
  
Abstract—In this paper we introduce the second generation 

of the experimental detection framework of AIPS system 
which is used for experimentation with detection models and 
with their combinations. Our research aims mainly on 
detection of attacks that abuse vulnerabilities of buffer 
overflow type, but the final goal is to extend detection 
techniques to cover various types of vulnerabilities. This article 
describes the concept of detection framework, updated set of 
network metrics, provides a design of model architecture and 
shows an experimental results with draft of framework on the 
set of laboratory simulated attacks. 

 

Index Terms—Artificial intelligence, behavioral signatures, 
metrics, network security, security, security design. 

 

I. INTRODUCTION 
During the last decade, anomaly detection has attracted 

the attention of many researchers to overcome the weakness 
of signature-based IDSs in detecting novel attacks, and 1999 
KDD Cup is the mostly widely used dataset for the 
evaluation of these systems [1]. Although some intrusion 
experts believe that most novel attacks are variants of 
known attacks and the signature of known attacks can be 
sufficient to catch novel variants [2], the results of the 1999 
KDD Cup “Classifier Learning Contest” shows the opposite 
[3]. Results of buffer overflow mining methods using the 
1999 KDD Cup dataset are completely unsatisfactory even 
using most contemporary methods [4], [1], [5], [6]. Thus, 
we have decided to create a more representative dataset, 
similarly to the HoAH project [7], but at different levels of 
details. 

 In the previous article [8] we proposed an idea of 
framework architecture that would be used for detection of 
various network threats. The paper presented the novel 
Automated Intrusion Prevention System (AIPS) which uses 
honeypot systems for the detection of new attacks and the 
automatic generation of behavioral signatures based on 
network flow metrics. We have successfully experimented 
with the architecture of the AIPS system and we defined 
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112 metrics divided into five categories according to their 
nature. These metrics are used to describe properties of 
detected attack not upon the fingerprint of common 
signature, but based on its behavior. 

During the experiments we found several limitations of 
the original idea and some parts of the architecture were 
changed. We extended the metric dataset to 169 metrics 
containing approximately 4000 parameters and changed the 
categories to reflect the nature of the new dataset. The main 
goals of this research is (a) to design the architecture of 
detection framework that will enhance the overall network 
security level with the ability to learn new behaviors of 
attacks without intervention of human by using the expert 
knowledge from Honeypot (or similar) systems; (b) to find 
the most suitable set of metrics that will successfully 
describe the behavior of attacks in the network traffic and 
will significantly higher the detection rate and lower the 
false positive rate. 

In this article we introduce the second generation of 
the experimental detection framework of AIPS system 
which is used for experimentation with detection models 
and with their combinations. The fundamental principle of 
the detection is based on evaluation of metrics set, which 
describes the behavior of attack. These metrics are formally 
specified and extraction of them can be generally realized 
for each data flow. We could interpret the specification of 
metrics set as formally extended protocol NetFlow [9], 
which describes more than statistical properties of network 
communication. The metrics specification includes statistic, 
dynamic, localization and especially behavioral properties 
of network communication. 

The paper is organized as follows. We describe the new 
idea of the framework architecture in Section 2. The novel 
network behavioral signatures we use for detection are 
briefly discussed in Section 3 and our experiments with 
framework are provided in Section 4. We give an overview 
of some limitations and challenges for future work in 
section 5 and concluded the paper with a summary of our 
work in Section 6. 

 

II. AIPS NETWORK ARCHITECTURE 
The schema in Fig. 1 includes an AIPS Network Detector 

(AIPS ND) working as a network probe capable of detecting 
intrusions using a knowledge base from the AIPS Attack 
Processor (AIPS AP). Further, the schema includes the 
Intrusion Detection and Prevention system (IDPS) for a 
real-time detection/prevention of attacks and a database (DB) 
for storing data and signatures (not included in the scheme). 
The last (optional) part of the AIPS architecture is a group 
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of highly interactive Honeypot systems which are used to 
create expert knowledge of detected attacks. The knowledge 
is sent to AIPS AP where the knowledge base is 
concentrated. The AIPS AP is also responsible for learning 
the artificial intelligence of the AIPS ND. 

The AIPS ND works as a network probe capable of 
detecting intrusions using a knowledge base from the AIPS 
AP. The mirrored traffic (from a backbone router/firewall) 
is captured by a tcpdump probe and separated to individual 
flows. From the pre-processed traffic flow all individual 
connections are extracted and further processed to create 
a signature vector by predefined metrics. 

