

Abstract—Botnet is one of the most widespread and serious
modern malware occurs commonly in today’s cyber attacks. A
botnet is a group of compromised computers which are
remotely controlled by hackers to launch various network
attacks, such as DDoS attack, spam, click fraud, identity theft
and information phishing. The effort of the research is to
analyze the behavior, possible countermeasures and preventive
procedures of botnets; and come up with a next generation
security framework to detect botnets on computer networks.

Index Terms—Botnet, bots, centralized, decentralized,
peer-to-peer, similar behavior.

I. INTRODUCTION
The threat landscape has changed over recent times. It is

no longer the teenagers who are trying to break into the
systems but well organized criminals stealing sensitive
information to make money. Large scale attacks and digital
criminal activities have exposed the Internet to serious
security breaches, and alarmed the world regarding
cyber-crime. The cores of this problem are the so called
botnets. A better understanding of Botnets will help to
coordinate and develop new technologies to counter this
serious security threat.

Fig. 1. An overview of basic Botnet functionality

II. BASICS OF BOTNETS

Botnets exist in many different forms [1]. Fig. 1 shows a
basic overview of their basic functionality. A botnet is shown
using a centralized architecture for it Command & Control
channel, and engaging in worm-like propagation and a
Distributed Denial of Service attack.

Botnets usually commandeer new victims by remotely
exploiting a vulnerability of the software running on the

Manuscript received December 19, 2012; revised March 12, 2013.
The authors are with the Department of Computer Science and

Engineering, University of Moratuwa, Sri Lanka.(e-mail:
asankabalasooriy@gmail.com, shantha@uom.lk)

victim. Botnets borrow infection strategies from several
classes of malware, including self-replicating worms, e-mail
viruses, etc. Fig. 2 shows various stages in a typical botnet
life-cycle.

Fig. 2. A typical Botnet life-cycle.

III. COMMAND AND CONTROL

Since the defining feature of a botnet is the ability of the
bot-master to control the bots, some channel of
communication must be present. This if often done by adding
a simple protocol layer to an well-known protocol like HTTP
or IRC, but sometimes more complex protocols functioning
at lower levels in the network stack can be seen.

There are mainly two different Botnet Architectures as
described in [1]. Those are, Client/server (centralized)
botnets and Peer-to-peer (decentralized) botnets.

A. Client/Server Botnets

Historically, the type of Command & Control protocol
encountered most often by researchers has been based on the
Internet Relay Chat (IRC) protocol and IRC botnets are still
in widespread use [2]. It also called as IRC, HTTP-based
Centralized Command and Control (C&C) Botnet
Architecture. This is the most common type of Botnet
available in the internet.

The paper [3] concludes that 60% of the Botnets they
found were IRC based Botnets and only a handful used HTTP
for the C&C. Out of the C&C Botnets 70% of the botnets
were single IRC base Botnets. Fig. 1 shows a typical
Client/Server Botnet Architecture. The problem the
bot-master faces using Client/Server architecture for the
Command & Control channel, is presence of a central point
of failure.

Next Generation Security Framework to Detect Botnets on
Computer Networks

Asanka Balasooriya and Shantha Fernando

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 2, April 2013

257DOI: 10.7763/IJET.2013.V5.554

B. Peer-to-Peer Botnets
In a peer-to-peer architecture, there is no centralized point

for command and control. Nodes in a peer-to-peer network
act as both clients and servers such that there is no centralized
coordination point that can be incapacitated. If nodes in the
network are taken offline, the gaps in the network are closed
and the network continues to operate under the control of the
attacker. Due to its peer architecture, it is very hard to detect
Peer-to-Peer Botnets.

IV. RELATED WORK
Botnet detection is a very challenging problem and many

researchers done research in this area. There are various
methods to detect Botnets. There are several researches done
by setting up a Honeynet which is integrated with Intrusion
Detection Systems (IDS) to detect Botnets.

The concept of Honeypots in general is to catch malicious
network activity with a prepared machine. This computer is
used as bait. The intruder is intended to detect the Honeypot
and try to break into it. Next, the type and purpose of the
Honeypot specifies what the attacker will be able to perform.
Often Honeypots are used in conjunction with Intrusion
Detection Systems. There are many papers discussed how to
apply honeynets for Botnet detection [4]-[8].

