
 
 

 

   
Abstract—The motivation behind this study is the impact 

made on today’s social media by music players, which include 
features like portability, size and equalizer functionality for the 
best possible sound output quality. The objective of this study 
was to develop a system that reads the wave files present on the 
Secure Data (SD) card, adjust the equalizer settings 
incorporated on it, and play them on the speaker with the best 
possible quality sound output. This was done with the help of 
the SD card slot provided on the DE2 board, and its 
implementation on the board using Altera’s SoPC (System-on-
a-Programmable-Chip) Builder in the Altera Quartus 9.1 
environment. Nios II is a 32-bit soft-core embedded processor 
architecture designed specifically for the Altera family of 
FPGAs. Programming of the Nios II processor is done using 
the Nios II 9.1 IDE tool. An extension of this work could 
include incorporation of video—along with the audio on the 
DE2 board since there is a VGA slot included on the board 
features and the movement of the wave files on the SD card 
with the help of the keys present on the DE2 board. 
 

Index Terms—Embedded processor, Nios II embedded 
design, SoPC builder, and system on a programmable chip 
builder.  
 

I.   INTRODUCTION 
Indicative of the popularity of being able to read wave 

files on SD (secure data) cards, there is no shortage of 
entries in the literature, on blogs and discussion boards, and 
postings of schematics. In this study, though, the authors 
address design advancements of the DE2_SD audio board in 
accordance with conceptual design methods [1-8] offering 
extended user control with features such as pause, reset and 
start, and—with the implementation of switches—an 
equalizer. The objective of this study was to develop a 
system that reads the wave files present on the SD card and 
plays them on the speaker with the best possible quality 
sound output.  

This was done with the help of the SD card slot provided 
on the DE2 board and its implementation on the board using 
Altera’s SoPC (System-on-a-Programmable-Chip) Builder 
in the Altera Quartus 9.1 environment. Other increases in 
functionality include the resetting of songs to the start of the 
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playlist.  
As an example, red and green LEDs on the DE2 board are 

controlled by the frequency of the music. Advanced features 
include an LCD display to provide feedback to the user not 
the least of which is a welcome message when the board is 
programmed which is important as user functionality 
increases. 

A. SoPC Builder 
Sensor network research began, like many of today’s 

technological advances, with the military in such 
applications as battle-field surveillance and enemy tracking 
[9]. After the technology proved itself, it quickly spread to 
civilian applications such as data centers, industrial settings 
and environmental observation and forecasting.  However, 
due to non-standard communications protocols and 
electrical properties, sensor networks tend to be expensive, 
in spite of their broad use for Internet Protocol (IP) and 
platforms such as Hyper Text Transfer Protocol (HTTP), 
Simple Mail Transfer Protocol (SMTP) and Simple Network 
Management Protocol (SNMP) [10]. 

As chip technology has advanced to Ultra Large-Scale 
Integration (ULSI) and Giga-Scale Integration (GSI), 
System-on-a-single-Chip (SoC) technology has brought 
prices way down. Adding programmability to these devices, 
a System-on-a-Programmable-Chip (SoPC) can be designed 
right onto high-density devices such as Field Programmable 
Gate Arrays (FPGAs), thereby offering flexibility to 
embedded systems design [11]. Now, SoC designs are 
moving from single-processor-based systems toward the 
integration of multi-processor architectures on a single chip 
(MPSoCs), due to intensive data communication 
requirements [12]. 

SoPC is a new technology which has emerged that 
enables designers to utilize a large FPGA that contains 
memory blocks, interface blocks, logic elements and analog 
blocks [13]. These blocks, along with an intellectual 
property (IP) processor core, can be combined on a single 
chip in order to target a specific application. Designers use 
SoPC for creating an FPGA which is composed of memory 
blocks, interface blocks, logic elements and analog blocks 
[14]. These blocks, along with an intellectual property (IP) 
processor core, can be combined on a single chip in order to 
target a specific application, thereby offering the user a very 
powerful system development tool. SoPC Builder [15] is a 
general-purpose tool that has the advantage of faster 
development times over manual integration methods [16] 
and is part of the Altera’s Quartus II software.  

