

Abstract—The motivation behind this study is the impact

made on today’s social media by music players, which include
features like portability, size and equalizer functionality for the
best possible sound output quality. The objective of this study
was to develop a system that reads the wave files present on the
Secure Data (SD) card, adjust the equalizer settings
incorporated on it, and play them on the speaker with the best
possible quality sound output. This was done with the help of
the SD card slot provided on the DE2 board, and its
implementation on the board using Altera’s SoPC (System-on-
a-Programmable-Chip) Builder in the Altera Quartus 9.1
environment. Nios II is a 32-bit soft-core embedded processor
architecture designed specifically for the Altera family of
FPGAs. Programming of the Nios II processor is done using
the Nios II 9.1 IDE tool. An extension of this work could
include incorporation of video—along with the audio on the
DE2 board since there is a VGA slot included on the board
features and the movement of the wave files on the SD card
with the help of the keys present on the DE2 board.

Index Terms—Embedded processor, Nios II embedded
design, SoPC builder, and system on a programmable chip
builder.

I. INTRODUCTION
Indicative of the popularity of being able to read wave

files on SD (secure data) cards, there is no shortage of
entries in the literature, on blogs and discussion boards, and
postings of schematics. In this study, though, the authors
address design advancements of the DE2_SD audio board in
accordance with conceptual design methods [1-8] offering
extended user control with features such as pause, reset and
start, and—with the implementation of switches—an
equalizer. The objective of this study was to develop a
system that reads the wave files present on the SD card and
plays them on the speaker with the best possible quality
sound output.

This was done with the help of the SD card slot provided
on the DE2 board and its implementation on the board using
Altera’s SoPC (System-on-a-Programmable-Chip) Builder
in the Altera Quartus 9.1 environment. Other increases in
functionality include the resetting of songs to the start of the

Manuscript received November 20, 2012; revised April 8, 2013.
S. Moslehpour is with the College of Engineering, Technology, and Ar-

chitecture at Hartford University, Hartford, CT, USA (e-mail:
moslehpou@hartford.edu).

K. Jenab is with the Socitey of Reliability Engineering-Ottawa Chapter,
Ottawa, Ontario, Canada (e-mail: jenab@ieee.org).

P. D. Weinsier is EEET Program Director at the Bowling Green State
University-Firelands, USA (e-mail: philipw@bgsu.edu).

B. K. Matcha was with the College of Engineering, Technology, and
Architecture at Hartford University, Hartford, CT, USA (e-mail:
bharathsidhu@gmail.com).

playlist.
As an example, red and green LEDs on the DE2 board are

controlled by the frequency of the music. Advanced features
include an LCD display to provide feedback to the user not
the least of which is a welcome message when the board is
programmed which is important as user functionality
increases.

A. SoPC Builder
Sensor network research began, like many of today’s

technological advances, with the military in such
applications as battle-field surveillance and enemy tracking
[9]. After the technology proved itself, it quickly spread to
civilian applications such as data centers, industrial settings
and environmental observation and forecasting. However,
due to non-standard communications protocols and
electrical properties, sensor networks tend to be expensive,
in spite of their broad use for Internet Protocol (IP) and
platforms such as Hyper Text Transfer Protocol (HTTP),
Simple Mail Transfer Protocol (SMTP) and Simple Network
Management Protocol (SNMP) [10].

As chip technology has advanced to Ultra Large-Scale
Integration (ULSI) and Giga-Scale Integration (GSI),
System-on-a-single-Chip (SoC) technology has brought
prices way down. Adding programmability to these devices,
a System-on-a-Programmable-Chip (SoPC) can be designed
right onto high-density devices such as Field Programmable
Gate Arrays (FPGAs), thereby offering flexibility to
embedded systems design [11]. Now, SoC designs are
moving from single-processor-based systems toward the
integration of multi-processor architectures on a single chip
(MPSoCs), due to intensive data communication
requirements [12].

