

Abstract—In this paper, we will herein present an

improvement of the containment test algorithm of Zalik et al.
(2001) for the purpose of fast computation on the polygon shape
datasets over the web environment. Experimental results show
that the proposed method is faster than that of Zalik. It will be
applied to perform the terrain query on a 3D WebGIS system.

Index Terms—3D WebGIS, containment test, computational
geometry, GIS.

I. INTRODUCTION
We begin with some definitions.

Def. 1: A polygon jU is a sequence of two-dimensional

points),(j
i

j
i

j
i yxM , oriented by a specific direction jDt ,

where jni ,1= , and jn is the total number of vertices in

the polygon. The sign (-) means the direction of polygon is
counterclockwise.

Def. 2: A polygon shape dataset can be expressed by a

sequence { }ljU j ,1| = where l is total number of

polygons, and φ=∩ ji UU , ji ≠ , li ,1= , lj ,1= .

This article is motivated by looking for a fast containment
test algorithm that works with a special geographic dataset
namely the polygon shape (Def. 2) over the web environment.
It can be used for further advanced analyses on the
Web-based Geographic Information Systems (WebGIS) or
three-dimensional WebGIS (3D WebGIS). The problem is
recognized when we process the large polygon shape datasets.
A lot of polygons may slow down the checking process and
prevent the deployment of any analysis on the WebGIS. A
fast containment test algorithm is required in this situation.

There are a number of algorithms dealing with this
obstacle such as Coded coordinate system method [1],
triangle-based method [2], Approximate algorithm [3], Grid
method [4], Convex Decomposition [5], Ray crossing [6],
Sum of angles [7], [8], Wedge method [8], Swath method [9],
Thin regular slices [10], Dual representation [11], Sign of
offset [12] and Cell Based Containment Algorithm [13].
Among them, Cell Based Containment Algorithm (CBCA)
was considered the most suitable method for online
processing with large polygon shape datasets [13]. It belongs
to the class of algorithms using pre-processing that means the
map is organized into some segments, and the location of the

Manuscript received February 27, 2013; revised May 16, 2013.
The authors are with Vietnam National University, Hanoi, Vietnam.

(e-mail: sonlh@ vnu.edu.vn).

checked point in any segment will decide whether it is in a
polygon or not. Every further checking requires)1(O time
complexity only.

Despite the fact that CBCA is the effective algorithm for
large polygon shape datasets, it can be ameliorated further
through some modifications in the border cells determination
process. Our contribution in this paper is a novel containment
test algorithm that integrates a new procedure to specify the
border cells with parallel computing. It will be compared
with CBCA by experiments to verify the efficiency. This
method will also be applied for the terrain query in a 3D
WebGIS system, aiming to retrieve the attribute information
related to a terrain.

The rests of this paper are organized as follows. Section 2
briefly introduces CBCA method of Zalik. The novel method
CBA will be presented in Section 3. The evaluations of
computational complexity and experiments will be given in
Section 4. Section 5 presents an application of CBA for the
terrain query. Finally, we will make conclusions and future
works in the last section.

II. OVERVIEW OF CBCA METHOD
CBCA method has two main parts: i) Partitioning the

polygon into a uniform grid; ii) Inclusion test for a given
point.

In the first part, a uniform grid is set up to cover the
polygon. This grid contains a suitable number of cells that
balance the time for the rasterizing process and the quality of
inclusion test afterward. Indeed, the number of cells is
determined by a simple heuristic such as,

⎥
⎦

⎤
⎢
⎣

⎡
−
−

= n
yy
xx

NoOfCellsx
minmax

minmax2 ,

(1)