 
Fig. 1 AIPS Network Architecture 

The architecture of framework is designed by modular 
principles to allow the flexibility of exchanging or 
enhancing each part of framework model to cover all 
potential use cases. The part with deployed honeypots is 
designed to be either the regular instance of the honeypot 
system or a part of real operating system within a DMZ 
(demilitarized zone) as a service. We have experimented 
with Windows XP, Windows 2000 and Linux systems, all 
with successful deploy and successful detection of tested 
attacks. For interaction between the parts of framework we 
use PostgreSQL database. The use of database also fastened 
the processes working with high amount of data. 

AIPS Use Case 
In the first step the group of highly interactive Honeypots 

is used for attraction of an attacker to attack a vulnerable 
service. After an attacker exploits the vulnerability on the 
Honeypot system, all information about the attack vector 
(virtual address space, registers and traffic) are sent to the 
AIPS AP. The malicious network traffic is divided to 
separate flows further preprocessed to create the set of 
values representing set of behavioral metrics (described in 
the next chapter). This set of values is a Behavioral 
Signature used for description of the network behavior of 
analyzed attack. Each time a new attack is detected, the new 
behavioral signature is created (with expert knowledge 
provided by honeypot) and the model is updated as part of 
the learning process. The AIPS ND engine with the network 
node is processing the traffic by learned model and 

detecting known attacks by comparison of traffic parameters 
with the behavioral signatures identified with reasonable 
confidence (e.g., exceed the threshold of maliciousness 
decision), or by expert knowledge provided by shadow 
honeypot. The expert knowledge confidence of 
maliciousness decision is based on characteristics of shadow 
honeypot systems which are optimized for detection attacks 
abusing the vulnerabilities of buffer overflow type based on 
taint analysis [10]. 

An attack can be detected using technique of tainting the 
memory of each process and when the process uses 
the memory that shouldn't be normally accessible, honeypot 
claims the process malicious. We have reprogrammed the 
Argos [11] shadow honeypot to store all crucial data of 
detected attack into a database. Our system depends on 
expert knowledge of honeypot systems and the confidence 
that each detection alert raised from honeypot signifies an 
attack. This part of our concept provides a room for more 
enhancements of any form of analysis that can provide 
sufficient confidentiality to detection alerts. However, these 
enhancements are reliant on real-time and performance 
limitations of network traffic analysis to maintain the 
possibility to stop an attacker on next defense perimeter of 
IPS systems and firewalls. Actually we experiment with 
more detection techniques and we try to enhance the process 
of taint analysis and honeypot self-defense mechanisms to 
avoid potential compromise of these systems. 

The signatures created by AIPS are specific and unique 
for their behavioral nature. Each signature is a vector 
composed of dozens of numbers, each corresponding to 
a value of a specific metric. Each metric is 
a characterization of the network flow and could be 
specified as an extension of the NetFlow protocol describing 
not only statistical properties of the network flow, but it also 
includes dynamic, localization and behavioral specifics. 
These metrics are briefly described in the next chapter. 

 

III. NETWORK BEHAVIORAL SIGNATURES 
In our previous article [8] we introduced 112 metrics 

(ASNM) which are able to describe properties of attacks 
and legitimate communications based on their behavior. 
These metrics suppose source data which are directly 
extracted from network traffic. These metrics are mostly 
simple network parameters excluding packets content, 
which can be in the most cases encrypted. We extended 
the previous metric set by adding new metrics to 
approximate communication progress in time by Gaussian 
curves and other goniometric functions (Fourier series). We 
also added new packets distribution metrics and other 
behavioral metrics. We also change the scale of all time-
parameterized metrics. Now we use the scale by power of 
two because of better performance of used data-mining 
tools. The exact interpretation of this step is behind scope of 
this paper. Actual count of all proposed metrics together 
with the new dataset is 169. These metrics are in many 
cases results of convenient parameterization. The definition 
of metrics in current set will be published in a future article. 

Metrics extraction process considers communications 
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data stored in libpcap format 1 . For each TCP flow we 
extract all metrics in correct order within each category and 
also in correct order among categories. The order is 
necessary due to the fact some metrics depend on other 
metrics. Metrics extraction dependability is used in 
maximum amount, because of fast extraction. We will have 
to consider it in the phase of extraction parallelization and 
hardware acceleration process and some dependencies may 
change. 

 
Fig. 2. Value density distribution for standard deviation of time 

differences between arrived packets. 

 

 
Fig.  3. Value density distribution for one of polynom approximation 

metric 

In our demonstration we simulated buffer overflow 
attacks with Metasploit framework. Captured and 
preprocessed data were analyzed in knowledge mining 
application RapidMiner. We explored potential of 
individual metrics by creation value density distribution 
graphs. In the Fig. 3 Fig.  3is depicted value distribution for 
metric coefficient of third order polynomial which 
approximates output communication in output direction 
from the side of attacked machine. In the Fig. 2 Fig. 2we 
depict simple metric - standard deviation of time differences 
between two consecutive packets in the input direction from 
the side of attacked machine. At both figures we can see 
value differences between attack behavior and legitimate 
communication behavior. 

