
  

  
Abstract—In this paper, buckling of elastic, circular plates 

made of functionally graded material subjected to thermal 
loading have been investigated. Boundary condition of the plate 
as immovable clamped edge is considered. The material 
properties of the FG plates except poisson’s ratios are assumed 
to vary continuously throughout the thickness direction 
according to the volume fraction of constituents defined by 
power-law, sigmoid, and exponential function. The Nonlinear 
equilibrium equations are derived based on the classical plate 
theory using variational formulations. Linear stability 
equations are used to obtain the critical buckling of solid FG 
circular plate under thermal load as uniform temperature rise, 
linear and nonlinear temperature distribution through the 
thickness. The effects of P-, S-, E-FGM on buckling of plate are 
compared. The results are validated with the known data in the 
literature. 
 

Index Terms—Classical plate theory, thermal buckling, 
functionally graded material. 
 

I. INTRODUCTION 
Many studies are reported on buckling and bending 

behavior of FGM structures. Reddy and Khdeir [1] studied 
the buckling and free-vibration behavior of cross-ply 
rectangular composite laminated plates using the classical, 
first order, and third order plate theories under various types 
of boundary conditions. Exact analytical solutions as well as 
finite element numerical solutions were developed in their 
studies. Axisymmetric bending of functionally graded 
circular and annular plates is studied by Reddy et al. [2]. 
They presented the solutions for deflections and force and 
moment resultants based on the first-order plate theory in 
terms of those obtained using the classical plate theory. The 
buckling analysis of circular orthotropic and FGM plates 
under thermal loads is given by Najafizadeh, and Eslami 
[3]-[4]. Khorshidvand et al. [5] presented buckling analysis 
of circular FGM plate integrated with piezoelectric layers 
subjected to three kinds of thermal loadings based on 
classical plate theory. Saidi and Hasani Baferani [6] studied 
the thermal buckling analysis of moderately thick 
functionally graded annular sector plate based on the first 
order deformation plate theory by using the equilibrium and 
stability equation. 

Khorshidvand et al. [7] presented the thermal and 
 

Manuscript received August 15, 2012; revised November 14, 2012. This 
work was supported in part by Department of Mechanical Engineering, 
South Tehran Branch, I. A.U.  

A. R. Khorshidvand is with the engineering Faculty, Department of 
Mechanical Engineering, South Tehran Branch, Islamic Azad University, 
Tehran, Iran (e-mail: AR_Khorshidvand@azad.ac.ir).  

M. R. Eslami is with the Mechanical Engineering Department, Amirkabir 
University of Technology, Tehran 15914, Iran (e-mail: eslami@aut.ac.ir). 

mechanical stability problem of circular hybrid FGM plates 
based on first order shear deformation plate theory and 
derived closed-form solutions for critical buckling 
temperatures of perfect piezoelectric functionally graded 
plates, which are subjected to thermal and mechanical 
loadings and applied constant voltage.  

The present paper deals with determination of the stability 
problem and presents closed-form solutions for critical 
buckling temperature of P-, S-, E-FGM circular plate, which 
are subjected to three kinds of thermal loading. Clamped 
edge boundary condition is assumed for the plate. 

 

II. PROCEDURE FOR PAPER SUBMISSION 
Consider a uniform thin circular plate made of FGM, as 

shown in Fig. 1. To extract formulations, a cylindrical 
coordinate system is taken in the center of plate’s middle 
plane. The FGM profile across the thickness direction of the 
plate, made of ceramic and metal constituent materials, may 
be assumed to follow a function form as P-FGM plates as  

2   ( )      ( )2m cm
z h nPr z Pr Pr h
+

= +                           (1)  

The value of n, power law index, equal to zero represents a 
fully ceramic plate. Two power law functions S-FGM plates 
as 

1  -2  ( )      [1- ( ) ] 0 /22m cm
h nPr z Pr Pr h

z for z h= + ≤ ≤        

1  2  ( )      [ ( ) ] /2 02m cm
nPr Pr Pr h z for h zhz += + − ≤ ≤   (2) 

and exponential function E-FGM plates 

 2  ( )   [ ( )] , , ( / )2
z

A Pr B Ln Pr Prm c m
hPr z AExp B h
+

= = =    (3) 

where mpr,cpr,pr  denote any material property of the FGM, 
metal, and ceramic; such as the modulus of elasticity E and 
the coefficient of thermal expansion α  . Note that the 
volume fraction of the ceramic is high near the top surface of 
the plate, and that of metal is high near the bottom surface. 
The relations (1), (2) and (3) indicate that the top surface of 
the plate (z = h/2) is ceramic-rich whereas the bottom surface 
(z = −h/2) of the plate is metal-rich. Generally, Poisson’s 
ratio is assumed constant across the plate thickness. 