⎥
⎦

⎤
⎢
⎣

⎡
−
−

= n
xx
yy

NoOfCells y
minmax

minmax2 ,
(2)

where n is the number of polygon vertices and maxx (minx)
is the maximal (minimal) values of data points in the
dimension x . Likewise, maxy (miny) is the maximal
(minimal) values of data points in the dimension miny . After
the grid is created, the cells containing parts of the polygon
border are determined as Grey. A sub-procedure so-called
Code-based Algorithm, which in essence is an improvement
of Bresenham method [14], was used for this task. It stores all
cells in one way connected list and uses Bresenham algorithm

An Improvement of Zalik’s Containment Test Algorithm
and Applications on Terrain Query

Le Hoang Son, Nguyen Duy Linh and Nguyen Thi Hong Minh

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 3, June 2013

374DOI: 10.7763/IJET.2013.V5.578

to find Grey cells. A comparison between two neighbouring
Bresenham cells is then performed to detect the outliers.
Final results are all Grey cells that consist of polygon’s
border lines.

The last step in the Initialization phase is to specify the
inner cells (Black) and the outer ones (White). The authors
used an improvement of the classical raster-based algorithms
[7] for this task. The algorithm starts by moving from the
borders of the grid in left, right, up, and down directions until
a Grey cell is encountered. All the traversed cells are marked
as White. The flood-fill algorithm of Foley et al. [7] is then
applied to detect the outliers in the unclassified cells. Four
rays from the middle point of the unclassified cell are sent in
four directions; left, right, bottom and top until they meet the
first White cell. The ray, which crosses the smallest number
of cells, is accepted for the final estimation. The number of
intersections between the chosen ray and the edges stored in
Grey cells is counted by Ray Crossing method [6]. If the
number of intersections is even, the cell has the same color as
the cell at which the ray stops. Otherwise, the color is inverse.
The flood-fill algorithm stops when all cells are marked.

In the second part, the inclusion test specifies the cell in the
grid containing the tested point q and returns the result
following by the cell’s color.

III. CASE BASED ALGORITHM
Throughout the previous section, we recognize that the

first part of CBCA can be ameliorated by incorporating
parallel computing with a new procedure of border cells
determination. Specifically, after the grid is formed as in the
Initialization phase of CBCA, we divide all polygons into
some processors or computers of a parallel system. Polygons
are sent to the processors following by their identification
codes (ID) one after another. The merging process in the
Master processor will combine all different grids in all
processors into a unique one by the following criteria:

• If the cells ()ji, in all grids contain the zero and a
positive value, the value of this cell in the final grid is
the positive one. This number is the ID code of a
ubiquitous polygon. The cell ()ji, is equivalent to the
Black cell in this situation.

• If all cells consist of the zero and a negative value, we
adopt the negative one as the final value of the cell.

• If many negative values are found in all cells, we record
all these ones. In this case, a Grey cell containing many
border lines of some polygons is recognized.

• The cells, consisting of zero values only, will make the
value of the final cell become zero.

Ex. 1: Let us see the Fig. 1 and Fig. 2. These figures
describe the marking results in two processors. In Fig. 1,
these are three polygons with the ID codes from one to three.
Their orientations are (+) (Def. 1). The inner cells are marked
by the ID codes of polygons. The outer cells are assigned the
zero values. The border cells are given by the negative values
of the ID codes. Some cells are assigned more than a value,
i.e. the cell (6, 6) in Fig. 1, where many border lines of
polygons cross over. Fig. 2 shows the marking results in the

second processor. In Fig. 3, the merging result is presented.
For example, the values of cell (14, 5) in two processors are
two and zero. Thus, the final value of cell (14, 5) in Fig. 3 is
two.

The marking process in a processor is similar to that in the

first part of CBCA method. Its output is a grid whose cells are
marked by ID code of the polygon that crosses over them.
However, in order to enhance the performance of the
algorithm, we use a new procedure to specify the border cells
through some possible cases in the relation between the
polygons and the grid. This procedure is integrated with the
process of specifying the inner and outer cells in CBCA
method, and is shown below.