SoPC is a new technology which has emerged that
enables designers to utilize a large FPGA that contains
memory blocks, interface blocks, logic elements and analog
blocks [13]. These blocks, along with an intellectual
property (IP) processor core, can be combined on a single
chip in order to target a specific application. Designers use
SoPC for creating an FPGA which is composed of memory
blocks, interface blocks, logic elements and analog blocks
[14]. These blocks, along with an intellectual property (IP)
processor core, can be combined on a single chip in order to
target a specific application, thereby offering the user a very
powerful system development tool. SoPC Builder [15] is a
general-purpose tool that has the advantage of faster
development times over manual integration methods [16]
and is part of the Altera’s Quartus II software.

There is no doubt that some designers still prefer to
manually program and wire each piece of a given system.
For most, though, the preference is to move beyond writing

Design of the Nios II System for the Playing of Wave
Files on an Altera DE2 Board

S. Moslehpour, K. Jenab, Sr. Member, IEEE, P. D. Weinsier, and B. K. Matcha

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 3, June 2013

361DOI: 10.7763/IJET.2013.V5.576

HDL (Hardware Description Language) modules by hand.
For them, SoPC Builder makes system design easier by
allowing them to simply specify a component in a GUI from
which Builder automatically provides the logical
interconnects. Furthermore, Builder is capable of delivering
Verilog HDL or VHDL designs, affording yet more
flexibility to designers, who prefer one over the other.

B. Nios II Processor
The Nios II processor is a configurable soft-core

processor that allows features to be added or removed on a
system-by-system basis to meet performance requirements.
Users can configure the Nios II processor and add
peripherals to meet their specifications, and then program
the system into an Altera FPGA. On this single Altera chip
or Nios II processor core the user can implement both
peripherals and memory (both on- and off-chip). Such a
system is similar to a microcontroller or computer on a chip
having a CPU.

C. SoPC Design Flow
While there are CAD tools available commercially, which

are available to the user for either their HDL or schematic
design entry methods, manufacturers of FPGAs such as
Altera (Quartus II) and Xilinx (ISE) provide such tools
through their own software packages. These tools actually
help step the designer through the process as follows:

• Package your component for SoPC Builder using the

Component Editor
• Simulate at the unit-level, possibly incorporating

Avalon BFMs (Bus Functional Models) to verify the
system

• Complete the SoPC Builder design by adding other
components, specifying interrupts, clocks, resets, and
addresses

• Generate the SoPC Builder system
• Perform system-level simulation
• Constrain and compile the design
• Download the design to an Altera device
• Test the design on the hardware

A major consideration here is that designers can still
choose to develop their designs in the traditional piecemeal
way, or move forward and allow more user-friendly
software programs to do the leading, thus allowing the
design more time to, well, design. As noted earlier, SoPC
Builder provides a tool block to customize the configuration
of a processor-core for a given application via a GUI
interface with configurable parameters such as data-path
width, memory and address space. A number of peripherals
are also configurable and include UARTs, general-purpose
I/O, Ethernet and memory controllers. After the parameters
are chosen and the GUI interface completed, the HDL or
net-list file and a number of other library files are generated
relative to the new processor core being generated. Using
standard files from SoPC Builder [17], the design is then
compiled onto an FPGA. Subsequent programming of the
design onto the processor is accomplished via a C/C++
compiler.

The final step, then, is to load the new program file into
the program and data memories of the processor. This can
be accomplished in a multitude of ways, dependent on the
processor’s memory configuration. In general, processor
cores are classified as either hard or soft [18]. The designa-
tion of a core being either hard or soft refers to its flexibility
or ability to be configured. That is, hard cores generally
have the advantage of higher performance characteristics but
at the cost of configurability. Soft cores use existing pro-
grammable logic elements from the FPGA to implement the
processor logic. Soft cores have the advantage in flexibility
additional features, more ALU functionality, adjustable
memory width, and user-specified peripherals and memory
address space but at the cost of higher power and slower
clock speeds [19].