The material properties are assumed to be independent of 
temperature, and the stress and strain relations are linear. The 
constitutive relations of functionally graded materials in 
thermal environment for the plane-stress condition are 
written as  

2( )( ) /(1 ) ( ) ( ) ( ) /(1 )E z E z z T zrr rrσ ε υε υ α υθθ= + − − −    (4) 
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2( )( ) /(1 ) ( ) ( ) ( ) /(1 )E z E z z T zrrσ ε υε υ α υθθ θθ= + − − −    (5) 

( ) /(1 )E zr rσ υ εθ θ= +                              (6) 
 

 
Fig. 1. Geometry of FG circular plate 

The plate is assumed to be comparatively thin, and 
according to the Love-Kirchhoff assumptions, shear 
deformations normal to the plate are disregarded. Using the 
classical plate theory (CPT), strain components at distance z 
from the middle plane are given in matrix form as [8] 
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ε = (0)
ε +z (1)

ε                                                                         (7) 

where a comma in subscript indicates partial differentiation 
and where rrε , θθε  , and θγ r  are the normal and shear 
strain components along the r-, −θ  respectively. The stress 
components in plane-stress condition in the plate (superscript 
h) are written as following  

{ }
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0 ( ) ( )21 22

0 0 44

h
Q Q z T zrr rrh Q Q z T z

Qr r

σ ε α
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σ γθ θ

−
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        (8) 

where the plane-stress-reduced stiffness are defined as   

( ) ( ), , 4411 22 2 12 21 11 2(1 )1
E z E zQ Q Q Q Q Qυ υυ

= = = = = +−
      (9) 

The total potential energy for FG circular plate can be 
written as follows  

[ ( - (z)T(z)) ( - (z)T(z))1
2 2 ]

h hh rr rrU
hr rdzd drz r r

σ ε α σ ε αθθ θθ

σ ε θθ θ θ

+ +
= ∫ ∫ ∫   (10) 

Considering relations (4) to (9) and substituting them into 
relation (10) and integrating with respect to z, the total 
potential energy is obtained. Applying the Euler equations 
for total functional of U in Eq. (10), equilibrium equations 
yield [8] 

1( ) (, ,1, , ,
2 1) ( ) (2 ) ( ) 0,, , ,

rN w N w M N w N wrr r rr r rr

M rM M Mrr rrr r rr r

θ θ θθ θθ θ θ

θ θ θ θ θθ θθ

+ − + +

+ + + + =

 

1 1( ) 0, ,N N N Nrr r rr rr rθθ θ θ+ − + =  

2 1 0, ,N N Nr r rr rθ θθ θ θ+ + =                     (11) 

The stability equations of the circular plate are derived 
using the adjacent equilibrium criterion. We assume 0u  , 0v , 
and  0w   as the displacement components of the equilibrium 

state and 1u  , 1v , and 1w  as the virtual displacements 

corresponding to a neighboring state. The displacement 
components and then the linear incremental stress resultants 
are 

0 1u u u= +  0 1v v v= +  0 1w w w= +  

0 1N N Nrr rr rr= +  0 1M M Mrr rr rr= +  

0 1N N Nθθ θθ θθ= +  0 1M M Mθθ θθ θθ= +  

0 1N N Nr r rθ θ θ= +  0 1M M Mr r rθ θ θ= +            (12) 

Substituting relations (12) in Eqs. (11) and collecting the 
second order terms, the stability equations are obtained as 

1( ) (,1 1, 1 1, 1 1 1, 1 1,
2 1) ( ) (2 ) ( ) 0,1 , 1 1 , 1 ,

rN w N w M N w N wrrr r r r rr

M rM M Mrrr rr r rr r

θ θ θθ θθ θ θ

θ θ θ θ θθ θθ

+ − + +

+ + + + =

 

1 1( ) 01, 1 1 1,N N N Nrr r rr rr rθθ θ θ+ − + =  

2 1 01 1, 1,N N Nr r rr rθ θθ θ θ+ + =                   (13) 

The force and moment resultants of plate are expressed in 
terms of the stress components through the thickness as 
follow 

{ } { } /2 { }/2
T h hN N N N dzrr hr σθθ θ= = ∫−  

{ } { } /2 { }/2
T

M M M Mrr r
h h zdzhθθ θ σ= = ∫−         (14) 