Step 1: For each polygon

>=< jj
n

jj
j DtMMMU

j
,,..,, 21 , lj ,.1= , find the cell

in the grid containing ()yMxMM j
i

j
i

j
i .,.= , jni ,1=

whose four grid’s nodes are:

() (){ ,,,, j
ix

j
i

j
i

j
i YsXYX +

() ()}y
j

ix
j

iy
j

i
j

i sYsXsYX +++ ,,, ,

(3)

Fig. 3. The merging results in the Master processor

Fig. 2. The marking results in the second processor

Fig. 1. The marking results in the first processor

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 3, June 2013

375

() ⎜
⎜
⎝

⎛
×⎥
⎦

⎤
⎢
⎣

⎡ −
+= ,

.
, min

min x
x

j
ij

j
j

i s
s

xxM
xYX

 ⎟
⎟
⎠

⎞
×
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
+ y

y

j
i s

s
yyM

y min
min

.
,

(4)

() ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−=
yx

yx NoOfCells
yy

NoOfCells
xxss minmaxminmax ,, .

(5)

The [] symbol refers to the truncation function to an
integer value. However, if one of the following conditions is
true, finding the cell containing the point j

iM is ignored,
and we turn to the next one.

x

j
i

x

j
i

s
xxM

s
xxM minmin .. −=⎥

⎦

⎤
⎢
⎣

⎡ −
,

(6)

y

j
i

y

j
i

s
yyM

s
yyM minmin .. −=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
.

(7)

Step 2: Mark these cells by the negative value of the ID
code of polygon jU .

Step 3: If the line connecting two consecutive vertices of

the polygon ()j
i

j
i MM 1, + , 1,1 −= jni does not lie on the

grid’s edge, mark all cells in the intersection between it and
the grid by the negative value of the polygon’s ID code.

• If the line intersects the vertical grid‘s edges, two left
and right cells of the intersection points will be marked.

• Otherwise, two up and down cells will be marked if the
line crosses the horizontal grid‘s edges.

• If the intersection points are the grid’s nodes only, we
ignore the line and turn to the next one.

Step 4: Handle some special cases of the polygon’s
vertices as follows.

• Case 1: If the intersections between a polygon’s edge
and the grid are the grid’s nodes only, we mark all the
cells in the diagonal through the middle points. For
example, from two consecutive vertices ()j

i
j

i MM 1, + ,

1,1 −= jni , we find a set of grid’s nodes (){ }j
i

j
i YX , .

A middle point between two consecutive grid’s nodes
or between a grid’s node and a polygon’s vertex is
found, such as,

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ++= ++

2
,

2
, 11

j
i

j
i

j
i

j
i

yx
YYXXTT .

(8)

The cell containing this point can be totally determined as
in Step 1. Similarly, we find other cells and mark them by the
negative value of the polygon’s ID code.

• Case 2: A grid cell may contain many polygon‘s
vertices. If it was marked beforehand in Step 2, we do
nothing. Otherwise, mark the cell.

• Case 3: Some polygon’s edges lie on the grid‘s edge. In
this situation, the orientation jDt of the polygon jU

is utilized. This case can be solved by jDt and the
right-hand rule that means we will mark the cells which
are pointed out by the perpendicular vector of the
polygon’s edge.

Step 5: Grey cells are totally marked. We then use the
method in CBCA to specify the inner and outer cells. These
cells are marked by ID code of polygon and zero value,
respectively.

Step 6: Store these marked values of the polygon, and
clear all values in the grid. Repeat these steps for other
polygons in the processor.

