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Abstract—Positioning systems often exhibit vibration 

resulting from changes in speed and direction. Command 

shaping efficiently reduces residual vibration by generating 

appropriately shaped reference commands for positioning 

systems. However, the presence of command shapers increases 

the rise time of the systems. This paper proposes a new 

command-shaper design method for a single-mode system. In 

addition to suppressing the dominant single mode, this method 

also constrains vibration at an artificial high mode. This 

approach can shorten the command shaper duration, or the rise 

time of the system. The artificial mode frequencies are design 

variables used to adjust the rise time of the system. The 

proposed design scheme is illustrated with a simulation 

example.  

 
Index Terms—Artificial mode constraint, command shaping, 

natural frequency, residual vibration  

 

I. INTRODUCTION 

Positioning systems such as XY stages, industrial cranes, 

robotic manipulators, and so on, experience residual 

vibration when they increase their operational speed or 

change their moving direction. Many researchers have 

developed control methods that can reduce such residual 

vibration in positioning systems. Command shaping has been 

developed to reduce residual vibration in flexible dynamic 

systems without the need for feedback control [1]-[6]. This 

method has distinguishable advantages in implementation: 

simplicity and low cost [4]. However, when input shaping is 

implemented, the rise time of the system increases [4], [5]. 

The rise time increase may be critical in some applications, 

such as high-speed stages.  

Hong, et.al [5] previously introduced a virtual mode 

concept for command shaper design to adjust the rise time of 

the undamped vibration system. Previous analysis of robust 

command shapers has shown that they can be interpreted as 

cancelling the vibratory mode, and also cancelling another 

virtual mode at the same frequency [7]. This paper proposes 

the command-shaper design method using artificial mode 

constraints for damped single mode systems. The proposed 
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method is to design a three-impulse command shaper as if the 

single mode system has two modes. Simulations show that 

the proposed command shaper design method is very useful 

for reducing residual vibration and adjusting the rise time of 

damped single mode systems. 

 

II. COMMAND SHAPER DESIGN USING ARTIFICIAL MODE 

CONSTRAINTS 

The basic idea of the method proposed here comes from 

the multi-mode command shaper design method that was 

described in [6] by the authors. The proposed method uses a 

three-impulse command shaper designed to suppress two 

modes. However, it is used for a single mode system, as if the 

single mode system has two modes. The method is also 

related to the work by Singh and Heppler [8], wherein they 

used 3 impulses to cancel two real vibration modes. Fig. 1 

shows a typical three-impulse command shaper. The 

command shaper for two-mode systems that has three 

impulses can be written in the Laplace domain as [6]. 
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where kA  and ,3,2,1, ktk  represents the kth impulse 

amplitude and its time. The first impulse is assumed to start at 

time zero, i.e., t0=0, without loss of generality. 

Consider the following two eigenvalues:  
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where as ss and  are the system eigenvalue to be suppressed 

and the artificial eigenvalue, respectively. sf  and af  are the 

natural frequency of system and the artificial 

undamped-mode frequency, respectively, and s  and a  

are the associated damping ratios. 
d

sf  and 
d

af  are the 

damped natural frequency of system and the artificial 

damped-mode frequency, which are defined by 

21d
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Fig. 1. Typical three-impulse command shaper 

0 t2 t3

A1 A2 A3

A New Command Shaper Design for Residual Vibration 

Reduction in Flexible Systems Using Artificial Mode 

Constraints 

Seong-Wook Hong, Member, IACSIT, Yong-Kyu Seo, and William Singhose 

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 2, April 2013

210DOI: 10.7763/IJET.2013.V5.544



  

Here, we will introduce a command shaper that can 

manipulate the input command, thereby lowering excitation. 

The principle can be explained by pole-zero cancellation 

[4]-[7]. If all the flexible poles of the system correspond to 

the zeros of the command shaper, then any reference 

command applied to the system will not induce residual 

vibration [2]. Thus, a command shaper that forces the 

vibration of the two modes to zero should satisfy the 

following equations: 

( ) 0sI s  , ( ) 0aI s                               (3) 

Equation (3) consists of two simultaneous complex-valued 

nonlinear equations, each of which provides two real-valued 

equations. However, since the number of unknowns to be 

determined is 5, one more equation is needed to yield 

meaningful solutions. An additional equation may be 

provided from a constraint on the sum of impulse amplitudes 

as follows: 

1 2 3(0) 1I A A A                               (4) 

Equations. (3) and (4) can be rewritten, with the 

parameters of three impulses: 

3 12 1

3 22 2

1

2

3

1 1 1 1

1 0

01

t st s

t st s

A

e e A

Ae e





                                             

                        (5) 