There is no doubt that some designers still prefer to 
manually program and wire each piece of a given system. 
For most, though, the preference is to move beyond writing 
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HDL (Hardware Description Language) modules by hand. 
For them, SoPC Builder makes system design easier by 
allowing them to simply specify a component in a GUI from 
which Builder automatically provides the logical 
interconnects. Furthermore, Builder is capable of delivering 
Verilog HDL or VHDL designs, affording yet more 
flexibility to designers, who prefer one over the other. 

B. Nios II Processor 
The Nios II processor is a configurable soft-core 

processor that allows features to be added or removed on a 
system-by-system basis to meet performance requirements. 
Users can configure the Nios II processor and add 
peripherals to meet their specifications, and then program 
the system into an Altera FPGA. On this single Altera chip 
or Nios II processor core the user can implement both 
peripherals and memory (both on- and off-chip). Such a 
system is similar to a microcontroller or computer on a chip 
having a CPU.  

C. SoPC Design Flow 
While there are CAD tools available commercially, which 

are available to the user for either their HDL or schematic 
design entry methods, manufacturers of FPGAs such as 
Altera (Quartus II) and Xilinx (ISE) provide such tools 
through their own software packages. These tools actually 
help step the designer through the process as follows: 

 
• Package your component for SoPC Builder using the 

Component Editor 
• Simulate at the unit-level, possibly incorporating 

Avalon BFMs (Bus Functional Models) to verify the 
system 

• Complete the SoPC Builder design by adding other 
components, specifying interrupts, clocks, resets, and 
addresses 

• Generate the SoPC Builder system 
• Perform system-level simulation 
• Constrain and compile the design 
• Download the design to an Altera device 
• Test the design on the hardware 
 

A major consideration here is that designers can still 
choose to develop their designs in the traditional piecemeal 
way, or move forward and allow more user-friendly 
software programs to do the leading, thus allowing the 
design more time to, well, design. As noted earlier, SoPC 
Builder provides a tool block to customize the configuration 
of a processor-core for a given application via a GUI 
interface with configurable parameters such as data-path 
width, memory and address space. A number of peripherals 
are also configurable and include UARTs, general-purpose 
I/O, Ethernet and memory controllers. After the parameters 
are chosen and the GUI interface completed, the HDL or 
net-list file and a number of other library files are generated 
relative to the new processor core being generated. Using 
standard files from SoPC Builder [17], the design is then 
compiled onto an FPGA. Subsequent programming of the 
design onto the processor is accomplished via a C/C++ 
compiler.  

The final step, then, is to load the new program file into 
the program and data memories of the processor. This can 
be accomplished in a multitude of ways, dependent on the 
processor’s memory configuration. In general, processor 
cores are classified as either hard or soft [18].  The designa-
tion of a core being either hard or soft refers to its flexibility 
or ability to be configured. That is, hard cores generally 
have the advantage of higher performance characteristics but 
at the cost of configurability. Soft cores use existing pro-
grammable logic elements from the FPGA to implement the 
processor logic. Soft cores have the advantage in flexibility 
additional features, more ALU functionality, adjustable 
memory width, and user-specified peripherals and memory 
address space but at the cost of higher power and slower 
clock speeds [19]. 

 

 
Fig. 1. CAD tool design of a SoPC 

 

D. SoPC Components 
As the name implies, a “component” is simply a hardware 

design block available in SoPC Builder [20]. Before the 
component is loaded into the Builder system, an HDL file 
along with component-related information addressing 
software drivers must be created. A typical component 
might include the following: 

• The HDL description of the component’s hardware 
• A description of the interface to the component 

hardware, such as the names and types of I/O signals 
• A description of the parameters that determine the 

operation of the component 
• A GUI for parameterizing an instance of the 

component in SoPC Builder 
 

E. Types of SoPC Components 
As indicated in Fig. 2, components are connected to the 

system either inside or outside as they relate to the SoPC 
Builder system. Location, then, determines what type of 
component it is; i.e., whether the logic associated with the 
component lies inside the system or outside. Components 
lying outside the systems can use one of two types of 
interfaces: Avalon Memory-Mapped or Avalon Streaming 
interface. Any given component, though, may actually have 
multiple ports, where an Avalon Streaming source port 
would provide high-throughput data, while an Avalon 
Memory-Mapped port could be used for slave control. 