Fig. 4. An example of CBA algorithm

Ex. 2: An example of ID code determination process can

be seen in Fig. 4. This figure is the enlargement of the
polygon whose ID code is two in the first processor (Fig. 1).
The polygon contains eight vertices. Step 1 of the above
procedure will eliminate the grid’s nodes and the points that
lie on the grid’s edges. Indeed, only the cells (14, 4),
containing 4M , and (10, 8), containing 7M , are marked

after the Step 2. Except the polygon’s lines ()32 , MM ,

()54 , MM and ()18 , MM , Step 3 will mark all the cells in
the intersection between the polygon’s edge and the grid,
such as the cells (16, 8), (16, 9), (16, 10) and (16, 11) with the
line ()21 , MM . In Step 4, Case 1 works with the line

()87 , MM . All the cells in the diagonal, i.e. (10, 8), (11, 9),
(12, 10), (13, 11), will be marked. Case 2 will look for the cell
(14, 4) where two polygon’s vertices 54 , MM are
contained. Nevertheless, this cell was marked in Step 1. Thus,
nothing is performed in this case. In Case 3, the line
()32 , MM lies on a vertical grid’s edge. As mentioned
before, the orientation of this polygon is (+). Thus, the
perpendicular vector points out to some cells, such as cell (16,
5), (16, 6), (16, 7) and (16, 8). These cells are then marked by
the negative value of the polygon’s ID code. Similar marking
process will be applied for the line ()18 , MM . All Grey
cells in this polygon have been marked already. The inner
cells, i.e. cell (15, 8), and the outer cells, i.e. (17, 9), are
marked by the ID code of polygon and the zero value,

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 3, June 2013

376

respectively through Step 5.
The computational time of the pre-processing part will be

reduced by the integration of parallel computing with the
border cells determination procedure in the Case Based
Algorithm (CBA). This helps accelerating the overall process
and will be suitable for our considered context.

IV. EVALUATIONS

A. Time and Space Complexity

Forming the grid requires ()lnO × time complexity

where n is the number of vertices in a polygon, and l is the
number of polygons in a shape dataset. The division of the
polygons into the processors and the merging process takes

() ()lnOlNoOfCellsNoOfCellsO yx ×=×× . In a

processor, we have to specify the border, inner and outer cells
of a polygon and number all of them. Step 1, 2 and Case 2 of
Step 4 of this process requires ()1O time complexity. Step 3
and Case 1, Case 3 of Step 4 obtains

() ()nONoOfCellsNoOfCellsO yx ≈+ time

complexity in the worst cases and ()1O in the best ones.

Step 5 requires ()nnO × . The number of polygons

assigned to a processor is []kl / . Thus, the total complexity

in a processor is [] ()nnnOkl ×+×/ . Therefore, the
overall time complexity of CBA is

[] []{ }()nnnkllnO ×+×× /;max . The total space

complexity of CBA is ()lnO × .

B. Experimental Setup
We have implemented the proposed algorithm (CBA) in

MPI/C programming language and executed it on a Linux
Cluster 1350 with eight computing nodes of 51.2 GFlops.
Each node contains two Intel Xeon dual core 3.2GHz, 2GB
Ram. The experimental results are compared with those of
CBCA algorithm, which has been recompiled to run in the
same configurations with ours. The experimental data are
taken from the Bolzano - Bozen province, including a vast of
benchmark polygon shape datasets [15].

C. CBA vs. CBCA by the Number of Vertices
In this section, we compare the computational times of two

algorithms in the pre-processing part following by the
number of vertices of a polygon. Fig. 5 describes their serial
times. Fig. 6 highlights the comparison of computational
times of CBA using one, two, three and four processors.
Results in Fig. 5 show that the serial computational time of
CBA is slower than the one of CBCA when the number of
vertices is smaller than 15821. However, CBA is faster than
CBCA for the remains. For example, when the number of
vertices is small, i.e. 22, the computational times of CBA and
CBCA are 5.469 and 0.62 seconds, respectively. These times
in cases of a medium number of vertices, i.e. 33023, are
27.79 and 40.9 seconds, respectively. For the large number of
vertices, CBA is still faster than CBCA, for example 50.14

and 179.17 seconds in case of 94853 vertices. On average,
the computational time of CBA is faster than that of CBCA
by 2.31 times.