Fig. 1. CAD tool design of a SoPC

D. SoPC Components
As the name implies, a “component” is simply a hardware

design block available in SoPC Builder [20]. Before the
component is loaded into the Builder system, an HDL file
along with component-related information addressing
software drivers must be created. A typical component
might include the following:

• The HDL description of the component’s hardware
• A description of the interface to the component

hardware, such as the names and types of I/O signals
• A description of the parameters that determine the

operation of the component
• A GUI for parameterizing an instance of the

component in SoPC Builder

E. Types of SoPC Components
As indicated in Fig. 2, components are connected to the

system either inside or outside as they relate to the SoPC
Builder system. Location, then, determines what type of
component it is; i.e., whether the logic associated with the
component lies inside the system or outside. Components
lying outside the systems can use one of two types of
interfaces: Avalon Memory-Mapped or Avalon Streaming
interface. Any given component, though, may actually have
multiple ports, where an Avalon Streaming source port
would provide high-throughput data, while an Avalon
Memory-Mapped port could be used for slave control.

Software Design

Hardware Design

Additional
Interface,
Design Entry
Tool

FPGA Synthe-
sis Tool

FPGA Place &
Route

Program FPGA and
Initialize Memory

Processor
Memory

User logic Processor Core Confiig.
Tool

Traditional FPGA Tool
Flow

Application Prog.
Source Code

C/C++
Complier

Operating Sys.
Kernel (Optional)

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 3, June 2013

362

Fig. 2. System components

F. Avalon Switch Interconnect
Taken together, the resources for connecting Avalon

master and slaves on a system component represent the
system interconnect fabric. Details of the connection are,

then, addressed by SoPC Builder as it attempts to match
them with the system interconnect fabric. The job of the
interconnect fabric is to ensure that signals are correctly
routed between master and slaves. The following items are
supported by memory-mapped interfaces, noting that there
can be almost any combination in the number of masters and
slaves.

• Any number of master and slave components
• On-chip components
• Interfaces to off-chip devices
• Master and slaves of different data widths
• Components operating in different clock domains
• Components using multiple Avalon-MM ports

In cases requiring more complex interfaces than a single

Avalon Memory-Mapped interface, SoPC Builder is capable
and, in fact, is its primary purpose [7] of creating and
connecting components with system interconnect fabrics for
multiple interfaces (see Fig. 3), given that they conform to
Avalon Interface Specifications.

Fig. 3. System interconnect fabric

G. Address Decoding
The logic in charge of address decoding forwards the

appropriate addresses from master to slave through the
system interconnects fabric. It is not necessary, however, for
slaves to decode addresses, as long as they are properly
aligned to the interface. It should be noted that manual edits
of the HDL file are not necessary in order to modify the
system’s memory map. Fig. 4 offers an example of how
address decoding is accomplished for one master and two
slaves. Fig. 5 shows an example of how each master in the
system is assigned its own decoding logic. The job of this
logic is to coordinate the difference in address widths

between the master and each slave.

Fig. 4. Address decoding logic

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 3, June 2013

363

H. Interrupts
The system interconnect fabric includes interrupt

controller logic that is capable of compiling IRQ signals
from any sender and mapping them to the inputs on the
receiver. Each receiver will have its own interrupt controller
that can generate values specified by the user before sending
them on to the receiver.

Fig. 5. Base setting of the active component

I. IRQ Scheme
The system interconnect fabric is also responsible for

passing individual IRQs from sender to receiver, but it does
not determine priority. In such situations, interrupt
controllers can handle up to 32 IRQ requests. Here, a 32-bit
IRQ [31:0] would be generated by the controller and sent to
the receiver; slave IRQs are then mapped to the bits of this
IRQ [31:0]. If there are any remaining bits of this IRQ [31:0]
that are not assigned, they are simply disables [7]. Only
when multiple IRQs are sent at the same time does the
receiver logic assign priorities before responding.

J. Using SoPC Builder to Assign IRQs
Using the System Contents tab within SoPC Builder,

users can specify individual IRQ settings (see Fig. 6). The
flexibility of SoPC Builder can be seen here as it allows IRQ
settings to be set up for all senders based on a given receiver.
For any given slave, a specific IRQ may be assigned or told
that it should ignore the IRQ altogether.