Signature based detection [9] is nothing but pattern
matching. This extracts the features from the IRC packet and
performs the cross check with the existing IRC C&C
signatures stored in the database. If a match is found then it is
declared as attack. The process of this method is easy because
this compares simple byte sequences only. Moreover this
kind of detection produces less or no false detections.

The interaction pattern or behavior of bots varies from
human [10]. Human interaction occurs frequently and with
varying Intervals. If the log of the bot traffic is examined,
bots stay idle for a long time; once it receives the command
from the Bot-master, it responds quickly and then stays idle
until it receives the next command. Therefore the C&C
channel detection becomes feasible by using spatial-temporal
reasoning [11]. The inter arrival time between the C&C
instructions of one bot will not vary or vary marginally when
compared against another.

Flow characteristics like packets per flow (ppf) and
average, bytes per packet (bpp), bytes per second (bps),
packets per second (pps) have been used in separating the
botnet traffic from the TCP traffic. These parameters can
only help in separating aggressive flow. Modern attackers
keep the rate as low as possible to masquerade the attack flow
as normal. Hence to separate the low rate attack flow, the
flow per IP address is correlated to find out the similar
behavior among the flows.

BotSniffer [12] which is a network-based anomaly
detection that identify botnet command and control channels
without prior knowledge of signatures. It detects bots by
examining the correlation and similarity patterns between
bots activities within similar time window such as
coordinated communication, propagation, attack and
fraudulent activities due to the pre-programmed response
activities to Bot-master commands.

For detecting Botnets Machine learning techniques are

also used. Machine learning algorithms do not need explicit
signatures to classify malware programs but rather is based
on finding common features and correlating different
activities of the malware. The papers [13] and [14] present
machine learning techniques for botnet detection by using
network statistics.

Detecting and neutralizing peer -to-peer based Command
& Control channels is a more complicated task. There are two
main solutions based on the study of Strom which are
highlighted in research papers. The first solution is to pollute
the Command & Control channel with false orders. That
solution is only applicable on botnets using an
unauthenticated publish/subscribe Peer-to-Peer architecture.
The other solution proposed is an eclipse attack [15]. An
eclipse attack attempts to divide the network into smaller
networks by infiltrating the network with a large number of
nodes, and preventing communication across these
infiltrating nodes. The eclipse attack could be mounted as
second stage of a Sybil attack [16].

V. NEXT GENERATION SECURITY FRAMEWORK
The next generation security framework is a security

model to detect botnets on computer networks. This security
model outlines how security is to be implemented on
computer networks to detect botnets effectively. To analysis
the botnets in computer network, freely available bot
detecting tools and honey-pots will be deployed. This
research will be useful for, security researchers to have a look
at a new model to detect botnet and everyone who is interest
on security to have an in-depth knowledge on Botnets.

The proposed Next Generation Security framework is
based on passively monitoring network traffics. This model is
based on the concept that multiple bots within the same
Botnet will perform similar communication patterns and
malicious activities. Fig. 3 shows the architecture of the
proposed Next Generation Security Framework to Detects
Botnet on Computer Networks. It consists of 6 main
components. Those are Perimeter Filtering, Traffic Classifier,
HTTP Based Bot Detector, IRC Based Bot Detector, SMTP
Traffic Analyzer and Peer-to-Peer Bot Detector.

Fig. 3. Next Generation security framework

A. Perimeter Filtering
The main objective of Perimeter Filtering is to reduce the

huge unwanted traffic workload and makes the rest of the
system perform more efficiently. Following diagram shows
the architecture of the filtering. In Transport connection
Protocol (TCP) to establish a connection, uses a three-way
handshake mechanism. In this Perimeter Filter, it will
filter-out the traffics that the TCP handshaking have not

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 2, April 2013

258

completed. Like a host sends SYN packets without
completing the TCP handshake. Most of these traffics are
generated due to the scanning activities.

This Perimeter Filter not only filter-out the above
mentioned incomplete TCP handshake packets but also filters
out the huge well-known legitimate traffic. For that; need to
gather the information about servers and their services
provided to outside world. Then it is easy to filter out that
well-known legitimate traffic from the Perimeter Filter.

B. Traffic Classifier
Filtered traffic from the Perimeter Filter piped into the

Traffic Classifier. Traffic Classifier is responsible to separate
IRC, HTTP and SMTP traffics from the rest of traffics and
send them to corresponding Bot Detectors for analyze the
traffic for Bots. For this to happened Traffic Classifier use
standard TCP port numbers defined in the RFC6335[17].
Following is the summary of most commonly used TCP
protocols and their associate port numbers.