Stress resultants can be simplified in the matrix form as 

{ } ( )(0) { }{ } [ ] [ ]
{ } [ ] [ ] ( )(1) { }

TNN A B
M B D TM

ε

ε
= −

⎧ ⎫⎧ ⎫ ⎪ ⎪⎪ ⎪⎡ ⎤ ⎪ ⎪ ⎪ ⎪⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭
              (15) 

where  

2( , , ) ( )(1, , ) ( , 1,2,3)A B D Q z z z dz i jzij ij ij ij= =∫        (16) 

Here }{ )(TN , }{ )(TM  are the stress resultants due to the 
applied temperature field on the plate, and they can be 
computed as 

( ){ } { /(1 ) /(1 ) 0}4 4
T TN E EFGM υ υ= − −  

( ){ } { /(1 ) /(1 ) 0}5 5
T TM E EFGM υ υ= − −            (17) 

where 
/ 2 / 2

/ 2 / 2
( ) ( ) , ( ) ( )4 5

h h
h h

E z E z Tdz E z z E z Tdzα α= Δ = Δ∫ ∫− −
(18) 

Here polar symmetry condition is considered. Thus, for 
this case of discussion the first and second of stability 
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equations (13), based on the displacement components, lead 
to 

1 2 1 1* 4 '' ' * ''' '' '( ) 03 1 0 1 0 1 2 1 1 1 12 3E w N w N w E u u u urr r r r rθθ∇ + + + − − + − =  

1 1 1 1* " ' * ''' '' '( ) ( ) 01 1 1 1 2 1 1 12 2E u u u E w w wr rr r
+ − + − − + = (19) 

where * * *, ,1 2 3E E E  are given as 

/2* * * 2 2( , , ) 1 /(1 ) (1, , ) ( )/21 2 3
hE E E z z E z dzhν= − ∫−      (20) 

Referring to Eqs. (15), using the membrane plate theory, 
the prebuckling forces are obtained as 

( ) ( ),0 0 0 0
T TN N N Nrr rr θθ θθ= − = −                   (21) 

Thus, the set of coupled stability equations must be solved. 
For clamped and immovable edge in r- direction, the 
boundary conditions are expressed as [9] 

( 0) 0 , ( 0)1 1u r w r finite= = = =  

'( ) ( ) ( ) 01 1 1u r a w r a w r a= = = = = =           (22)  

The solution of Eqs. (19) is assumed in the form 

( ) ( ) ( ) (1/ )1 1 1 2 1 3 4u r A J r A Y r A r A rλ λ= + + +  

( ) ( ) ( )5 71 0 6 0 8w r A J r A Y r A Lnr Aλ λ= + + +          (23) 

where 0J  , 1J and 0Y , 1Y   are the Bessel functions of first, 

zero order, and first and second kinds, respectively. Also,  1A  
to 8A  are the integration constants. Using the first and 
second boundary conditions yields 07632 ==== AAAA . 
Satisfying the third boundary condition of Eqs. (22), 

0 , ( ) , ( ) 054 08 1A A J a A J aλ λ= =− − =            (24) 

Thus, the smallest root is a = 3.83. It is seen that for the 
clamped edge 

( ) ( )1 1 1u r A J rλ= , ( ) ( ( ) ( ))51 0 0w r A J r J aλ λ= −     (25) 

Substituting the expressions (25) into (23), two linear 
homogeneous equations are obtained as 

2 * 3 * 051 1 2E A E Aλ λ− − =  

( )3 * 4 * 2[ ] 052 1 3 0
TE A E N Arrλ λ λ+ − =                (26) 

For a nontrivial solution of these equations, the 
determinant of coefficient must be set to zero and when the 
temperature distribution of the plate is a function of thickness 
direction only, λ  is constant and yields. 

( )2 * *2 */[ / ]0 3 2 1
TN E E Errλ = −                      (27) 

Now, for the case of uniform temperature rise, consider a 
plate at temperature 0T , the temperature may be raised to fT  
where the plate buckles. In such a case, using Eq. (27) and 

taking relation (28) the critical buckling temperature crTΔ  is 
expressed in the form 

2 * *2 *(1 ){ ( / )} /3 2 1 1T E E E Qcr υ λΔ = − −                 (28) 

where  
1 1[ ( ) ]1 (1 ) (2 1)Q E E E E hm m m cm cm m cm cmn nα α α α= + + ++ +

 (29) 

