
 
 

 

  
Abstract—In this paper, we will herein present an 

improvement of the containment test algorithm of Zalik et al. 
(2001) for the purpose of fast computation on the polygon shape 
datasets over the web environment. Experimental results show 
that the proposed method is faster than that of Zalik. It will be 
applied to perform the terrain query on a 3D WebGIS system. 
 

Index Terms—3D WebGIS, containment test, computational 
geometry, GIS.  
 

I. INTRODUCTION 
We begin with some definitions. 

Def. 1: A polygon jU  is a sequence of two-dimensional 

points ),( j
i

j
i

j
i yxM , oriented by a specific direction jDt , 

where jni ,1= , and jn  is the total number of vertices in 

the polygon. The sign (-) means the direction of polygon is 
counterclockwise. 

Def. 2: A polygon shape dataset can be expressed by a 

sequence { }ljU j ,1| =  where l  is total number of 

polygons, and φ=∩ ji UU , ji ≠ , li ,1= , lj ,1= . 

This article is motivated by looking for a fast containment 
test algorithm that works with a special geographic dataset 
namely the polygon shape (Def. 2) over the web environment. 
It can be used for further advanced analyses on the 
Web-based Geographic Information Systems (WebGIS) or 
three-dimensional WebGIS (3D WebGIS). The problem is 
recognized when we process the large polygon shape datasets. 
A lot of polygons may slow down the checking process and 
prevent the deployment of any analysis on the WebGIS. A 
fast containment test algorithm is required in this situation. 

There are a number of algorithms dealing with this 
obstacle such as Coded coordinate system method [1], 
triangle-based method [2], Approximate algorithm [3], Grid 
method [4], Convex Decomposition [5], Ray crossing [6], 
Sum of angles [7], [8], Wedge method [8], Swath method [9], 
Thin regular slices [10], Dual representation [11], Sign of 
offset [12] and Cell Based Containment Algorithm [13]. 
Among them, Cell Based Containment Algorithm (CBCA) 
was considered the most suitable method for online 
processing with large polygon shape datasets [13]. It belongs 
to the class of algorithms using pre-processing that means the 
map is organized into some segments, and the location of the 
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checked point in any segment will decide whether it is in a 
polygon or not. Every further checking requires )1(O  time 
complexity only. 

Despite the fact that CBCA is the effective algorithm for 
large polygon shape datasets, it can be ameliorated further 
through some modifications in the border cells determination 
process. Our contribution in this paper is a novel containment 
test algorithm that integrates a new procedure to specify the 
border cells with parallel computing. It will be compared 
with CBCA by experiments to verify the efficiency. This 
method will also be applied for the terrain query in a 3D 
WebGIS system, aiming to retrieve the attribute information 
related to a terrain. 

The rests of this paper are organized as follows. Section 2 
briefly introduces CBCA method of Zalik. The novel method 
CBA will be presented in Section 3. The evaluations of 
computational complexity and experiments will be given in 
Section 4. Section 5 presents an application of CBA for the 
terrain query. Finally, we will make conclusions and future 
works in the last section. 

 

II. OVERVIEW OF CBCA METHOD 
CBCA method has two main parts: i) Partitioning the 

polygon into a uniform grid; ii) Inclusion test for a given 
point. 

In the first part, a uniform grid is set up to cover the 
polygon. This grid contains a suitable number of cells that 
balance the time for the rasterizing process and the quality of 
inclusion test afterward. Indeed, the number of cells is 
determined by a simple heuristic such as, 
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where n  is the number of polygon vertices and maxx  ( minx ) 
is the maximal (minimal) values of data points in the 
dimension x . Likewise, maxy  ( miny ) is the maximal 
(minimal) values of data points in the dimension miny . After 
the grid is created, the cells containing parts of the polygon 
border are determined as Grey. A sub-procedure so-called 
Code-based Algorithm, which in essence is an improvement 
of Bresenham method [14], was used for this task. It stores all 
cells in one way connected list and uses Bresenham algorithm 
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to find Grey cells. A comparison between two neighbouring 
Bresenham cells is then performed to detect the outliers. 
Final results are all Grey cells that consist of polygon’s 
border lines. 