The next step of our analysis phase was experiments with 
classification method optimization. For finding optimal 
parameters of each classification method we used grid 
combination components of mining tool. We found rough 
values at first then we tried to optimize them by lower 

 
1 basic format to save captured network data used by tcpdump and 

similar tools 

scales. We have also experimented with data preprocessing 
phase: we used discretization of ordinal attributes and 
principal component analysis method for finding principal 
attributes. Results of these experiments are showed in Table 
ITABLE , where the methods are horizontally ordered by 
classification accuracy. 

 
TABLE I: SUMMARY RESULT OF USED CLASSIFICATION METHODS 

 
 
From the perspective of classification accuracy, we 

achieved the best results in the case of SVM method. We 
also compared classification methods by ROC method, 
however, best results were achieved by SVM method (with 
neutral ROC bias) and by the decision tree (with optimistic 
ROC bias).  

In the Fig. 4 we can see ROC diagram for neutral ROC 
bias and in Fig. 5 for optimistic ROC bias. 

 

 
Fig. 4. Diagram for neutral ROC bias 

 

 
Fig. 5. Diagram for optimistic ROC bias 
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recall 41.67% 25.00% 16.67% 25.00% 8.33% 8.33%

specificity 96.09% 94.97% 94.48% 94.97% 96.13% 96.73%

presicion 41.67% 25.00% 16.67% 25.00% 14.29% 16.67%

accuracy 89.85% 87.82% 87.82% 87.82% 76.14% 75.63%
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All experiments were performed in laboratory conditions; 
therefor there can be some differences from real 
environment. Laboratory conditions of experiments may 
differ mainly in context-dependent metrics, where the 
context was generated only by two laboratory hosts (the 
attack machine and the vulnerable machine). The second set 
of metrics depends on transmition time of packets in the 
analyzed traffic. In a real traffic more nodes are present 
within the route between the attacker and the detector, and 
this path can be dynamically selected according to actual 
network conditions, but in laboratory conditions these 
parameters are constant. Other influence relates on errorness 
of communication channel and therefore with TCP 
retrasmition of packets. 

 

IV. FUTURE WORK 
There are some limitations we are aware of in a time we 

are writing this article. We experiment with several options 
that could bring the solutions. 

The first limitation is the dependency on expert 
knowledge of honeypot that can be compromised or can 
produce false positives by nature of buffer overflow 
vulnerabilities that could be triggered accidentally with no 
intent to attack. However, honeypot systems we use are 
shadow instances of virtualized operating systems that have 
no legitimate traffic and all connections from outside are a 
priori considered malicious. The ability of successful 
detection of buffer overflow attacks and possibility of 
compromising such heavily exposed systems remain the 
challenge for future work. We identified several other 
limitations based on the nature of Honeypot systems: 

• Ability to detect only buffer overflow based 
vulnerabilities. 

• Time-consuming system and traffic analysis. 
• Delay between the attack detection and its blocking. 
• All production systems are vulnerable before one of 

the deployed honeypot systems is attacked. 
• The necessity of deployment of honeypot systems in 

the production environment. 
• Difficult simulation of ARM instructions in taint 

analysis. 

Our future work is aimed on finding solutions for 
previously outlined limitations and problems. We have 
currently 6 Honeypot systems deployed on the real network 
collecting the data which are crucial for further research. 
For our next step we have prepared experiments with the 
dataset of metrics and various data-mining techniques to 
optimize the dataset. We also plan to focus on other types of 
attacks, such as Denial of Service, Remote Access Trojans 
communication, etc. and optimize the process between the 
detection and blocking the attack. 

 

V. CONCLUSION 
In this paper we updated the current status of AIPS 

detection model aimed on detection new previously 

unknown buffer overflow attacks. It focuses on detection 
results by using chosen data-mining techniques used for 
attack recognition. The detection framework was described 
in terms of fundamental principles together with detection 
metrics that describe the behavior of a network traffic from 
different aspects. Emphasis was placed on the presentation 
of results in the detection of cross validations of training 
and testing set. The testing set includes the metrics 
generated from the captured attacks and valid 
communication. 

In the result we were able to capture unknown attacks 
with a 96% success rate using all set of metrics. If the time 
consumption was optimized to a minimum of mathematical 
operations, it was not possible to perform the analysis in 
real time. When we used metrics with maximum entropy 
(45 parameters) it was possible to maintain the quality of 
detection and the classification was done in real time. 

The detection method using behavioral signatures have 
been proven to detect unknown attacks, but the efficiency of 
the detection was tested only on a small number of attacks. 
In the near future, we plan to create a public detection set 
that would create a challenge in the development of 
detection algorithms to detect unknown attacks. 
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