Fig. 6. Using SoPC builder to assign IRQs

II. NIOS II PROCESSOR
The Nios II processor is a configurable soft-core RISC

processor whose features can be added or removed on a
system-by-system basis to meet performance requirements;
such features include:

• Full 32-bit instruction set, data path, and address space
• 32 general-purpose registers
• 32 interrupt sources
• External interrupt controller interface for more

interrupt sources
• Single-instruction 32 × 32 multiply and divide

producing a 32-bit result
• Access to a variety of on-chip peripherals, and

interfaces to off-chip memories and peripherals
• Hardware-assisted debug module enabling processor

start, stop, step and trace under control of the Nios II
software development tools

• Software development environment based on the GNU
C/C++ tool chain and the Nios II Software Build Tools
(SBT) for Eclipse

• Integration with Altera's SignalTap II Embedded Logic
Analyzer, enabling real-time analysis of instructions
and data along with other signals in the FPGA design

• Instruction set architecture (ISA) compatible across all
Nios II processor systems

• Performance up to 250 DMIPS

A. Customization of the Nios II System
Flexibility, again, is the main feature of Altera’s FPGAs

in that designers can add features as necessary to meet their
system requirements or eliminate features or even
peripherals to allow their design to be smaller and more cost
effective [21], which can impact Nios II processor system
performance. As an example, individual pins and logic
resources on Altera devices are programmable, allowing
broad customization possibilities. Reassigning pins, for
example, could translate into a simpler board design and
shorten the board’s traces, or even allow for functions
unrelated to the processor. This last point can be seen in the
fact that only about 5% or a large Altera FPGA is needed for
a Nios II processor system, which would leave virtually the
entire device available for the implementation of other
functions.

B. Configurability of a Soft-Core Processor
As noted earlier, a soft-core processor in one that is

configurable and whose features can be added or removed as
necessary by the designer in consideration of either
performance, pricing or both. On the other hand, it should
not be assumed that configurability implies that a new Nios
II processor must be created for each new design. In fact,
Altera offers off-the-shelf system designs, which can be
implemented as is if they meet system requirements; there is
no specific requirement that a device must be newly
configured. In some cases, before software designers have
even determined a hardware configuration, they can begin
writing and debugging their applications with the Nios II
instruction set simulator.

C. Flexible Peripheral Set and Address
Another feature of soft-core processors such as the Nios II,

unlike fixed microcontrollers, is that they have a flexible

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 3, June 2013

364

peripheral set. This flexible peripheral set allows designers
to target each system to a specific application [7] with
software constructs. These are used to generically
independent of address location—access both memory and
peripherals. The fact that a flexible address map comes from
having a flexible peripheral set is not lost of the designer as
it has no effect on application developers. Peripherals can be

classified as either standard peripherals or custom
peripherals.

Standard peripherals: Standard peripherals are those
most commonly used in microcontrollers. Examples include
timers, I/O, SDRAM controllers, and serial communication
or other interfaces from Altera (see Fig. 7).

Fig. 7. Standard peripherals

Custom peripherals: Custom peripherals are those that

can be created and integrated into a Nios II processor system.
As an example, a common method for creating a custom
peripheral that is intended to perform the same function as a
hardware peripheral would have a system that uses most of
its CPU cycles in the execution of a specific section of code,
allowing for better performance. This becomes important
insofar as software implementation is not able to keep pace
with that of hardware; and, parallel operations can be
performed by the processor, leaving other peripherals to
operate on data (see Fig. 8).

D. Custom Instructions
Another feature of the soft-core Nios II processor is that it

allows designers to add custom logic in the ALU. Using
such custom instructions is another method for increasing
the overall performance of a system by tuning hardware to
meet performance goals. For these reprogrammable FPGAs,
it becomes an easy task for software and hardware experts to
work side by side to observe the results of software
instructions on hardware. As each operation is analyzed,

both software and hardware can be tweaked to eventually
come up with the most efficient system design.

Fig. 8. Custom peripherals

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 3, June 2013

365

Fig. 9. Custom instructions

E. Automated System Generation
Having SoPC Builder design tool, the process of

configuring processor features and generating a hardware
design into an FPGA can be done efficiently. Actually, a
designer can configure the processor without having
schematics or HDL designs. Also, irrespective of the
number of peripherals or memory interfaces, the tool enable
the designer to configure the processor through an GUI. At
this point, the board is programmed with the design and
debugged during program execution. Furthermore, once the
design is programmed onto the board, the processor
architecture is fixed, after which any subsequent
development of software for the system is similar to
traditional, non-configurable processors [13].