The last step in the Initialization phase is to specify the 
inner cells (Black) and the outer ones (White). The authors 
used an improvement of the classical raster-based algorithms 
[7] for this task. The algorithm starts by moving from the 
borders of the grid in left, right, up, and down directions until 
a Grey cell is encountered. All the traversed cells are marked 
as White. The flood-fill algorithm of Foley et al. [7] is then 
applied to detect the outliers in the unclassified cells. Four 
rays from the middle point of the unclassified cell are sent in 
four directions; left, right, bottom and top until they meet the 
first White cell. The ray, which crosses the smallest number 
of cells, is accepted for the final estimation. The number of 
intersections between the chosen ray and the edges stored in 
Grey cells is counted by Ray Crossing method [6]. If the 
number of intersections is even, the cell has the same color as 
the cell at which the ray stops. Otherwise, the color is inverse. 
The flood-fill algorithm stops when all cells are marked. 

In the second part, the inclusion test specifies the cell in the 
grid containing the tested point q  and returns the result 
following by the cell’s color. 

 

III. CASE BASED ALGORITHM 
Throughout the previous section, we recognize that the 

first part of CBCA can be ameliorated by incorporating 
parallel computing with a new procedure of border cells 
determination. Specifically, after the grid is formed as in the 
Initialization phase of CBCA, we divide all polygons into 
some processors or computers of a parallel system. Polygons 
are sent to the processors following by their identification 
codes (ID) one after another. The merging process in the 
Master processor will combine all different grids in all 
processors into a unique one by the following criteria: 

• If the cells ( )ji,  in all grids contain the zero and a 
positive value, the value of this cell in the final grid is 
the positive one. This number is the ID code of a 
ubiquitous polygon. The cell ( )ji,  is equivalent to the 
Black cell in this situation. 

• If all cells consist of the zero and a negative value, we 
adopt the negative one as the final value of the cell. 

• If many negative values are found in all cells, we record 
all these ones. In this case, a Grey cell containing many 
border lines of some polygons is recognized. 

• The cells, consisting of zero values only, will make the 
value of the final cell become zero. 

Ex. 1: Let us see the Fig. 1 and Fig. 2. These figures 
describe the marking results in two processors. In Fig. 1, 
these are three polygons with the ID codes from one to three. 
Their orientations are (+) (Def. 1). The inner cells are marked 
by the ID codes of polygons. The outer cells are assigned the 
zero values. The border cells are given by the negative values 
of the ID codes. Some cells are assigned more than a value, 
i.e. the cell (6, 6) in Fig. 1, where many border lines of 
polygons cross over. Fig. 2 shows the marking results in the 

second processor. In Fig. 3, the merging result is presented. 
For example, the values of cell (14, 5) in two processors are 
two and zero. Thus, the final value of cell (14, 5) in Fig. 3 is 
two. 

 

 

 
The marking process in a processor is similar to that in the 

first part of CBCA method. Its output is a grid whose cells are 
marked by ID code of the polygon that crosses over them. 
However, in order to enhance the performance of the 
algorithm, we use a new procedure to specify the border cells 
through some possible cases in the relation between the 
polygons and the grid. This procedure is integrated with the 
process of specifying the inner and outer cells in CBCA 
method, and is shown below. 

Step 1: For each polygon 

>=< jj
n

jj
j DtMMMU

j
,,..,, 21 , lj ,.1= , find the cell 

in the grid containing ( )yMxMM j
i

j
i

j
i .,.= , jni ,1=  

whose four grid’s nodes are: 

( ) ( ){ ,,,, j
ix

j
i

j
i

j
i YsXYX +  

( ) ( )}y
j

ix
j

iy
j

i
j

i sYsXsYX +++ ,,, , 

(3)

 
Fig. 3. The merging results in the Master processor 

 
Fig. 2. The marking results in the second processor 

 
Fig. 1. The marking results in the first processor  
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The [ ]  symbol refers to the truncation function to an 
integer value. However, if one of the following conditions is 
true, finding the cell containing the point j

iM  is ignored, 
and we turn to the next one. 
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Step 2: Mark these cells by the negative value of the ID 
code of polygon jU . 

Step 3: If the line connecting two consecutive vertices of 

the polygon ( )j
i

j
i MM 1, + , 1,1 −= jni  does not lie on the 

grid’s edge, mark all cells in the intersection between it and 
the grid by the negative value of the polygon’s ID code. 

• If the line intersects the vertical grid‘s edges, two left 
and right cells of the intersection points will be marked. 

• Otherwise, two up and down cells will be marked if the 
line crosses the horizontal grid‘s edges. 

• If the intersection points are the grid’s nodes only, we 
ignore the line and turn to the next one. 