For identifying HTTP traffic which are not using the
default port 80 traffic , it is necessary to inspect the first few
bytes of HTTP request and if it has certain pattern or strings,
separate it and send it to HTTP Bot Detector. For detecting
HTTP traffics we focus on concept of HTTP [18] protocol.
Similar to most of other network protocols, HTTP uses the
client-server model [19].

In HTTP, there are 3 methods. Those are “GET”, “HEAD”,
or “POST”. So, it is necessary to inspect the first few bytes of
an HTTP request contain “GET”, “POST” or “HEAP”. Then
it is much more accurate to classify as HTTP and can send
them to the HTTP Bot Detector.

To detect IRC traffics those are not using standard port, it
is necessary to inspect the contents of each packet and try to
match the data against a set of user defined strings. By
inspecting the first few bytes of the payload and looking for
specific strings; it is much easier to catch IRC traffic. These
IRC specific strings are NICK for the client’s nickname,
PASS for a password, USER for the username and JOIN for
joining a channel.

TCP Port 25 SMTP traffic is forward to the SMTP Traffic
Analyzer for Detecting SMTP related bot activities. And rest
of the traffic which are Peer-to-Peer and other traffic are
forward to the Peer-to-Peer Bot Detector for detecting Bots.

C. IRC Based Bot Detector
The IRC [20] protocol regulates the recommended

commands that should be used, for example NICK, JOIN,
USER or MODE. USER names will in nearly all cases also
be the same randomized NICK used to join the IRC. Some
variations do occur, but spotting unusual NICK’s is the key to
a successful bot detection program.

There are many online games that use IRC
communications for game chat between the users. To identify
accurately a Botnet from a game connection is to look at the
number of alerts generated by the host/destination. If you
notice a relatively few connection alerts, it’s most likely a
Botnet. If you have hundreds or thousands of alerts in a short
period, it’s in all likelihood a game or regular chat. We can
verify this by examining the PRIVMSG alerts. Fig. 4 shows
why it is important to catch and read the PRIVMSG’s when a
bot detection in process.

Fig. 4. PRIVMSG alert in snort IDS.

The PRIVMSG alerts are going to contain private

messages from Internet Relay Chat conversations. There is a
simple method to greatly reduce exposure of private
messages that are not Botnet related. Namely, only look at
private message alerts that have first matched up to a clearly
random NICK or USER name. Then search on all alerts that
match the IP addresses used by the IRC server and the
suspected station. Then examine the alerts.

D. HTTP Based Bot Detector
The HTTP protocol is used in place of the IRC protocol

and also port 80 is used. Because of the wide range of
services used, it is not easy to block the central Command and
Control server. By using the HTTP protocol, bots hide their
communication flows among the normal HTTP flows, and
avoid detection by the network defenders such as the
firewalls [21]. Following is a HTTP GET request in a Botnet
environment.

HTTP GET master/bb.php?id=5737x7x7x7x&v=300&tm
=210&b=x11test

We can develop an IDS signature by looking for strings
within the URI portion of the HTTP GET request. The
analyst would focus on strings that appear to be part of the
protocol employed by the C&C infrastructure, but that
probably will not occur in normal HTTP traffic. In the above
case, the rule could look for the presence of the strings .php?
and 7x7x7x7x.

In our HTTP Based Bot Detector we implement an IDS as
the primary detector to detect HTTP based Botnets according
to signature availability and as the secondary method to
detect rest of the HTTP based Botnet activities where there
are no signatures available in the IDS we use the repeated
HTTP GET request as polling method which is presented in
the paper [22].

E. Peer-to-Peer Bot Detector
Peer-to-Peer Botnet has a decentralized command and

control architecture. Modern Botnets highly use structured
overlay topologies [23]. Modern botnets, such as Storm,
Peacomm, and Conficker use these type of structured overlay
networks [24]. Due to their lack of centralization, a botnet
herder can join and control at any place. So, it is very hard to
detect. Further, structured overlay mechanisms are designed
to remain robust in the face of churn [25], an important

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 2, April 2013

259

concern for botnets, where individual machines may be
frequently disinfected or simply turned off for the night. Not
only have that but also structured overlay networks also have
protection mechanisms against active attacks [26].