Software Design 

 
 
 

Hardware Design 

Additional 
Interface, 
Design Entry 
Tool 

FPGA Synthe-
sis Tool 

FPGA Place & 
Route 

Program FPGA and 
Initialize Memory 

Processor 
Memory 

User logic Processor Core Confiig. 
Tool 

Traditional FPGA Tool 
Flow

Application Prog. 
Source Code 

C/C++ 
Complier 

Operating Sys. 
Kernel (Optional) 

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 3, June 2013

362



 

 

 
Fig. 2. System components 

F. Avalon Switch Interconnect 
Taken together, the resources for connecting Avalon 

master and slaves on a system component represent the 
system interconnect fabric. Details of the connection are, 

then, addressed by SoPC Builder as it attempts to match 
them with the system interconnect fabric. The job of the 
interconnect fabric is to ensure that signals are correctly 
routed between master and slaves. The following items are 
supported by memory-mapped interfaces, noting that there 
can be almost any combination in the number of masters and 
slaves. 

• Any number of master and slave components 
• On-chip components 
• Interfaces to off-chip devices 
• Master and slaves of different data widths 
• Components operating in different clock domains 
• Components using multiple Avalon-MM ports 

 
In cases requiring more complex interfaces than a single 

Avalon Memory-Mapped interface, SoPC Builder is capable 
and, in fact, is its primary purpose [7] of creating and 
connecting components with system interconnect fabrics for 
multiple interfaces (see Fig. 3), given that they conform to 
Avalon Interface Specifications. 

 
Fig. 3. System interconnect fabric 

 
G. Address Decoding 
The logic in charge of address decoding forwards the 

appropriate addresses from master to slave through the 
system interconnects fabric. It is not necessary, however, for 
slaves to decode addresses, as long as they are properly 
aligned to the interface. It should be noted that manual edits 
of the HDL file are not necessary in order to modify the 
system’s memory map. Fig. 4 offers an example of how 
address decoding is accomplished for one master and two 
slaves. Fig. 5 shows an example of how each master in the 
system is assigned its own decoding logic. The job of this 
logic is to coordinate the difference in address widths 

between the master and each slave. 

 
Fig. 4. Address decoding logic 
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H. Interrupts 
The system interconnect fabric includes interrupt 

controller logic that is capable of compiling IRQ signals 
from any sender and mapping them to the inputs on the 
receiver. Each receiver will have its own interrupt controller 
that can generate values specified by the user before sending 
them on to the receiver. 

 
Fig. 5. Base setting of the active component 

 
I.   IRQ Scheme 
The system interconnect fabric is also responsible for 

passing individual IRQs from sender to receiver, but it does 
not determine priority. In such situations, interrupt 
controllers can handle up to 32 IRQ requests. Here, a 32-bit 
IRQ [31:0] would be generated by the controller and sent to 
the receiver; slave IRQs are then mapped to the bits of this 
IRQ [31:0]. If there are any remaining bits of this IRQ [31:0] 
that are not assigned, they are simply disables [7]. Only 
when multiple IRQs are sent at the same time does the 
receiver logic assign priorities before responding. 

J.   Using SoPC Builder to Assign IRQs 
Using the System Contents tab within SoPC Builder, 

users can specify individual IRQ settings (see Fig. 6). The 
flexibility of SoPC Builder can be seen here as it allows IRQ 
settings to be set up for all senders based on a given receiver. 
For any given slave, a specific IRQ may be assigned or told 
that it should ignore the IRQ altogether. 

 
Fig. 6. Using SoPC builder to assign IRQs 

 

II.   NIOS II PROCESSOR 
The Nios II processor is a configurable soft-core RISC 

processor whose features can be added or removed on a 
system-by-system basis to meet performance requirements; 
such features include: 

• Full 32-bit instruction set, data path, and address space 
• 32 general-purpose registers 
• 32 interrupt sources 
• External interrupt controller interface for more 

interrupt sources 
• Single-instruction 32 × 32 multiply and divide 

producing a 32-bit result 
• Access to a variety of on-chip peripherals, and 

interfaces to off-chip memories and peripherals 
• Hardware-assisted debug module enabling processor 

start, stop, step and trace under control of the Nios II 
software development tools 

