
  

  
Abstract—This paper aims to investigate the dynamic 

buckling problems of linear beam system with initial axial force 
and uniform moment by the developed spline finite element 
method, which is employed to obtain the dynamic stiffness 
matrix. Second order effects of the axial force and moment are 
considered. The moment-frequency interaction diagrams in 
uniform axial force and moment are plotted. The effects of 
warping rigidity, torsional rigidity, axial tension and 
compression on moment buckling are investigated in detail. The 
spline finite element method is proved to be very efficient for 
the present problems and many interaction diagrams can be 
plotted easily. 
 

Index Terms—Beam, dynamic buckling, spline finite element.  
 

I. INTRODUCTION 
B-splines were first introduced by Schoenberg [1], [2] in 

1946 for solving certain data-fitting problems, especially in 
the case of uniform knots. Spline functions are convenient 
approximation and interpolation tools due to their continuity, 
capacity to handle local phenomena, good accuracy and 
convergence characteristics. Second-order linear buckling 
formulation is an important part in getting the symmetric 
tangential stiffness matrix due to initial stress in a nonlinear 
analysis [3]. Kim et al. [4] formed the static and dynamic 
stiffness matrices for the flexural-torsional dynamic buckling 
analysis of nonsymmetric cross-sectional thin-walled beams 
using power series method. Leung applied power series 
method to investigate the dynamic axial-moment buckling [5] 
and axial-torsional buckling [6] of linear framed structures. 
Yang and Leung [7] developed the spline finite element 
method to investigate the dynamic axial-torsional buckling of 
beams. The present paper investigates the interactive 
axial-moment dynamic buckling of beams of double 
symmetric cross-sections by spline finite element method. 
Second order effects of the axial force and moment are 
considered. The effects of shear lag, local buckling, and 
distortional buckling are not included. The spline finite 
element method is employed to obtain the dynamic stiffness 
matrix. The moment-frequency interaction diagrams in 
uniform axial force and moment are plotted. The effects of 
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warping rigidity, torsional rigidity, axial tension and 
compression are investigated. The method is proved to be 
very efficient for the present problems. 

 

II. ENERGY EQUATIONS 
Classical assumptions are applied to a doubly symmetric 

beam of cross-sectional area A, as shown in Fig. 1, with initial 
stresses due to bending moment M along x axis and axial 
force P along the centroid z axis. The density of material is 
indicated by ρ. The displacements, ux, uy and uz, of a generic 
point at cross-section z can be defined by the twist angle θ 
and the displacement u along x axis of the centroid of 
cross-section z is as 
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where, a prime denotes differentiation with respect to z. The 
axial deformation will not be considered.  The initial normal 
stress due to the axial force P, bending moments M is [8] τ0 

zz = 
P/A-My/Ix+Nx/Iy, in which Ix and Iy are the principal moments. 
This paper aims to develop the spline element method for 
interactive buckling of beams subject to axial load and 
moments, we shall only consider the case in 2D for simple 
presentation.  
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Fig. 1. A doubly symmetric thin beam of uniform cross-section 

 
The strain energy due to initial axial stress Uσ, the linear 

strain energy Ue and the kinetic energy T are respectively 
given by  
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where, Ip=Ix+Iy is the polar moment; GIt, EIy and EIw are the 
tortional rigidity, the flexural rigidity and the warping 
rigidity, respectively. 
 

III. DISPLACEMENT FIELD 
We denote the coordinates of the node points for splines on 

the interval [0, 1] by z0,z1,…,zn, which discretize the beam 
into n equi-sized sections with uniform span h, where 
h=zi+1-zi and zi=z0+ih, i=0,1,…,n-1.  Six auxiliary nodes, 
z-3<z -2<z-1 and zn+1<zn+2<zn+3, are necessary. The 
displacements u(z, t) and θ(z, t) are assumed to be 
approximated by 
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The cubic B-spline basis functions φi(z), i = -1, 0, 1, …, n-1, 