Step 4: Handle some special cases of the polygon’s 
vertices as follows. 

• Case 1: If the intersections between a polygon’s edge 
and the grid are the grid’s nodes only, we mark all the 
cells in the diagonal through the middle points. For 
example, from two consecutive vertices ( )j

i
j

i MM 1, + , 

1,1 −= jni , we find a set of grid’s nodes ( ){ }j
i

j
i YX , . 

A middle point between two consecutive grid’s nodes 
or between a grid’s node and a polygon’s vertex is 
found, such as, 
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The cell containing this point can be totally determined as 
in Step 1. Similarly, we find other cells and mark them by the 
negative value of the polygon’s ID code. 

• Case 2: A grid cell may contain many polygon‘s 
vertices. If it was marked beforehand in Step 2, we do 
nothing. Otherwise, mark the cell. 

• Case 3: Some polygon’s edges lie on the grid‘s edge. In 
this situation, the orientation jDt  of the polygon jU  

is utilized. This case can be solved by jDt  and the 
right-hand rule that means we will mark the cells which 
are pointed out by the perpendicular vector of the 
polygon’s edge. 

Step 5: Grey cells are totally marked. We then use the 
method in CBCA to specify the inner and outer cells. These 
cells are marked by ID code of polygon and zero value, 
respectively. 

Step 6: Store these marked values of the polygon, and 
clear all values in the grid. Repeat these steps for other 
polygons in the processor. 
 

 
Fig. 4. An example of CBA algorithm 

 
Ex. 2: An example of ID code determination process can 

be seen in Fig. 4. This figure is the enlargement of the 
polygon whose ID code is two in the first processor (Fig. 1). 
The polygon contains eight vertices. Step 1 of the above 
procedure will eliminate the grid’s nodes and the points that 
lie on the grid’s edges. Indeed, only the cells (14, 4), 
containing 4M , and (10, 8), containing 7M , are marked 

after the Step 2. Except the polygon’s lines ( )32 , MM , 

( )54 , MM  and ( )18 , MM , Step 3 will mark all the cells in 
the intersection between the polygon’s edge and the grid, 
such as the cells (16, 8), (16, 9), (16, 10) and (16, 11) with the 
line ( )21 , MM . In Step 4, Case 1 works with the line 

( )87 , MM . All the cells in the diagonal, i.e. (10, 8), (11, 9), 
(12, 10), (13, 11), will be marked. Case 2 will look for the cell 
(14, 4) where two polygon’s vertices 54 , MM  are 
contained. Nevertheless, this cell was marked in Step 1. Thus, 
nothing is performed in this case. In Case 3, the line 
( )32 , MM  lies on a vertical grid’s edge. As mentioned 
before, the orientation of this polygon is (+). Thus, the 
perpendicular vector points out to some cells, such as cell (16, 
5), (16, 6), (16, 7) and (16, 8). These cells are then marked by 
the negative value of the polygon’s ID code. Similar marking 
process will be applied for the line ( )18 , MM . All Grey 
cells in this polygon have been marked already. The inner 
cells, i.e. cell (15, 8), and the outer cells, i.e. (17, 9), are 
marked by the ID code of polygon and the zero value, 
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respectively through Step 5. 
The computational time of the pre-processing part will be 

reduced by the integration of parallel computing with the 
border cells determination procedure in the Case Based 
Algorithm (CBA). This helps accelerating the overall process 
and will be suitable for our considered context. 

 

IV. EVALUATIONS 

A. Time and Space Complexity 

Forming the grid requires ( )lnO ×  time complexity 

where n  is the number of vertices in a polygon, and l  is the 
number of polygons in a shape dataset. The division of the 
polygons into the processors and the merging process takes 

( ) ( )lnOlNoOfCellsNoOfCellsO yx ×=×× . In a 

processor, we have to specify the border, inner and outer cells 
of a polygon and number all of them. Step 1, 2 and Case 2 of 
Step 4 of this process requires ( )1O  time complexity. Step 3 
and Case 1, Case 3 of Step 4 obtains 

( ) ( )nONoOfCellsNoOfCellsO yx ≈+  time 

complexity in the worst cases and ( )1O  in the best ones. 

Step 5 requires ( )nnO × . The number of polygons 

assigned to a processor is [ ]kl / . Thus, the total complexity 

in a processor is [ ] ( )nnnOkl ×+×/ . Therefore, the 
overall time complexity of CBA is 

[ ] [ ]{ }( )nnnkllnO ×+×× /;max . The total space 

complexity of CBA is ( )lnO × . 