0TfTcrT −=Δ  . For thin circular plates, the temperature 

distribution may be assumed linear through the thickness of 
the plate as 

( ) ( / 2) / 1T z T z h h T= Δ + +                      (30) 

Consider temperature 1T at top side of the plate and    2T at 
the bottom side. The critical value of temperature difference 
is calculated to be 

(1 ) 2 * *2 *1 1{ ( / )}3 2 1(0.5 ) (1 )1 2

T Q
T E E Ecr Q Q

υ
λυ

−
Δ = − + −+ −

         (31) 

where  
( ) ( )2Q z z E z dz

z
α= ∫                         (32) 

To calculate the critical buckling temperature for the case 
of gradient through the thickness of plate, the 
one-dimensional equation of heat conduction in the z 
direction must be solved. The heat conduction equation for 
the steady state one-dimensional case, in the absence of heat 
generation, becomes 

( ( ) ) 0d dTK zdz dz =                         (33)  

Temperature boundary conditions at the top and bottom 
surfaces of the plate are 

( ) , ( )2 2
h hT T T Tc m= − =                   (34) 

The solution of the heat conduction equation along with 
the thermal boundary conditions is obtained via the 
power-series solution as 

1 1 1( ) ( )1 20( ) ( )
1 ( )10

N K zi incm
in K hmiT z T T Tm c m N K icm

in Kmi

+− +∑ +== + −
−∑ +=

          (35) 

where N is the number of expanded terms and should be 
chosen to assure the convergence of the solution. 

Hence the critical temperature difference is 
2 * *2 *(1 ){( ) ( / )} /2 0 1 3 2 1 3T T T Q E E E Qcr υ λΔ = − − − + −     (36) 

in which 
1{ ( )3 ( 1)( 2)0

1( ) ( )( 1)( 2)0

1 ( ) }( 1)( 2 2)0

N K icmQ Em m Kin ini m

N K icmE Em m m cm Kin in n mi

N K icmEcm cm Kin in n mi

α

α α

α

∑= −
+ +=

+ + −∑ + + +=

+ −∑ + + +=

        (37) 
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TABLE I: MATERIAL PROPERTIES OF PLATE  

Metal: Aluminium  Ceramic: Alumina 

70E GPam =  

0660m cp =  

23.0 6emα = −  

0.3ν =  

 380cE GPa=  

02050cm c=  

7.4 6c eα = −  

0.3ν =  

 

 
Fig. 2. Buckling temperature versus h/a for a P-,S-,E-FGM circular clamped 

plate under uniform temperature rise. 
 

III. RESULTS AND DISCUSSION 
In the following, the axisymmetric stability and thermal 

buckling loads of an FG circular plate subjected to uniform 
temperature rise is derived and summarized in the preceding 
section. To validate the formulations of the present article, 
thermal buckling loads of the circular plate are compared 
with those obtained by Najafizadeh and Eslami [2] for 
isotropic plate. It is clear that from Eq. (27), taking PFGM 
circular plate, the same results is obtained for the 
homogeneous isotropic full ceramic circular plate. The 
results are obtained that are identical to those reported as in 
[2]. Now, consider an FGM circular plate. The material 
properties of metal (Aluminium), and ceramic (Alumina) 
constituents are given in Table I. For this example the results 
for thermal buckling loads is plotted in Fig. 2. Fig. 2 
represents the critical buckling temperature versus h/a for a 
P-, S-, E-FGM clamped circular plate under uniform 
temperature rise. The mechanical boundary condition at the 
edge of the plate is assumed to be clamped supported. Here, 
the effect of FGM models and volume fraction index on 
thermal bucking temperature of plate can be seen. 
 

IV. CONCLUSION 
In the present article, the buckling analysis of FG circular 

plate is derived based on classical plate theory with the 
assumption of power law, Sigmoid, Exponential composition 
for the constituent materials. Boundary condition of the plate 
is taken to be clamped. Plate is subjected to uniform 

temperature rise, linear and nonlinear temperature 
distribution through the thickness. The thermal buckling 
capacity of circular plates as closed-form solution is 
presented. 

It is concluded that: 
1) The equilibrium and stability equations are identical for 

P-, S-, E-FGM plates.  
2) The critical buckling temperature is reduced when 

volume fraction index increases, as the plate becomes 
more metal-rich. 

3) A comparison between thermal buckling curves of 
power-law, sigmoid, exponential FGM circular plates in 
uniform temperature rise, indicate that for a certain value 
of ah/  thermal buckling capacity of circular plate made 
of P-FGM is better than S-FGM. 
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