n, n+1, are defined by 
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IV. EQUATIONS OF MOTION 
To reduce the number of variables, it is advantageous to 

non-dimensionalize the variables in T, Ue and Uσ, by z = z/l, 
thus 
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where, P = Pl2/EIy, M = Ml2/rEIy, θ = rθ, κ = EIw/r2EIy, g = 
GItl2/r2EIy, λ = ω2ρAl4/EIy, r2 = Ip/A. According to the 
Hamilton’s principle [9], one has the equations of motion, as 

follows 
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For free vibration problem, (10) can be expressed as 
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where, M, K and Kσg+KσP(P)+KσM(M) are the mass matrix, 
stiffness matrix, and initial stress matrix, respectively. KD is 
the dynamic stiffness matrix. For nontrivial solution, det(KD) 
= 0, which presents the relation between λ, P, and M when 
buckling occurs. In subsequent studies, λ1/4, P1/2, and M1/2 
will be used as the primary parameters so that the spread of 
the curves is more uniform. 
 

V. NUMERICAL EXAMPLES 
Consider an I-section cantilever beam as shown in Fig. 1. 

The flange width b=4cm, the flange thickness t=0.5cm, the 
web depth hw=10cm, the web thickness tw=0.7cm, the 
distance between the shear centers of the flanges hs=11cm. 
l=100cm, A=11cm2, E=2.1x107N/cm2, G=8.4x106N/cm2, 
Ix=5.61cm4, Iy=168.66cm4, Ip=174.27cm4, It=1.4767cm4, 
Iw=161.3333cm6, r2=15.8427cm2, κ=0.06038, g= 2.2106. 
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Fig. 2. Moment buckling under axial compression (…warping major branch, 

— bending major branch) 
 

Fig. 2 presents that axial compression decreases the 
bending natural frequency while the warping natural 
frequency is not affected. On the other hand, it decreases the 
static bending buckling moment. When the axial 
compression parameter P1/2 is increased from 1.15 to 1.2, the 
major bending branch crosses the major torsion-warping 
branch. The major bending branch and the major 
torsion-warping branch exchange so that bending buckling 
moment parameter M1/2 decreases suddenly from 3.0667 to 
1.3569. Note that the slope of the interactive curves in both 
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bending and torsion-warping are not monotonic. 
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Fig. 3. Moment buckling under axial tension (…warping major branch, — 

bending major branch) 
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Fig. 4. Effects of warping rigidity on moment buckling (…warping major 

branch, — bending major branch) 
 
In Fig. 3, it is observed that the axial tension does not 

affect the warping natural frequency while the bending 
natural frequency is increased. On the other hand, it increases 
the static bending buckling moment.   

Fig. 4 shows the effects of the normalized warping rigidity 
ratio κ on the M-λ interaction due to the constant bending 
moment alone. κ does not affect the bending natural 
frequency when M = 0, but it increases the static bending 
buckling moment. κ increases both the torsion-warping 
natural frequency when M = 0 and the static torsion-warping 
buckling load. 
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Fig. 5. Effects of warping rigidity on moment buckling (…warping major 

branch, — bending major branch) 
 

Similarly, Fig. 5 presents the effects of the torsional 
rigidity ratio g on the M-λ interaction due to the constant 
bending moment alone. g does not affect the bending natural 
frequency when M = 0, but it increases the static bending 
buckling moment. On the other hand, g increases both the 
torsion-warping natural frequency when M = 0 and the static 
torsion-warping buckling load. 

 

VI. CONCLUSION 
The spline finite element method is employed to obtain the 

dynamic stiffness matrix for the investigation of interactive 
axial-moment dynamic buckling of linear beam system. The 
initial axial force and moment can be uniformly or 
non-uniformly distributed. The moment-frequency 
interaction diagrams in uniform axial force and moment are 
plotted. The effects of warping rigidity, torsional rigidity, 
axial tension and compression are investigated. The method 
is proved to be very efficient and many interaction diagrams 
can be plotted easily.  
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