III. PROPOSED DESIGN FOR THE PROJECT
The objective of this study was to develop a system that

could read the wave files present on the Secure Data (SD)
card, adjust the equalizer settings incorporated on it, and
play them on the speaker with the best possible quality
sound output. A personal computer (PC), running Quartus II
software with the SoPC Builder environment, and the Nios
II soft-core processor were used for developing the proposed
system (see Fig. 10).

Fig. 10. Proposed system

After the SD card is inserted into the receiving slot on the

DE2 board, the program present on the Nios II processor is
initialized and plays the music files—.wav formatted—on
the speakers attached to it with the best possible sound
quality [21].

Using a Nios II processor-based system on the FPGS, the
software is configured on the development board with Nios
II standard hardware system, and then executed to create the
FPGA configuration file, i.e., the SRAM Object File(.sof).
This file containing the Nios II standard system, is
downloaded to the board [22].

The Eclipse IDE environment is where the software part
was developed in C language. The Eclipse environment has
a C/C++ compiler and a set of powerful commands, utilities
and scripts for building options for applications, board
support packages, and software libraries. Nios II Software
Build Tools for Eclipse focuses on improving software
productivity for large software applications and team-based
software designs.

A. Implementation
The block diagram provided in Fig. 11 shows the

implementation of the proposed application.

Fig. 11. Block diagram of the proposed system

SD Card Controller: The SD card serves as the memory

for the project and interacts with the SD card controller. For
this to exchange to occur, file system on the SD card must
be FAT 16 formatted—meaning that the smallest data words
should be 16 bits long—and that the FAT16 partitions the
data into blocks of data, each of which is 512 bytes.

SPI Interface: Implementation of the SD card interface is
based on the SPI mode of communication, where there is
one-bit data transfer. This type of communication offers
lower performance when compared to parallel where the
transfer rate can be as high as 4 bits. The various pins used
in the SPI are:

• SD_CLK: This pin maintains the SD card’s clock
speed, which then enables communication between
other pins and the SD card.

• SD_CMD: This pin is used to send the commands.
• SD_DATA: This pin is used for data transfer.

The main functions used in this project are:
a. SD_CARD_init()

This function is used for the detection and
initialization of the SD card. The CMD0 is sent by
this function which then awaits the response. If there
is no response from the SD card then a value of 1 is
returned, else a value of 0 is returned.

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 3, June 2013

366

b. SD_read_lba()
This function allows multiple blocks to be read from
the SD card after which the CMD17 represents the
READ command. Next, lba value—representing
specific locations on the SD card—reads each byte
individually from the SD card location.

Audio Codec: Audio Codec—located between the Buffer

and the Line-Out—is the part of the system where digital-to-
analog conversion (DAC) takes place in order for the music
to play on the speakers [23]. The modules included in this
system are:

• FIFO Module: This module is used to bridge the Nios
and DAC. With a buffer size of 256 x 16, the data
stream is serialized and moved from the Nios to the
buffer.

• I2C Module: This module basically controls the flow
of data in the Audio Codec.

• PPL Module: This module generates a clock
frequency of 18.4Mhz.

Before being sent to the DAC, the data are latched onto
the AUD_DATA variable. This occurs at the positive edge
of the AUD_LRCLK which is produced by the Audio Codec.
As the 48kHz sampling is based on the Wolfson WM8731
Audio Codec (see Table I), the frequency of the DAC is also
set to 48kHz and the .wav file is sampled at this frequency.

TABLE I: NORMAL MODE SAMPLING RATE LOOKUP TABLE

• AVALON TRISTATE BRIDGE: This connects off-
chip devices to the system inter-connect fabric. The
tri-state bridge creates input and output signals for the
SoPC Builder system.