• Software development environment based on the GNU 
C/C++ tool chain and the Nios II Software Build Tools 
(SBT) for Eclipse 

• Integration with Altera's SignalTap II Embedded Logic 
Analyzer, enabling real-time analysis of instructions 
and data along with other signals in the FPGA design 

• Instruction set architecture (ISA) compatible across all 
Nios II processor systems 

• Performance up to 250 DMIPS 
 

A. Customization of the Nios II System 
Flexibility, again, is the main feature of Altera’s FPGAs 

in that designers can add features as necessary to meet their 
system requirements or eliminate features or even 
peripherals to allow their design to be smaller and more cost 
effective [21], which can impact Nios II processor system 
performance. As an example, individual pins and logic 
resources on Altera devices are programmable, allowing 
broad customization possibilities. Reassigning pins, for 
example, could translate into a simpler board design and 
shorten the board’s traces, or even allow for functions 
unrelated to the processor. This last point can be seen in the 
fact that only about 5% or a large Altera FPGA is needed for 
a Nios II processor system, which would leave virtually the 
entire device available for the implementation of other 
functions. 

B. Configurability of a Soft-Core Processor 
As noted earlier, a soft-core processor in one that is 

configurable and whose features can be added or removed as 
necessary by the designer in consideration of either 
performance, pricing or both. On the other hand, it should 
not be assumed that configurability implies that a new Nios 
II processor must be created for each new design. In fact, 
Altera offers off-the-shelf system designs, which can be 
implemented as is if they meet system requirements; there is 
no specific requirement that a device must be newly 
configured. In some cases, before software designers have 
even determined a hardware configuration, they can begin 
writing and debugging their applications with the Nios II 
instruction set simulator. 

C. Flexible Peripheral Set and Address 
Another feature of soft-core processors such as the Nios II, 

unlike fixed microcontrollers, is that they have a flexible 
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peripheral set. This flexible peripheral set allows designers 
to target each system to a specific application [7] with 
software constructs. These are used to generically 
independent of address location—access both memory and 
peripherals. The fact that a flexible address map comes from 
having a flexible peripheral set is not lost of the designer as 
it has no effect on application developers. Peripherals can be 

classified as either standard peripherals or custom 
peripherals. 

Standard peripherals: Standard peripherals are those 
most commonly used in microcontrollers. Examples include 
timers, I/O, SDRAM controllers, and serial communication 
or other interfaces from Altera (see Fig. 7). 

 

 
Fig. 7. Standard peripherals 

 
Custom peripherals: Custom peripherals are those that 

can be created and integrated into a Nios II processor system. 
As an example, a common method for creating a custom 
peripheral that is intended to perform the same function as a 
hardware peripheral would have a system that uses most of 
its CPU cycles in the execution of a specific section of code, 
allowing for better performance. This becomes important 
insofar as software implementation is not able to keep pace 
with that of hardware; and, parallel operations can be 
performed by the processor, leaving other peripherals to 
operate on data (see Fig. 8). 

D. Custom Instructions 
Another feature of the soft-core Nios II processor is that it 

allows designers to add custom logic in the ALU. Using 
such custom instructions is another method for increasing 
the overall performance of a system by tuning hardware to 
meet performance goals. For these reprogrammable FPGAs, 
it becomes an easy task for software and hardware experts to 
work side by side to observe the results of software 
instructions on hardware. As each operation is analyzed, 

both software and hardware can be tweaked to eventually 
come up with the most efficient system design. 

 

 
Fig. 8. Custom peripherals 
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Fig. 9. Custom instructions 

E.   Automated System Generation 
Having SoPC Builder design tool, the process of 

configuring processor features and generating a hardware 
design into an FPGA can be done efficiently. Actually, a 
designer can configure the processor without having 
schematics or HDL designs. Also, irrespective of the 
number of peripherals or memory interfaces, the tool enable 
the designer to configure the processor through an GUI. At 
this point, the board is programmed with the design and 
debugged during program execution. Furthermore, once the 
design is programmed onto the board, the processor 
architecture is fixed, after which any subsequent 
development of software for the system is similar to 
traditional, non-configurable processors [13]. 