On the other hand present traffic classification methods
can be grouped in three categories. Those are; flow-based,
payload-based and host-based. Implementations of all three
categories have their limitations. It is very hard when it
comes to detecting new application traffic classification. The
use of Traffic Dispersion Graphs (TDGs) will eliminate all
above boundaries. Fig. 5 shows a TDG of a Peer-to-Peer
Botnet.

Fig. 5. Traffic dispersion graphs of a peer-to-peer Botnet

F. SMTP Traffic Analyzer
Due to their capability to automate large spam campaigns,

Botnets are commonly used in the internet. Botnets transmit
approximately 85% of the 100+ billion spam messages sent
per day. There are several techniques to detect Spam
messages. Those are content-based filtering, IP address of the
sender and behavioral features like how the mail is sent.

SMTP Traffic Analyzer in Next Generation Security
Framework is detecting spam messages and identifying Spam
Hosts, Spamming IP Addresses, URLs associated with Spam
messages and that information can be used with the Perimeter
Filter to prevent from Botnets. SMTP Traffic Analyzer
implemented using Postfix as the Mail Transfer Agent
(MTA), Clam-AV as the virus scanner and SpamAssassin as
the Spam filter.

VI. CONCLUSION
The next generation security framework is a security

model to detect botnets on computer networks. This security
model outlines how security is to be implemented on
computer networks to detect botnets effectively. This
research will be useful for, security researchers to have a look
at a new model to detect botnet and everyone who is interest
on security to have an in-depth knowledge on Botnets. The
proposed Next Generation Security framework is based on
passively monitoring network traffics. This model is based on
the concept that multiple bots within the same Botnet will
perform similar communication patterns and malicious
activities.

The main highlighted point in our proposed detection
framework from many other similar works is that, our
proposed framework works as one general system for
detection of Botnet. It focuses on IRC based Botnets, HTTP
based Botnets, Peer-to-Peer based Botnets and Spam
generated Botnets. In near future we will focus on reducing

false positives generated from the system.

ACKNOWLEDGMENT
The authors would like to thank Prof. Gihan Dias, Dr.

Chandana Gamage, Dr. Malaka Walpola and Dr. Shehan
Perera for their invaluable supports in encouraging the
authors to conduct MSc research and publish this paper.

REFERENCES
[1] E. Gyu and Y. H. Shin, A survey of Botnet: Consequences, Defenses

and Challenges.
[2] M. A. Rajab, J. Zarfoss, F. Monrose, and Andreas, “A Multifaceted

Approach to Understanding the Botnet Phenomenon,” in Proc. the 6th
ACM SIGCOMM Conference on Internet Measurement.

[3] T. Holz, M. Steiner, F. Dahl, E. Biersacky, and F. Freiling,
“Measurements and Mitigation of Peer-to-Peer-based Botnets: A Case
Study on StormWorm,” in The 1st Usenix Workshop on Large-Scale
Exploits and Emergent Threats.

[4] M. A. Rajab, J. Zarfoss, F. Monrose, and A. Terzis, “A multifaceted
approach to understanding the Botnet phenomenon,” in Proc. 6th ACM
SIGCOMM on Internet Measurement Conference, IMC 2006, pp.
41-52, 2006.

[5] K. K. R. Choo, “Zombies and Botnets,” Trends and Issues in Crime
and Criminal Justice, Australian Institute of Criminology, Canberra,
no. 333, March 2007.

[6] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. C. Snoeren, G.
M. Voelker, and S. Savage, “Scalability, Fidelity and Containment in
the Potemkin Virtual Honeyfarm,” in Proc. ACM SIGOPS
OperatingSystem Review, vol. 39, no. 5, pp. 148-162, 2005.

[7] F. Freiling, T. Holz, and G. Wicherski, “Botnet tracking: Exploring a
root-cause methodology to prevent distributed denial-of-service
attacks,” in Proc. 10th European Symposium on Research in Computer
Security (ESORICS), Lecture Notes in Computer Science, vol. 3676,
pp. 319-335, September 2005.

[8] D. Dagon, C. Zou, and W. Lee, “Modeling Botnet propagation using
time zones,” in Proc. 13th Network and Distributed System Security
Symposium (NDSS’06), 2006.