B. Experimental Setup 
We have implemented the proposed algorithm (CBA) in 

MPI/C programming language and executed it on a Linux 
Cluster 1350 with eight computing nodes of 51.2 GFlops. 
Each node contains two Intel Xeon dual core 3.2GHz, 2GB 
Ram. The experimental results are compared with those of 
CBCA algorithm, which has been recompiled to run in the 
same configurations with ours. The experimental data are 
taken from the Bolzano - Bozen province, including a vast of 
benchmark polygon shape datasets [15]. 

C.  CBA vs. CBCA by the Number of Vertices 
In this section, we compare the computational times of two 

algorithms in the pre-processing part following by the 
number of vertices of a polygon. Fig. 5 describes their serial 
times. Fig. 6 highlights the comparison of computational 
times of CBA using one, two, three and four processors. 
Results in Fig. 5 show that the serial computational time of 
CBA is slower than the one of CBCA when the number of 
vertices is smaller than 15821. However, CBA is faster than 
CBCA for the remains. For example, when the number of 
vertices is small, i.e. 22, the computational times of CBA and 
CBCA are 5.469 and 0.62 seconds, respectively. These times 
in cases of a medium number of vertices, i.e. 33023, are 
27.79 and 40.9 seconds, respectively. For the large number of 
vertices, CBA is still faster than CBCA, for example 50.14 

and 179.17 seconds in case of 94853 vertices. On average, 
the computational time of CBA is faster than that of CBCA 
by 2.31 times. 

 
Fig. 5. The serial computational times of CBA and CBCA (sec) 

 

 
Fig. 6. CBA with many processors by the number of vertices 

 
The average processing time per vertex of CBA is 0.00062 

seconds while that of CBCA is 0.0015 seconds. This means 
that it takes CBA around 0.00062 seconds to process a vertex 
in the polygon shape. This number is smaller than that of 
CBCA. Thus, more vertices are provided, the difference 
between two algorithms is getting obvious. When the number 
of vertices is very large, i.e. 94853, this difference is maximal. 
Through the figure, we can recognize that the amplitude of 
these lines is expanded following by the increment of the 
number of vertices. Obviously, the modification of the border 
cells determination process in CBA has ameliorated the 
computational times of CBCA as shown by the experimental 
results in Fig. 5. 

In the following experiments, we aim to find the answer 
for the question: “Can we reduce the computational time of 
CBA significantly with the support of parallel computing?”. 
Although the serial computational time of CBA is faster than 
that of CBCA, the processing times of CBA, especially in 
cases of a large number of vertices, are still large. For 
example, it takes CBA approximately 50 seconds to process 
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94853 vertices. Consider our problem that runs CBA over the 
web environment with a large number of vertices, it is 
necessary to speed up the whole algorithm. In this situation, 
the use of parallel computing is undeniable. 

In Fig. 6, the results of running CBA algorithm with one, 
two, three and four processors are illustrated. Obviously, 
more processors are used, less computational times are 
expensed. For example, the serial processing time of a small 
number of vertices, i.e. 22, is reduced by 25.4% when using 
two processors, 44.97% with three processors and 48.91% 
with four processors. Similarly, these numbers in cases of a 
medium number of vertices, i.e. 33023, are 27.11%, 49.43% 
and 51.37%, respectively. For a large number of vertices, the 
reducing percents are 28.64%, 45.39% and 48.69%. On 
average, using two processors will reduce the serial 
computational times by 25.67%. Using three and four 
processors will make larger reduction by 46.61% and 49.71%, 
respectively. The processing time of the case above (94853 
vertices) with four processors is now 25.7 seconds only. 
Obviously, the support of parallel computing helps 
accelerating the whole process, and makes the deployment of 
CBA over the web environment become reality. 

In what follows, we will find the most suitable number of 
processors for CBA algorithm. Because some additional 
computations such as communication cost and 
synchronization have to be paid, large number of processors 
is sometimes not as effective as the medium or small ones. In 
order to find the suitable number of processors, we use the 
speed up and efficiency. The speed up is defined as 

ps TTS /= , where sT  ( pT ) is the serial (parallel) 

computational time, respectively. The efficiency is 
determined as kSE /= , where k  is the number of 
processors. Results are depicted in Fig. 7 and Fig. 8. 