Fig. 5. The serial computational times of CBA and CBCA (sec)

Fig. 6. CBA with many processors by the number of vertices

The average processing time per vertex of CBA is 0.00062

seconds while that of CBCA is 0.0015 seconds. This means
that it takes CBA around 0.00062 seconds to process a vertex
in the polygon shape. This number is smaller than that of
CBCA. Thus, more vertices are provided, the difference
between two algorithms is getting obvious. When the number
of vertices is very large, i.e. 94853, this difference is maximal.
Through the figure, we can recognize that the amplitude of
these lines is expanded following by the increment of the
number of vertices. Obviously, the modification of the border
cells determination process in CBA has ameliorated the
computational times of CBCA as shown by the experimental
results in Fig. 5.

In the following experiments, we aim to find the answer
for the question: “Can we reduce the computational time of
CBA significantly with the support of parallel computing?”.
Although the serial computational time of CBA is faster than
that of CBCA, the processing times of CBA, especially in
cases of a large number of vertices, are still large. For
example, it takes CBA approximately 50 seconds to process

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 3, June 2013

377

94853 vertices. Consider our problem that runs CBA over the
web environment with a large number of vertices, it is
necessary to speed up the whole algorithm. In this situation,
the use of parallel computing is undeniable.

In Fig. 6, the results of running CBA algorithm with one,
two, three and four processors are illustrated. Obviously,
more processors are used, less computational times are
expensed. For example, the serial processing time of a small
number of vertices, i.e. 22, is reduced by 25.4% when using
two processors, 44.97% with three processors and 48.91%
with four processors. Similarly, these numbers in cases of a
medium number of vertices, i.e. 33023, are 27.11%, 49.43%
and 51.37%, respectively. For a large number of vertices, the
reducing percents are 28.64%, 45.39% and 48.69%. On
average, using two processors will reduce the serial
computational times by 25.67%. Using three and four
processors will make larger reduction by 46.61% and 49.71%,
respectively. The processing time of the case above (94853
vertices) with four processors is now 25.7 seconds only.
Obviously, the support of parallel computing helps
accelerating the whole process, and makes the deployment of
CBA over the web environment become reality.

In what follows, we will find the most suitable number of
processors for CBA algorithm. Because some additional
computations such as communication cost and
synchronization have to be paid, large number of processors
is sometimes not as effective as the medium or small ones. In
order to find the suitable number of processors, we use the
speed up and efficiency. The speed up is defined as

ps TTS /= , where sT (pT) is the serial (parallel)

computational time, respectively. The efficiency is
determined as kSE /= , where k is the number of
processors. Results are depicted in Fig. 7 and Fig. 8.

Fig. 7. The Speed up

Through these figures, we can recognize that the speed up

of using three processors is nearly double the one of two
processors. However, the speed up value of four processors is
approximately the one of three processors. Thus, we may
predict that three or four processors is the critical state that
means using more than this number of processors will not
increase the value of speed up, but even reduce it. In Fig. 7,

the “3 processors” line is better than the “4 processors” one
when the number of vertices is smaller than 3000. For the
remains, the “4 processors” obtains the best values. Therefore,
we need to check the results in Fig. 8 for the final decision.
This figure shows that the efficiency of “4 processors” line is
the best among all other ones. Indeed, the suitable number of
processors is four.

Fig. 8. The Efficiency

Some major conclusions extracted from this part are

shown below.
• The modification of the border cells determination

process makes CBA faster than CBCA.
• Parallel computing, especially with four processors,

helps CBA deploy over the web environment.

D. CBA vs. CBCA by the Number of Polygons

Fig. 9. The comparison of CBA and CBCA by the number of polygons

In Fig. 9, we compare the computational times of CBA and

CBCA in the pre-processing part following by the number of
polygons. The results show that CBA is slower than CBCA
when the number of polygons is small, i.e. below 50. The
computational times of CBA and CBCA in this case are
65.99 and 40.25 seconds, respectively. However, CBA is
faster than CBCA when the number of polygons increases.