[9] T. Holz, M. Steiner, F. Dahl, E. Biersacky, and F. Freiling,
“Measurements and mitigation of peer-to-peer-based botnets: A case
study on Storm-worm,” in Proceedings of the 1st Usenix Workshop on
Large-Scale Exploitsand Emergent Threats, 2008.

[10] Z. H. Chi and Z. X. Zhao, “Detecting and Blocking Malicious Traffic
Caused by IRC Protocol Based Botnets,” in Proc. IFIP International
Conference on Network and Parallel Computing Workshops. pp.
485-489, 2007.

[11] G. F. Gu, J. J. Zhang, and W. K. Lee, “BotSniffer: Detecting Botnet
Command and Control Channels in Network Traffic,” in Proceedings
of the 15th Annual Network and Distributed System, 2008.

[12] G. Gu, J. Zhang, and W. Lee, “BotSniffer: Detecting Botnet Command
and Control Channels in Network Traffic,” in Global
Telecommunications Conference (GLOBECOM 2009), Atlanta, USA.

[13] W. T. Strayer, R. Walsh, C. Livadas, and D. Lapsley, “Detecting
Botnets with Tight Command and Control,” in Proceedings of the 31st
IEEE Conference on Local Computer Networks, lcn, pp. 195-202,
2006.

[14] C. Livadas, R. Walsh, D. Lapsley, and W. T. Strayer. “Using machine
learning techniques to identify botnet traffic,” in Proceedings of the
2nd IEEE LCN Workshop on Network Security (WoNS2006), 2006.

[15] A. Singh, M. Castro, P. Druschel, and A. Rowstron, “Defending
against eclipse attacks on overlay networks,” in Proceedings of the
11th workshopon ACM SIGOPS European workshop, 2004.

[16] B. N. Levine, C. Shields, and N. B. Margolin, A Survey of Solutions to
the Sybil Attack.

[17] RFC 6335 - IETF Tools - Internet Engineering Task Force. [Online].
Available: http://tools.ietf.org/html/rfc6335

[18] RFC 2616 - Hypertext Transfer Protocol -- HTTP/1.1. [Online].
Available: http://tools.ietf.org/html/rfc2616

[19] Client–server model - Wikipedia, the free encyclopedia. [Online].
Available: http://en.wikipedia.org/wiki/Client-server_model

[20] C. Kalt, Request for Comments (RFC) 2810: Internet Relay Chat –
Architecture, 2000.

[21] Overlay network - Wikipedia, the free encyclopedia. [Online].
Available: http://en.wikipedia.org/wiki/Overlay_network

[22] P. Porras, H. Saidi, and V. Yegneswaran. “A foray into Conficker’s
logic and rendezvous points,” in 2nd Proceedings of Usenix Workshop
on Large Scale Exploits and Emergent Threats (LEET ’09), 2009.

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 2, April 2013

260

[23] D. Loguinov, A. Kumar, V. Rai, and S. Ganesh. “Graph-theoretic
analysis of structured peer-to-peer systems: Routing distances and fault
resilience,” in Proceedings of ACM SIGCOMM, Aug. 2003.

[24] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach.
“Secure routing for structured peer-to-peer overlay networks,” in the
Proceedings of SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 299-314,
2002.

[25] S. Nagaraja, P. Mittal, C. Y. Hong, M. Caesar, and N. Borisov, “Bot
Grep: Finding P2P Bots with Structured Graph Analysis,” in the
Proceedings of USENIX Security Symposium, August 2010.

Asanka Balasooriya received his BSc.Eng[Hons]
degree in Computer Science and Engineering from
University of Moratuwa in 2009. Present he is an MSc
student in Information Systems Security in UoM. He is
currently working as an Information Security Engineer
in TechCERT.

Shantha Fernando is a senior lecturer at the
Department of Computer Science and Engineering,
UoM, and a Chartered Engineer. He received his
BSc.Eng[Hons] degree in Computer Science and
Engineering from University of Moratuwa in 1993.
He started his career as a Software Engineer. He was
attached to the private sector for 7 years, during which
time he obtained his Master of Philosophy and then

joined the academic service as a Senior Lecturer in the UoM in 2000. He
obtained his PhD degree from Delft University of Technology, Netherland.
Currently he serves as the Director, Engineering Research Unit of the UoM
and as a Senior Lecturer at the Department of Computer Science and
Engineering.

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 2, April 2013

261