The nontrivial solution condition for (5) leads to 
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Set the artificial undamped-mode frequency and damping 

ratio to satisfy the following relation:  

2 2a a s sf f                                      (7) 

Then, (6) is simplified as  
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It is convenient to equally space the impulses, such that

3 22t t .  Then, 
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The solutions for (9) can be written as 
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Thus, the minimum shaper duration can be obtained by 
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The associated impulse amplitudes are: 
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 Fig. 2. Command shaper duration vs. artificial mode frequency 
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The non-dimensional artificial frequency and shaper 

duration time, ** , tf , are defined as follows:  
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where dT is the fundamental period of vibration. Fig. 2 shows 

the relation between the non-dimensional artificial frequency 

and the non-dimensional shaper duration. The figure 

demonstrates that the non-dimensional artificial frequency 

has a one-to-one correspondence with the non-dimensional 

shaper duration. Thus, the artificial mode frequency, 
d

af , 

can be a design parameter to adjust the shaper duration, or the 

rise time of the system. The proposed shaper duration 

becomes shorter as the artificial mode frequency increases. 

The non-dimensional shaper duration is 0.5 at the non- 

dimensional artificial frequency of 3. This is identical to a 

single-mode ZV (Zero Vibration) shaper [4].  

Fig. 3 shows the impulse magnitudes of the shaper as a 

function of the non-dimensional artificial frequency. The 

impulses, A1 and A3, are always positive but the sign of the 

middle impulse, A2, changes with frequency. If the 

non-dimensional artificial frequency approaches 5, then the 

impulse magnitude becomes greater than 1. This is a very 

important point for command shaper design because the 

existence of impulse magnitudes greater than 1 can cause 

saturation to the actuators [9]. However, the shaper duration 

may be shortened further unless actuator saturation occurs. 

The damping increases the amplitude of A1, but decreases that 

of A3. On the other hand, A2 is nearly independent of damping. 
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Fig. 3. Impulse amplitudes as a function of non-dimensional artificial 

frequency 

 

 

Fig. 4. Command generation with the proposed shapers (damped natural 

frequency: 1Hz, damping ratio: 0.1) 

 

Fig. 5. Shaped unit-step responses with the artificial mode frequency varied 

(damped natural frequency: 1Hz, damping ratio: 0.1) 
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Fig. 6. Sensitivity curves for the proposed command shapers with various 

artificial frequencies 

 

III. ILLUSTRATION OF THE PROPOSED COMMAND SHAPER 

To illustrate the proposed command shaper design method, 

Fig. 4 shows four different cases with the proposed method 

for a damped single mode system of which the damped 

natural frequency and damping ratio are 1 Hz and 0.1. 

Fig. 4(a) shows the step command shaped by a command 

shaper with a 3Hz artificial mode, which is equivalent to a 

ZV shaper. The rise time of the system equals the shaper 

duration, 1=0.5s. Fig. 4(b) shows the step command shaped 

by a command shaper designed with a 4Hz artificial mode. In 

this case, the second impulse has a small negative value. The 

duration, 2, of the shaper is 0.4s, 20% shorter than the ZV 

shaper in Fig. 4(a). Fig. 4(c) shows the step command shaped 

by a command shaper with a 5Hz artificial mode. The first 

impulse is greater than 1 but the shaper duration is 33.3% less 

than the ZV shaper duration. Fig. 4(d) shows an even shorter 

duration shaper, whose artificial mode frequency and shaper 

duration, 4, are 6Hz and 0.286s, respectively. In this case, all 

the magnitudes of impulses are greater than 1. 

Fig. 5 shows the simulated step responses subjected to the 

proposed command shapers with the artificial mode 

frequency varied.  Increasing the artificial mode frequency 

clearly shortens the rise time.  

Fig. 6 shows the sensitivity curves for the proposed 

command shapers, where d
tf  represents the “true” damped 

natural frequency while d
sf  is the damped natural frequency 

at which the proposed command shaper is designed. The 

figure indicates the range of frequencies over which the 

command shaper designed at one frequency adequately 

suppresses the vibration. This frequency suppression range is 
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called the “insensitivity.”  

The figure shows that the 5% insensitivity gets a bit worse 

as the artificial mode frequency increases: e.g., from 0.076Hz 

for 3Hz to 0.055Hz for 10Hz, a 27.63% decrease. However, it 

is apparent that the proposed shaper is still beneficial due to 

the advantage in rise time reduction. The shaper duration 

changes from 0.5s for 3Hz to 0.182s for 10Hz. This gives a 

63.7% decrease in shaper duration. Therefore, the proposed 

command shaper does not significantly degrade the 

robustness of command shaping, yet it shortens the rise time 

of the system greatly. 
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