 

III.   PROPOSED DESIGN FOR THE PROJECT 
The objective of this study was to develop a system that 

could read the wave files present on the Secure Data (SD) 
card, adjust the equalizer settings incorporated on it, and 
play them on the speaker with the best possible quality 
sound output. A personal computer (PC), running Quartus II 
software with the SoPC Builder environment, and the Nios 
II soft-core processor were used for developing the proposed 
system (see Fig. 10). 

 
Fig. 10. Proposed system 

 
After the SD card is inserted into the receiving slot on the 

DE2 board, the program present on the Nios II processor is 
initialized and plays the music files—.wav formatted—on 
the speakers attached to it with the best possible sound 
quality [21].  

Using a Nios II processor-based system on the FPGS, the 
software is configured on the development board with Nios 
II standard hardware system, and then executed to create the 
FPGA configuration file, i.e., the SRAM Object File(.sof). 
This file containing the Nios II standard system, is 
downloaded to the board [22]. 

The Eclipse IDE environment is where the software part 
was developed in C language. The Eclipse environment has 
a C/C++ compiler and a set of powerful commands, utilities 
and scripts for building options for applications, board 
support packages, and software libraries. Nios II Software 
Build Tools for Eclipse focuses on improving software 
productivity for large software applications and team-based 
software designs. 

A.   Implementation 
The block diagram provided in Fig. 11 shows the 

implementation of the proposed application. 

 
Fig. 11. Block diagram of the proposed system 

 
SD Card Controller: The SD card serves as the memory 

for the project and interacts with the SD card controller. For 
this to exchange to occur, file system on the SD card must 
be FAT 16 formatted—meaning that the smallest data words 
should be 16 bits long—and that the FAT16 partitions the 
data into blocks of data, each of which is 512 bytes. 
 

SPI Interface: Implementation of the SD card interface is 
based on the SPI mode of communication, where there is 
one-bit data transfer. This type of communication offers 
lower performance when compared to parallel where the 
transfer rate can be as high as 4 bits. The various pins used 
in the SPI are: 

• SD_CLK: This pin maintains the SD card’s clock 
speed, which then enables communication between 
other pins and the SD card. 

• SD_CMD: This pin is used to send the commands. 
• SD_DATA: This pin is used for data transfer.  

 
The main functions used in this project are: 
a. SD_CARD_init() 

This function is used for the detection and 
initialization of the SD card. The CMD0 is sent by 
this function which then awaits the response. If there 
is no response from the SD card then a value of 1 is 
returned, else a value of 0 is returned. 
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b. SD_read_lba() 
This function allows multiple blocks to be read from 
the SD card after which the CMD17 represents the 
READ command. Next, lba value—representing 
specific locations on the SD card—reads each byte 
individually from the SD card location. 

 
Audio Codec: Audio Codec—located between the Buffer 

and the Line-Out—is the part of the system where digital-to-
analog conversion (DAC) takes place in order for the music 
to play on the speakers [23]. The modules included in this 
system are: 

• FIFO Module: This module is used to bridge the Nios 
and DAC. With a buffer size of 256 x 16, the data 
stream is serialized and moved from the Nios to the 
buffer. 

• I2C Module: This module basically controls the flow 
of data in the Audio Codec. 

• PPL Module: This module generates a clock 
frequency of 18.4Mhz. 

Before being sent to the DAC, the data are latched onto 
the AUD_DATA variable. This occurs at the positive edge 
of the AUD_LRCLK which is produced by the Audio Codec. 
As the 48kHz sampling is based on the Wolfson WM8731 
Audio Codec (see Table I), the frequency of the DAC is also 
set to 48kHz and the .wav file is sampled at this frequency. 

TABLE I: NORMAL MODE SAMPLING RATE LOOKUP TABLE 

 
 

• AVALON TRISTATE BRIDGE: This connects off-
chip devices to the system inter-connect fabric. The 
tri-state bridge creates input and output signals for the 
SoPC Builder system. 

• FLASH and SRAM: These are basically off-chip 

devices with non-volatile storage. 
• JTAG-UART: The Universal Asynchronous 

Receiver/Transmitter (UART) controller is the key 
component of the serial communications subsystem 
of a computer. 

• LCD DISPLAY: This is used to for the character 
display on the DE2 board [24]. 

