OF THE BUCKLING LOAD 
It is observed from the load-deflection curves that the 

initial buckling of the shells is sensitive to the initial 
geometrical imperfection but the post-buckling load is little 
influenced by the initial geometrical imperfections because 
the curves tend to meet at the ‘plateau’ load. The empirical 
prediction shows that the buckling load for spherical shells is 
proportional to t2.5. This is further proved by [11] in their 
study of determining a reduction factor of the classical 
buckling load if the t0.5 in that factor is taken out and 
multiplied by the t2 in the formula. Theoretical studies about 
the buckling load and experimental results by other 
researchers range approximately from 7 to 67% of the 
classical buckling as mentioned by [12], [13].  

The empirical formula derived gives a buckling load, 
which ranges between 11% - 14% of the classical buckling 
load depending on the geometrical parameters used. This 
prediction is within the range of theoretical predictions and 
experiments by other researchers. This shows that the 
empirical formula that is derived in this study is valid. 
 

V.    CONCLUSIONS 
The theorem of work done and energy released in the 

inversion of a section of the shell is used to derive an 
empirical equation for the buckling load. FE modeling is 
done to identify the post-buckling behavior. It is observed 
from the load-deflection curves that the curves form a 
‘plateau’ at the post-buckling load. This load is used to 
predict the buckling load, which is validated by FE modeling. 
The results of this equation correlate closely with results 
obtained both theoretically and experimentally from previous 

studies. Further work can be done to extend this empirical 
formula to predict the buckling load of single-layer 
reticulated shells using the continuum analogy method. 
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