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 3, June 2013

378

For example, when the number of polygons is 100, the
computational times of CBA and CBCA are 129 and 491
seconds, respectively. Similarly, these times are 534 and
9213 seconds when the number of polygons increases to 400.
Because the average time to process a polygon of CBA is
faster than that of CBCA namely 1.33 and 14 seconds, the
computational time of CBA is indeed better than that of
CBCA. Its effectiveness is getting obvious when a large
number of polygons are processed.

Fig. 10. CBA with many processors by the number of polygons

Due to the parallel computing between processors, more

polygons in a shape will lead to more effectiveness of CBA.
Fig. 10 illustrates the computational times of CBA when
using from one to four processors following by the number of
polygons. Similar results with Fig. 6 are obtained in this
situation. The computational time of CBA using two
processors is 1.23 times faster than the serial one. Similarly,
these values in cases of three and four processors are 1.87 and
2.01, respectively. These numbers are smaller than those in
Fig. 6 since processing many polygons requires additional
times to store and clear marked values as in the Step 6 of the
ID code determination process. The processing time for a
large number of polygons, i.e. 400, with four processors is
269 seconds. It is 1.98 times smaller than the serial one.
Therefore, we can recognize that the computational cost is
reduced remarkably with the support of parallel computing,
even in the cases of large numbers of polygons. Some
calculations about the speed up and efficiency values of those
times are also calculated. Indeed, the suitable number of
processors for CBA method is four.

Through this part, we also obtain the same conclusions
with the previous one.

V. AN APPLICATION OF CBA FOR THE TERRAIN QUERY
In this section, we will illustrate an application of our

method to the terrain query. We know that terrains are the
input of the 3D WebGIS. There are some standards
represented for the terrain. Among them, Digital Elevation
Model (DEM) is the most commonly used due to its
simplicity and ease to access. According to Albani et al. [16],
DEM consists of a matrix data structure with the topographic

elevation of each pixel stored in a matrix node. DEM is
distinct from other representations such as TIN and contour
based data-storage structures. It is generated by many
methods, for example, via satellites, air planes, LIDAR
technology, etc.

Most 3D WebGIS systems do not support the attribute
query on a terrain. They often consider the terrain as a normal
three-dimensional object that is used to model the Earth with
the higher precision and detailed level than previous ones,
instead of performing some exploitation in order to extract
meaningful information and knowledge, serving for the
decision-making process afterward. In [17], the authors
stated that the most important point to differentiate between a
GIS and a cartographic system is the information inside each
region, i.e. the coordinates and the location’s name. They
allow us to comprehend the internal characteristics of regions
in order to make some spatial analyses and increase the
additional values of the map. Traditional GIS provides
attribute query as a basic function. Therefore, the attribute
query on a terrain of the 3D WebGIS is a must.

The main reason to make the attribute query on a terrain
less interest turns out to be the structure of the DEM terrain.
As mentioned above, this kind of terrain contains the spatial
information about elevation values only, and related attribute
data are not attached; thus making the query impossible.
Therefore, some additional sources should be given in
equivalent to the DEM terrain. They have to contain both the
attribute records and spatial data such as the vector or raster.
In this situation, the polygon shape dataset (Def. 2) is the
most suitable one. Assume that we have a couple of data: the
DEM terrain and the polygon shape dataset. While the shape
dataset is used to represent a ubiquitous thematic map, the
DEM terrain is the three-dimensional representation of this
map that means each elevation value in DEM always attaches
to a coordinate ()yx, in the shape. This kind of data is
widely used in most of the mixed 2D-3D GIS applications,
such as in COMGIS project [15]. Thus, the terrain query is
possible in this context.