 
Fig. 7. The Speed up 

 
Through these figures, we can recognize that the speed up 

of using three processors is nearly double the one of two 
processors. However, the speed up value of four processors is 
approximately the one of three processors. Thus, we may 
predict that three or four processors is the critical state that 
means using more than this number of processors will not 
increase the value of speed up, but even reduce it. In Fig. 7, 

the “3 processors” line is better than the “4 processors” one 
when the number of vertices is smaller than 3000. For the 
remains, the “4 processors” obtains the best values. Therefore, 
we need to check the results in Fig. 8 for the final decision. 
This figure shows that the efficiency of “4 processors” line is 
the best among all other ones. Indeed, the suitable number of 
processors is four. 

 
Fig. 8. The Efficiency 

 
Some major conclusions extracted from this part are 

shown below. 
• The modification of the border cells determination 

process makes CBA faster than CBCA. 
• Parallel computing, especially with four processors, 

helps CBA deploy over the web environment. 

D.  CBA vs. CBCA by the Number of Polygons 
 

 
Fig. 9. The comparison of CBA and CBCA by the number of polygons 

 
In Fig. 9, we compare the computational times of CBA and 

CBCA in the pre-processing part following by the number of 
polygons. The results show that CBA is slower than CBCA 
when the number of polygons is small, i.e. below 50. The 
computational times of CBA and CBCA in this case are 
65.99 and 40.25 seconds, respectively. However, CBA is 
faster than CBCA when the number of polygons increases. 
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For example, when the number of polygons is 100, the 
computational times of CBA and CBCA are 129 and 491 
seconds, respectively. Similarly, these times are 534 and 
9213 seconds when the number of polygons increases to 400. 
Because the average time to process a polygon of CBA is 
faster than that of CBCA namely 1.33 and 14 seconds, the 
computational time of CBA is indeed better than that of 
CBCA. Its effectiveness is getting obvious when a large 
number of polygons are processed. 
 

 
Fig. 10. CBA with many processors by the number of polygons 

 
Due to the parallel computing between processors, more 

polygons in a shape will lead to more effectiveness of CBA. 
Fig. 10 illustrates the computational times of CBA when 
using from one to four processors following by the number of 
polygons. Similar results with Fig. 6 are obtained in this 
situation. The computational time of CBA using two 
processors is 1.23 times faster than the serial one. Similarly, 
these values in cases of three and four processors are 1.87 and 
2.01, respectively. These numbers are smaller than those in 
Fig. 6 since processing many polygons requires additional 
times to store and clear marked values as in the Step 6 of the 
ID code determination process. The processing time for a 
large number of polygons, i.e. 400, with four processors is 
269 seconds. It is 1.98 times smaller than the serial one. 
Therefore, we can recognize that the computational cost is 
reduced remarkably with the support of parallel computing, 
even in the cases of large numbers of polygons. Some 
calculations about the speed up and efficiency values of those 
times are also calculated. Indeed, the suitable number of 
processors for CBA method is four. 

Through this part, we also obtain the same conclusions 
with the previous one. 

 

V. AN APPLICATION OF CBA FOR THE TERRAIN QUERY 
In this section, we will illustrate an application of our 

method to the terrain query. We know that terrains are the 
input of the 3D WebGIS. There are some standards 
represented for the terrain. Among them, Digital Elevation 
Model (DEM) is the most commonly used due to its 
simplicity and ease to access. According to Albani et al. [16], 
DEM consists of a matrix data structure with the topographic 

elevation of each pixel stored in a matrix node. DEM is 
distinct from other representations such as TIN and contour 
based data-storage structures. It is generated by many 
methods, for example, via satellites, air planes, LIDAR 
technology, etc. 

Most 3D WebGIS systems do not support the attribute 
query on a terrain. They often consider the terrain as a normal 
three-dimensional object that is used to model the Earth with 
the higher precision and detailed level than previous ones, 
instead of performing some exploitation in order to extract 
meaningful information and knowledge, serving for the 
decision-making process afterward. In [17], the authors 
stated that the most important point to differentiate between a 
GIS and a cartographic system is the information inside each 
region, i.e. the coordinates and the location’s name. They 
allow us to comprehend the internal characteristics of regions 
in order to make some spatial analyses and increase the 
additional values of the map. Traditional GIS provides 
attribute query as a basic function. Therefore, the attribute 
query on a terrain of the 3D WebGIS is a must. 