• SD_DAT, SD_CMD, SD_CLK: These are the PIO 
that are used in the system to communicate with the 
DE2 board. 

 
The customized components in the system 

AUDIO_DAC_FIFO (Buffer), SEG_7 (Seven segment 
display) and SRAM have been incorporated into the system 
to meet the goals of this study. These components were 
provided by Terasic Technologies Inc. 

 

 
Fig. 12. The SoPC system 

 
Nios II Processor: Three core versions of the Nios II 

processor are offered by the SoPC Builder (see Fig. 13). 
• Nios II/f core (Fast) 
• Nios II/s core (Standard) 
• Nios II/e core (Economy) 

 
Fig. 13. Nios II core configuration 
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SoPC Builder: The Audio Codec, SPI interface and other 

components are connected together via the SoPC Builder. 

Assignment of the base addresses and the IRQs are basically 

done by the SoPC Builder by various read and write 

operations that can be performed. With the exception of the 

SD-RAM controller—which provides the memory for the 

Nios II processor—all of the modules operate at 100MHz.

The various components present in the generated system 

(see Fig. 12) are:



 

 

1) Nios II/f Core (Fast) 
The Nios II/f core is a high-performance device with lim-

ited core size. Limiting the core size is the tradeoff for the 
faster execution times. If neither a memory management 
unit (MMU) nor a memory protection unit (MPU) is includ-
ed, the Nios II/f ends up being about 25% larger than the 
Nios II/s core. The Nios II/f is designed to maximize the 
instructions-per-cycle execution efficiency, optimize inter-
rupt latency and maximize fMAX performance of the pro-
cessor core. 

2) Nios II/s Core (Standard) 
For medium-performance applications requiring only a 

small core while not sacrificing performance the Nios II/s 
core is a logical choice. In this case, execution performance 
is reduced in order to conserve on-chip logic and memory 
resources. This standard core uses roughly 20% less logic 
than the fast core, but at the expense of about a 40% drop in 
execution performance [7].  

3) Nios II/e Core (Economy) 
For designs needing to reduce resource utilization to a 

minimum while still maintaining hardware resources the 
Nios II/e core is designed with the smallest possible core 
size. This is the smallest core size available that still retains 
compatibility with the Nios II instruction set architecture. 
This economy core is about half the size of the standard core, 
but with significantly reduced execution performance. 

B.   Nios Flow 
Nios II top-level function controls the flow of the 

operation of the system. Once the board is switched ON, 
“AUDIO play from SD” is displayed on the LCD panel and 
waits for the SD card to be inserted into the SD card slot 
provided on the DE2 board. Next, initialization begins after 
the insertion of the SD card when the system searches for 
the .wav file in the FAT16 file system. Operation of the 
system, at that point, is taken over by the top-level function 
controls of the Nios II. When the initialization is complete, 
it plays all of the songs from start to end, with the provision 
of the KEY button to reset the system. 

 

IV.   CONCLUSION 
The objective of this study was to develop a system that 

reads the wave files present on the Secure Data (SD) card, 
adjust the equalizer settings incorporated on it, and play 
them on the speaker with the best possible quality sound 
output. The programming of the board was done with the 
Nios II Eclipse, where the program functions in such a way 
that it displays the SD CARD Player on the LCD display 
initially and then reads the memory location of the wave 
files present in the SD card. A data stream of 512 bytes is 
moved from the SD card onto the FIFO (First-In First-Out) 
Buffer. This stream of data is moved into the Audio Codec 
where digital-to-analog (DAC) conversion takes place at a 
rate of 16 bits and moved onto the Line-Out of the DE2 
board. The I2C controls the flow of data between the FIFO 
buffer and the Audio Codec and sound can be heard on the 
attached speakers with the best possible sound quality (see 
Fig. 14). 

 
Fig. 14. Final implementation of the project 

 

V.   SUMMARY 
With the evolvement of FPGAs we have more flexibility 

of hardware platforms, microprocessor instructions. Also, 
due to reduced prices, we can design systems that were not 
easy in the past. Therefore, in this study, a system that reads 
the wave files was developed based on  the Secure Data (SD) 
card, adjust the equalizer settings incorporated on it, and 
play them on the speaker with the best possible quality 
sound output. 