Fig 11. Terrain query implementation in a 3D WebGIS system

The basic idea is to change the queried object from a DEM

terrain to its polygon shape dataset. Because we have a
relation between an elevation value in the DEM terrain and

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 3, June 2013

379

the coordinate ()yx, in the polygon shape, the query can
therefore be performed on the polygon shape by ignoring the
z value in the DEM terrain. The terrain query is now
changed to the traditional containment test. Additionally, this
kind of query often requires fast processing as we are
working on the web environment, and thousands of requests
can occur at a same time. As such, our method CBA can be
utilized in this situation.

Some modifications of CBA method for the terrain query
should be performed. In the Initialization step of CBA
method, the grid is built by a heuristic method. However, it
should be replaced by the grid of DEM terrain in order to
match the coordinates. The number of grid’s nodes, in this
case, is even larger than the previous one since the resolution
of DEM terrain is high. Thus, it brings more accurate results
for the end-users. Nevertheless, the cost of computation is
increased as a result. The supports of parallel computing in
CBA are really effective in this case.

We have implemented the procedure above for the 3D
WebGIS system in COMGIS project [15]. The results are
shown in Fig. 11. When users click a point on the terrain,
attribute information such as terrain’s name, area, etc. will be
displayed. This function is convenient to quickly determine
the information related to a terrain, serving for further
advanced mining techniques.

Fig. 12. The computational times of the procedure (sec)

We also made some experiments to check the procedure in

this 3D WebGIS system. Fig. 12 shows the serial
computational times of the procedure when processing DEM
terrains with different sizes, i.e. 686 × 986, and polygon
shape datasets having different number of total vertices. The
results show that there is not clear difference between some
sizes of the DEM terrain when the number of vertices is
smaller than 113. The maximal processing time in this case is
around 3.5 minutes when working with the large DEM
terrain (20000 × 20000). The minimal time is 70 milliseconds
on the small DEM terrain (686 × 986). The difference
between them is 3.4 minutes. On average, the time to process
a small number of vertices is around 45 seconds. The
difference is getting obvious when more vertices are added.
In the case of 48401 vertices, the maximal and minimal

processing times are 5.343 hours and 7.1 seconds,
respectively. The difference between these times and the
average time are 5.341 and 1.17 hours. We can recognize the
distinct difference when comparing these values with the
ones above. The average times to process a vertex with small
(686 × 986), medium (6000 × 7000) and large DEM terrains
(20000 × 20000) are 0.002, 0.32 and 5.73 seconds,
respectively. Thus, small DEM terrains often run faster than
other ones.

These remarks help us to predict the computational time of
the terrain query procedure on a specific DEM terrain.
Besides, we should choose the small (medium) number of
vertices and DEM terrains for the sake of fast computation
over the web environment.

VI. CONCLUSIONS
In this paper, an improvement of the containment test

algorithm CBCA that works with polygon shape data in
WebGIS applications was presented. It integrated a new
procedure to specify the border cells and the parallel
computing technique to CBCA method, aiming to enhance
the performance of pre-processing process. Numerical results
showed that this method is better than CBCA, especially
when processing a large number of polygons in the shape
dataset. It was also applied to the terrain query on a 3D
WebGIS system. Some analyses about its performance were
made for the better understanding of the proposed algorithm.

Future researches will investigate some advanced mining
methods on attribute information and applications of our
method in other problems.

ACKNOWLEDGMENT
The authors are greatly indebted to the Editor-in-Chiefs

Prof. Abdul Razaque and anonymous reviewers for giving us
valuable comments to improve the clarity and quality of the
paper. This work is sponsored by the research grants of
National Foundation for Science and Technology
Development (NAFOSTED - Project No. 102.01-2012.14)
and two major projects of Vietnam National University,
Hanoi, entitled “Study about some data mining methods in
Geographic Information Systems” and “Research on spatial
data clustering algorithms and applications”.

REFERENCES
[1] M. Chen and P. Townsend, “Efficient and consistent algorithms for

determining the containment of points in polygons and polyhedra,” in
Proceedings of Eurographics’87, Elsevier Science, Amsterdam, 1987,
pp. 423–437.