• FLASH and SRAM: These are basically off-chip

devices with non-volatile storage.
• JTAG-UART: The Universal Asynchronous

Receiver/Transmitter (UART) controller is the key
component of the serial communications subsystem
of a computer.

• LCD DISPLAY: This is used to for the character
display on the DE2 board [24].

• SD_DAT, SD_CMD, SD_CLK: These are the PIO
that are used in the system to communicate with the
DE2 board.

The customized components in the system

AUDIO_DAC_FIFO (Buffer), SEG_7 (Seven segment
display) and SRAM have been incorporated into the system
to meet the goals of this study. These components were
provided by Terasic Technologies Inc.

Fig. 12. The SoPC system

Nios II Processor: Three core versions of the Nios II

processor are offered by the SoPC Builder (see Fig. 13).
• Nios II/f core (Fast)
• Nios II/s core (Standard)
• Nios II/e core (Economy)

Fig. 13. Nios II core configuration

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 3, June 2013

367

SoPC Builder: The Audio Codec, SPI interface and other

components are connected together via the SoPC Builder.

Assignment of the base addresses and the IRQs are basically

done by the SoPC Builder by various read and write

operations that can be performed. With the exception of the

SD-RAM controller—which provides the memory for the

Nios II processor—all of the modules operate at 100MHz.

The various components present in the generated system

(see Fig. 12) are:

1) Nios II/f Core (Fast)
The Nios II/f core is a high-performance device with lim-

ited core size. Limiting the core size is the tradeoff for the
faster execution times. If neither a memory management
unit (MMU) nor a memory protection unit (MPU) is includ-
ed, the Nios II/f ends up being about 25% larger than the
Nios II/s core. The Nios II/f is designed to maximize the
instructions-per-cycle execution efficiency, optimize inter-
rupt latency and maximize fMAX performance of the pro-
cessor core.

2) Nios II/s Core (Standard)
For medium-performance applications requiring only a

small core while not sacrificing performance the Nios II/s
core is a logical choice. In this case, execution performance
is reduced in order to conserve on-chip logic and memory
resources. This standard core uses roughly 20% less logic
than the fast core, but at the expense of about a 40% drop in
execution performance [7].

3) Nios II/e Core (Economy)
For designs needing to reduce resource utilization to a

minimum while still maintaining hardware resources the
Nios II/e core is designed with the smallest possible core
size. This is the smallest core size available that still retains
compatibility with the Nios II instruction set architecture.
This economy core is about half the size of the standard core,
but with significantly reduced execution performance.

B. Nios Flow
Nios II top-level function controls the flow of the

operation of the system. Once the board is switched ON,
“AUDIO play from SD” is displayed on the LCD panel and
waits for the SD card to be inserted into the SD card slot
provided on the DE2 board. Next, initialization begins after
the insertion of the SD card when the system searches for
the .wav file in the FAT16 file system. Operation of the
system, at that point, is taken over by the top-level function
controls of the Nios II. When the initialization is complete,
it plays all of the songs from start to end, with the provision
of the KEY button to reset the system.

IV. CONCLUSION
The objective of this study was to develop a system that

reads the wave files present on the Secure Data (SD) card,
adjust the equalizer settings incorporated on it, and play
them on the speaker with the best possible quality sound
output. The programming of the board was done with the
Nios II Eclipse, where the program functions in such a way
that it displays the SD CARD Player on the LCD display
initially and then reads the memory location of the wave
files present in the SD card. A data stream of 512 bytes is
moved from the SD card onto the FIFO (First-In First-Out)
Buffer. This stream of data is moved into the Audio Codec
where digital-to-analog (DAC) conversion takes place at a
rate of 16 bits and moved onto the Line-Out of the DE2
board. The I2C controls the flow of data between the FIFO
buffer and the Audio Codec and sound can be heard on the
attached speakers with the best possible sound quality (see
Fig. 14).

Fig. 14. Final implementation of the project

V. SUMMARY
With the evolvement of FPGAs we have more flexibility

of hardware platforms, microprocessor instructions. Also,
due to reduced prices, we can design systems that were not
easy in the past. Therefore, in this study, a system that reads
the wave files was developed based on the Secure Data (SD)
card, adjust the equalizer settings incorporated on it, and
play them on the speaker with the best possible quality
sound output.