The main reason to make the attribute query on a terrain 
less interest turns out to be the structure of the DEM terrain. 
As mentioned above, this kind of terrain contains the spatial 
information about elevation values only, and related attribute 
data are not attached; thus making the query impossible. 
Therefore, some additional sources should be given in 
equivalent to the DEM terrain. They have to contain both the 
attribute records and spatial data such as the vector or raster. 
In this situation, the polygon shape dataset (Def. 2) is the 
most suitable one. Assume that we have a couple of data: the 
DEM terrain and the polygon shape dataset. While the shape 
dataset is used to represent a ubiquitous thematic map, the 
DEM terrain is the three-dimensional representation of this 
map that means each elevation value in DEM always attaches 
to a coordinate ( )yx,  in the shape. This kind of data is 
widely used in most of the mixed 2D-3D GIS applications, 
such as in COMGIS project [15]. Thus, the terrain query is 
possible in this context. 
 

 
Fig 11. Terrain query implementation in a 3D WebGIS system 

 
The basic idea is to change the queried object from a DEM 

terrain to its polygon shape dataset. Because we have a 
relation between an elevation value in the DEM terrain and 
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the coordinate ( )yx,  in the polygon shape, the query can 
therefore be performed on the polygon shape by ignoring the 
z  value in the DEM terrain. The terrain query is now 
changed to the traditional containment test. Additionally, this 
kind of query often requires fast processing as we are 
working on the web environment, and thousands of requests 
can occur at a same time. As such, our method CBA can be 
utilized in this situation. 

Some modifications of CBA method for the terrain query 
should be performed. In the Initialization step of CBA 
method, the grid is built by a heuristic method. However, it 
should be replaced by the grid of DEM terrain in order to 
match the coordinates. The number of grid’s nodes, in this 
case, is even larger than the previous one since the resolution 
of DEM terrain is high. Thus, it brings more accurate results 
for the end-users. Nevertheless, the cost of computation is 
increased as a result. The supports of parallel computing in 
CBA are really effective in this case. 

We have implemented the procedure above for the 3D 
WebGIS system in COMGIS project [15]. The results are 
shown in Fig. 11. When users click a point on the terrain, 
attribute information such as terrain’s name, area, etc. will be 
displayed. This function is convenient to quickly determine 
the information related to a terrain, serving for further 
advanced mining techniques. 

 
Fig. 12. The computational times of the procedure (sec) 

 
We also made some experiments to check the procedure in 

this 3D WebGIS system. Fig. 12 shows the serial 
computational times of the procedure when processing DEM 
terrains with different sizes, i.e. 686 × 986, and polygon 
shape datasets having different number of total vertices. The 
results show that there is not clear difference between some 
sizes of the DEM terrain when the number of vertices is 
smaller than 113. The maximal processing time in this case is 
around 3.5 minutes when working with the large DEM 
terrain (20000 × 20000). The minimal time is 70 milliseconds 
on the small DEM terrain (686 × 986). The difference 
between them is 3.4 minutes. On average, the time to process 
a small number of vertices is around 45 seconds. The 
difference is getting obvious when more vertices are added. 
In the case of 48401 vertices, the maximal and minimal 

processing times are 5.343 hours and 7.1 seconds, 
respectively. The difference between these times and the 
average time are 5.341 and 1.17 hours. We can recognize the 
distinct difference when comparing these values with the 
ones above. The average times to process a vertex with small 
(686 × 986), medium (6000 × 7000) and large DEM terrains 
(20000 × 20000) are 0.002, 0.32 and 5.73 seconds, 
respectively. Thus, small DEM terrains often run faster than 
other ones. 

These remarks help us to predict the computational time of 
the terrain query procedure on a specific DEM terrain. 
Besides, we should choose the small (medium) number of 
vertices and DEM terrains for the sake of fast computation 
over the web environment. 

 

VI. CONCLUSIONS 
In this paper, an improvement of the containment test 

algorithm CBCA that works with polygon shape data in 
WebGIS applications was presented. It integrated a new 
procedure to specify the border cells and the parallel 
computing technique to CBCA method, aiming to enhance 
the performance of pre-processing process. Numerical results 
showed that this method is better than CBCA, especially 
when processing a large number of polygons in the shape 
dataset. It was also applied to the terrain query on a 3D 
WebGIS system. Some analyses about its performance were 
made for the better understanding of the proposed algorithm. 

Future researches will investigate some advanced mining 
methods on attribute information and applications of our 
method in other problems. 
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