An extension of the work can be done to this thesis work 
such as Video can also be incorporated along with the audio 
on the DE2 board since there is provision of VGA slot on 
the DE2 board. Also few more features can also be added 
like the movement of the wave files on the SD card with the 
help of the keys present on the DE2 board. 

REFERENCES 
[1] K. Jenab, A. Sarfaraz, S. M. SeyedHosseini and, B.S. 

“Dhillon,Dynamic MLD analysis with flow graphs,” Reliability 
Engineering and System Safety, vol. 106, no. 1, pp. 80-85, 2012. 

[2] K. Jenab, A. Sarfaraz, and M. T. Ameli, “A conceptual design 
selection model considering conflict resolution,” Journal of 
Engineering Design, vol. 24, vo. 4, pp. 293-304, 2013. 

[3] K. Jenab and B. S. Dhillon, “Group-based failure effects analysis 
(GFEA),” International Journal of Reliability, Quality and Safety 
Engineering. vol. 12, no. 4, pp.291-307, 2005. 

[4] Altera Audio/Video Configuration Core for DE2-Series Boards. (July 
2010). [Online]. Available: 
ftp://ftp.altera.com/up/pub/Altera_Material/10.1/Universiy_Program_
IP_Cores/Audio_Video/Audio_and_Video_Config.pdf 

[5] SD card IP Core. Altera University Program Secure Data Card IP 
Core. (March 2009). [Online]. Available: 
ftp://ftp.altera.com/up/pub/University_Program_IP_Cores/90/SD_Car
d_Interface_for_SOPC_Builder.pdf 

[6] Wolfson Electronics. (2004, April). Portable Internet Audio CODEC 
with Headphone Driver and Programmable Sample Rates. (WM8731 
Rev3.4). [Online]. Available: https://instruct1.cit.cornell.edu/courses 
/ece576/DE2_Datasheets/Audio%20CODEC/WM8731_WM8731L.p
df 

[7] Altera SOPC Builder User Guide. (2010, December). [Online]. 
Available: http://www.altera.com/literature/ug/ug_SOPC_builder.pdf  

[8] Altera Embedded Peripherals IP Guide. (2011, June). [Online]. 
Available:  http://www.altera.com/literature/ug/ug_embedded_ip.pdf  

[9] Z. B. Salem, M. W. Youssef, and M. Abid, “A fast co design 
approach for low cost application-specific system on programmable 
chip (SOPC): Application to sensor network,” Mobile Ad-hoc 
Networks, Special Issue, pp. 187-194. 2010. 

[10] J. Case, M. Fedor, M. Schoffstall, and C. Davin, The simple network 
management protocol (SNMP), RFC 1157, 1990. 

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 3, June 2013

368



 

 

[11] S. Moslehpour, K. Jenab, and B. S. Pabla, “Implementing a soft core 
NIOS II processor for VGA application,” International Journal of 
Engineering Research and Innovation, vol. 4, no. 2, pp. 12-26, 2012. 

[12] K. Popovici, F. Rousseau, A. A. Jerraya, and M. Wolf, Embedded 
software design and programming of multiprocessor system-on-chip. 
New York: Springer, 2010.  

[13] S. Moslehpour, K. Jenab, and S. Valiveti, “GPS time reception using 
altera SOPC builder and Nios II: Application in train positioning,” 
International Journal of Industrial Engineering and Production 
Research. vol. 23, no. 1, pp. 13-21, 2012. 

[14] A. K. Swain, and K. K. Mahapatra, “Low cost system on chip design 
for audio processing,” in Proceedings of the International Multi-
Conference of Engineers and Computer Scientists, vol. 2, Hong Kong, 
2010. 

[15] B. Fort, D. Capalija, Z. G. Vranesic, and S. D. Brown, “A 
multithreaded soft processor for SOPC area reduction,” in Proc. 14th 
Annual IEEE Symposium and IEEE Transactions on Field-
Programmable Custom Computing Machines, FCCM '06. pp. 131-
142, 2006. 

[16] S. Sharma and A. Pal, “Implementation of web-server using altera 
DE2-70 FPGA development kit,” Bachelor’s Thesis. Department of 
Electronics and Communication Engineering. National Institute of 
Technology, Rourkela, India, 2010. 