[2] F. Feito, J. C. Torres, and A. Urena, “Orientation, simplicity, and
inclusion test for planar polygons,” Computers & Graphics, vol. 19, no.
4, 1995, pp. 595–600.

[3] M. Gombosi and B. Zalik, “Point-in-polygon tests for geometric
buffers,” Computers & Geosciences, vol. 31, 2005, pp. 1201–1212.

[4] C. W. Huang and T. Y. Shih, “On the complexity of point-in-polygon
algorithms,” Computers & Geosciences, vol. 23, no. 1, 1997, pp.
109–118.

[5] J. Lia, W. Wang, and E. Wu, “Point-in-polygon tests by convex
decomposition,” Computers & Graphics, vol. 31, 2007, pp. 636–648.

[6] U. Manber, Introduction to algorithms: a creative approach. Reading,
MA: Addison-Wesley, 1989.

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 3, June 2013

380

[7] J. D. Foley et al., Computer Graphics, Principles and Practice, 2nd
edn.. Reading, MA: Addison-Wesley, 1990.

[8] F. P. Preparata and M. I. Shamos, Computational Geometry: an
Introduction, 2nd edn. New York: Springer, 1985.

[9] K. B. Salomon, “An efficient point-in-polygon algorithm,” Computers
& Geosciences, vol. 4, no. 2, 1978, pp. 173–175.

[10] V. Skala, “Point-in-polygon with O(1) complexity,” Technical Report
No, University of West Bohemia, Pilsen, Czech Republic, 1994, pp.
68-94.

[11] V. Skala, “Line clipping E2 with suboptimal complexity O(1),”
Computers & Graphics, vol. 20, no. 4, 1996, pp. 523–530.

[12] G. Taylor, “Point in polygon test,” Survey Review, vol. 32, 1994, pp.
479–484.

[13] B. Zalik and I. Kolingerova, “A cell-based point-in-polygon algorithm
suitable for large sets of points,” Computers & Geosciences, vol. 27,
2001, pp. 1135–1145.

[14] J. E. Bresenham, “Algorithm for computer control of a digital plotter,”
IBM System Journal, vol. 4, no. 1, 1965, pp. 25–30.

[15] L. H. Son, P. H. Thong, N. D. Linh, T. C. Cuong and N. D.
Hoa, ”Developing JSG Framework and Applications in COMGIS
Project,” International Journal of Computer Information Systems and
Industrial Management Applications, vol. 3, 2011, pp. 108-118.

[16] M. Albani, B. Klinkenberg, D. W. Andison,and J. P. Kimmins, “The
choice of window size in approximating topographic surfaces from
Digital Elevation Models,” International Journal of Geographical
Information Science, vol. 18, no. 6, 2004, pp. 577–593.

[17] S. Rana and J. Sharma, Frontiers of Geographic Information
Technology. Netherlands: Springer-Verlag, 2006.

Le Hoang Son is a researcher at the Center for High
Performance Computing, VNU University of
Science, VNU. His major field includes Soft
Computing, Geographic Information Systems and
Parallel Computing. He is a member of IACSIT and
also served as a reviewer for some international
journal.

Nguyen Duy Linh is a researcher and Master
student at the Center for High Performance
Computing, Hanoi University of Science, VNU. His
research interests include Geographic Information
Systems and Grid Computing. Email:
linhnduy@gmail.com. Tel.: +84-904-641-190.

Nguyen Thi Hong Minh is a doctor and vice dean
of School of Graduate Studies, VNU. Her major
researches include Parallel Algorithms and
Molecular Dynamics Simulation. So far, she has
performed many important, major projects of VNU,
especially in interdisciplinary fields. Email:
minhnth@vnu.edu.vn. Tel.: +84-904-101-065.

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 3, June 2013

381