An extension of the work can be done to this thesis work
such as Video can also be incorporated along with the audio
on the DE2 board since there is provision of VGA slot on
the DE2 board. Also few more features can also be added
like the movement of the wave files on the SD card with the
help of the keys present on the DE2 board.

REFERENCES
[1] K. Jenab, A. Sarfaraz, S. M. SeyedHosseini and, B.S.

“Dhillon,Dynamic MLD analysis with flow graphs,” Reliability
Engineering and System Safety, vol. 106, no. 1, pp. 80-85, 2012.

[2] K. Jenab, A. Sarfaraz, and M. T. Ameli, “A conceptual design
selection model considering conflict resolution,” Journal of
Engineering Design, vol. 24, vo. 4, pp. 293-304, 2013.

[3] K. Jenab and B. S. Dhillon, “Group-based failure effects analysis
(GFEA),” International Journal of Reliability, Quality and Safety
Engineering. vol. 12, no. 4, pp.291-307, 2005.

[4] Altera Audio/Video Configuration Core for DE2-Series Boards. (July
2010). [Online]. Available:
ftp://ftp.altera.com/up/pub/Altera_Material/10.1/Universiy_Program_
IP_Cores/Audio_Video/Audio_and_Video_Config.pdf

[5] SD card IP Core. Altera University Program Secure Data Card IP
Core. (March 2009). [Online]. Available:
ftp://ftp.altera.com/up/pub/University_Program_IP_Cores/90/SD_Car
d_Interface_for_SOPC_Builder.pdf

[6] Wolfson Electronics. (2004, April). Portable Internet Audio CODEC
with Headphone Driver and Programmable Sample Rates. (WM8731
Rev3.4). [Online]. Available: https://instruct1.cit.cornell.edu/courses
/ece576/DE2_Datasheets/Audio%20CODEC/WM8731_WM8731L.p
df

[7] Altera SOPC Builder User Guide. (2010, December). [Online].
Available: http://www.altera.com/literature/ug/ug_SOPC_builder.pdf

[8] Altera Embedded Peripherals IP Guide. (2011, June). [Online].
Available: http://www.altera.com/literature/ug/ug_embedded_ip.pdf

[9] Z. B. Salem, M. W. Youssef, and M. Abid, “A fast co design
approach for low cost application-specific system on programmable
chip (SOPC): Application to sensor network,” Mobile Ad-hoc
Networks, Special Issue, pp. 187-194. 2010.

[10] J. Case, M. Fedor, M. Schoffstall, and C. Davin, The simple network
management protocol (SNMP), RFC 1157, 1990.

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 3, June 2013

368

[11] S. Moslehpour, K. Jenab, and B. S. Pabla, “Implementing a soft core
NIOS II processor for VGA application,” International Journal of
Engineering Research and Innovation, vol. 4, no. 2, pp. 12-26, 2012.

[12] K. Popovici, F. Rousseau, A. A. Jerraya, and M. Wolf, Embedded
software design and programming of multiprocessor system-on-chip.
New York: Springer, 2010.

[13] S. Moslehpour, K. Jenab, and S. Valiveti, “GPS time reception using
altera SOPC builder and Nios II: Application in train positioning,”
International Journal of Industrial Engineering and Production
Research. vol. 23, no. 1, pp. 13-21, 2012.

[14] A. K. Swain, and K. K. Mahapatra, “Low cost system on chip design
for audio processing,” in Proceedings of the International Multi-
Conference of Engineers and Computer Scientists, vol. 2, Hong Kong,
2010.

[15] B. Fort, D. Capalija, Z. G. Vranesic, and S. D. Brown, “A
multithreaded soft processor for SOPC area reduction,” in Proc. 14th
Annual IEEE Symposium and IEEE Transactions on Field-
Programmable Custom Computing Machines, FCCM '06. pp. 131-
142, 2006.

[16] S. Sharma and A. Pal, “Implementation of web-server using altera
DE2-70 FPGA development kit,” Bachelor’s Thesis. Department of
Electronics and Communication Engineering. National Institute of
Technology, Rourkela, India, 2010.