[17] X. Wang, “Multi-core system education through a hands-on project 
on FPGAs,” in Proc. of the Frontiers in Education Conference, FIE, 
2011. 

[18] J. Robinson, S. Vafaee, J. Scobbie, M. Ritche, and J. Rose, “The 
super soft small processor,” IEEE Transactions on Programmable 
Logic Conference (SPL), VI, pp. 3-8, 2010. 

[19] M. Leeser, S. Hauck, and R. Tessier, “Field-programmable gate 
arrays in embedded systems,” EURASIP Journal on Embedded 
Systems. V2006, pp. 1-2, 2006. 

[20] Z. Wang and P. Ning, “image capture and storage system based on 
SOPC,” in Proceedings of the 2010 3rd International Congress on 
Image and Signal Processing, CISP 2012, vol. 4, no. 1, pp. 1999-
2002, 2010. 

[21] J. O. Hamblen and T. S. Hall, “Using system on a programmable chip 
technology to design embedded systems,” IJCA, vol. 13, no. 3, pp. 1-
11, 2006. 

[22] My First NIOS II Software, Altera Corporation based on Altera 
Complete Design Suite Vrsion9.1. January 2010. [Online]. Available: 
http://www.altera.com/literature/tt/tt_my_first_nios_sw.pdf  

[23] H-W. Liang, J-A. Li, and L-L. Kan, “Implementation of SD card 
music player using altera DE2-70,” in Proceedings of the 2011 
International Conference on Multimedia and Signal Processing 
(CMSP), vol. 2, no. 1, 150-153, 2011. 

[24] M. Zhang and H. T. Liu, “The design of the displaying system based 
on the SOPC embedded chips,” in Proc. International Conference on 
Electric Information and Control Engineering, ICEICE 2011, art. no. 
5777471, pp. 5477-5480, 2011.  
 
 

Saeid Moslehpour is an associate professor and 
department chair in the Electrical and Computer 
Engineering Department in the College of 
Engineering, Technology, and Architecture at the 
University of Hartford. He holds Ph.D. (1993) from 
Iowa State University and Bachelor of Science (1989) 
and Master of Science (1990) degrees from 
University of Central Missouri. His research 
interests include logic design, CPLDs, FPGAs, 

Embedded electronic system testing and distance learning.  
 

Kouroush Jenab is a senior member of IEEE, 
received the B.Sc. degree from the IE Department 
at Isfahan University of Technology (1989), the 
M.Sc. degree from the IE Department at Tehran 
Polytechnic (1992), and the Ph.D. degree from the 
Department of Mechanical Engineering at the 
University of Ottawa (2005). He served as a senior 
engineer/manager in auto, and high-tech industries 
for 18 years. He joined the National Research 

Council Canada as a research officer where he participated in several 
international research projects. In 2006, he joined the Department of 
Mechanical and Industrial Engineering at Ryerson University, Toronto, as 
an assistant professor. Currently, Dr. Jenab is education chair of the Society 
of Reliability Engineering (SRE)-Ottawa Chapter. He has published over 
81 papers in international scientific journals and conferences, edited a 
special issue on Applied Computational Techniques in Engineering and 
Technology for the International Journal of Industrial Engineering 
Computations, and produced over 29 technical reports.  
 

Philip Weinsier is currently an associate professor 
and EEET program director at Bowling Green State 
University-Firelands. He received B.S. degrees in 
Physics and Industrial Education (1978), an M.S. 
degree in Industrial Education and Ed.D. degree in 
Vocational/Technical Education from Clemson 
University (1979 and 1990, respectively). Philip is a 
Fulbright Scholar, a lifetime member of the 
International Fulbright Association, and a member 

of the European Association for Research on Learning and Instruction since 
1989. Additionally, he has over 25 years of experience teaching applied 
engineering at the university.  
 

 
 

Bharath Kumar Matcha received his bachelor of 

technology degree in electronics and communication 

engineering in May, 2008, from Vardhaman College 

of Engineering affiliated with Jawaharlal 

Technological University, India. He worked at 

Infosys Technologies Limited as a Software Engineer 

for a year. He got his degree in Electrical and 

Computer Engineering from University of Hartford, 

CT, with Embedded Systems as his major.

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 3, June 2013

369