[17] X. Wang, “Multi-core system education through a hands-on project
on FPGAs,” in Proc. of the Frontiers in Education Conference, FIE,
2011.

[18] J. Robinson, S. Vafaee, J. Scobbie, M. Ritche, and J. Rose, “The
super soft small processor,” IEEE Transactions on Programmable
Logic Conference (SPL), VI, pp. 3-8, 2010.

[19] M. Leeser, S. Hauck, and R. Tessier, “Field-programmable gate
arrays in embedded systems,” EURASIP Journal on Embedded
Systems. V2006, pp. 1-2, 2006.

[20] Z. Wang and P. Ning, “image capture and storage system based on
SOPC,” in Proceedings of the 2010 3rd International Congress on
Image and Signal Processing, CISP 2012, vol. 4, no. 1, pp. 1999-
2002, 2010.

[21] J. O. Hamblen and T. S. Hall, “Using system on a programmable chip
technology to design embedded systems,” IJCA, vol. 13, no. 3, pp. 1-
11, 2006.

[22] My First NIOS II Software, Altera Corporation based on Altera
Complete Design Suite Vrsion9.1. January 2010. [Online]. Available:
http://www.altera.com/literature/tt/tt_my_first_nios_sw.pdf

[23] H-W. Liang, J-A. Li, and L-L. Kan, “Implementation of SD card
music player using altera DE2-70,” in Proceedings of the 2011
International Conference on Multimedia and Signal Processing
(CMSP), vol. 2, no. 1, 150-153, 2011.

[24] M. Zhang and H. T. Liu, “The design of the displaying system based
on the SOPC embedded chips,” in Proc. International Conference on
Electric Information and Control Engineering, ICEICE 2011, art. no.
5777471, pp. 5477-5480, 2011.

Saeid Moslehpour is an associate professor and
department chair in the Electrical and Computer
Engineering Department in the College of
Engineering, Technology, and Architecture at the
University of Hartford. He holds Ph.D. (1993) from
Iowa State University and Bachelor of Science (1989)
and Master of Science (1990) degrees from
University of Central Missouri. His research
interests include logic design, CPLDs, FPGAs,

Embedded electronic system testing and distance learning.

Kouroush Jenab is a senior member of IEEE,
received the B.Sc. degree from the IE Department
at Isfahan University of Technology (1989), the
M.Sc. degree from the IE Department at Tehran
Polytechnic (1992), and the Ph.D. degree from the
Department of Mechanical Engineering at the
University of Ottawa (2005). He served as a senior
engineer/manager in auto, and high-tech industries
for 18 years. He joined the National Research

Council Canada as a research officer where he participated in several
international research projects. In 2006, he joined the Department of
Mechanical and Industrial Engineering at Ryerson University, Toronto, as
an assistant professor. Currently, Dr. Jenab is education chair of the Society
of Reliability Engineering (SRE)-Ottawa Chapter. He has published over
81 papers in international scientific journals and conferences, edited a
special issue on Applied Computational Techniques in Engineering and
Technology for the International Journal of Industrial Engineering
Computations, and produced over 29 technical reports.

Philip Weinsier is currently an associate professor
and EEET program director at Bowling Green State
University-Firelands. He received B.S. degrees in
Physics and Industrial Education (1978), an M.S.
degree in Industrial Education and Ed.D. degree in
Vocational/Technical Education from Clemson
University (1979 and 1990, respectively). Philip is a
Fulbright Scholar, a lifetime member of the
International Fulbright Association, and a member

of the European Association for Research on Learning and Instruction since
1989. Additionally, he has over 25 years of experience teaching applied
engineering at the university.

Bharath Kumar Matcha received his bachelor of

technology degree in electronics and communication

engineering in May, 2008, from Vardhaman College

of Engineering affiliated with Jawaharlal

Technological University, India. He worked at

Infosys Technologies Limited as a Software Engineer

for a year. He got his degree in Electrical and

Computer Engineering from University of Hartford,

CT, with Embedded Systems as his major.

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 3, June 2013

369

