



Abstract—This paper discussed the idea of the computer

system capable of simulating understanding with respect to

reading a text document. The research is concerned with the

problem of generating sophisticated knowledge representation

for the purpose of understanding the natural language. Due to

that, a simplification form of logical-oriented model of

knowledge representation called Pragmatic Skolem Clauses

(PSC) is proposed to represent the semantic formalism for the

computational linguistic. Each set of pragmatic skolem clauses

containing at least one skolem constant, which shows the

thematic role relationship between clauses. Semantically and

pragmatically-accented approach will be discussed in this paper

in the context of formal grammar and linguistic semantic.

Index Terms—Semantic technology, logical method,

knowledge representation, first order logic.

I. INTRODUCTION

In this paper, the parsing algorithm used in implementing

the simplification of logical form in knowledge

representation will be discussed. The simplified form of

logical model is a type of knowledge representation that is

designed based on First Order Logic (FOL). The simplified

form of logical-oriented model is known as Pragmatic

Skolem Clauses (PSC) representation. To implement a parser,

the grammar was written in a form called Definite-Clause

Grammar (DCG). Each phrase structure (PS) rule is a clause

for a predicate with two arguments, such as: S --> NP VP.

Knowledge representation is the symbolic representation

aspects of some closed universe of discourse. The objective

of knowledge representation is to make knowledge explicit.

Knowledge can be shared less ambiguously in its explicit

form and this becomes especially important when computer

automation is applied to facilitate knowledge management.

In knowledge management, to solve complex problems

encountered through artificial intelligence, a large amount of

knowledge and some mechanism for manipulating that

knowledge to formulate solutions to new problems are

needed. Knowledge representation is a multidisciplinary

subject that applies theories and techniques from three other

fields [1] – Logic, Ontology and Computation

Knowledge Representation can be defined as the

application of logic and ontology to the task of constructing

computable models of some domain [1]-[3]. Logic and

Ontology provide the formalization mechanisms required to

make expressive models easily sharable and computer aware.

This means that the full potential of knowledge accumulation

can be exploited. However, computers only play the role of

powerful processors with different levels of richness in

information sources. Logic representation has been accepted

as a good entity for representing the meaning of natural

language sentences [4], and allows more subtle semantic

issues to be dealt with.

This paper divided into several sections. The following

section will discuss on the related research on knowledge

representation for natural language. Then the third section is

concerned about computing the meaning representation of

texts document to constitute of understanding. The text

document translations build up the meaning representation

and enforce syntactic and semantic agreements. The

following section discusses the translation strategy into a

simplified form of logical-linguistic to encode the syntactic

and semantic aspect of each sentence in text document.

Translators may be involved in a very wide range of activities

outside the work of translation, ranging from involvement in

the grammar and parsing technique, which plays a highly

visible role in representing knowledge, to acting as

computing or helping the further research such as query

system, dialogue system or search engine purposes. Finally

will be the conclusion of the work and the further research

concerned.

II. RELATED RESEARCH

Natural languages are the ultimate knowledge

representation languages that are used by everyone in

communication. Aristotle began his study of knowledge

representation with an analysis of the semantic categories and

relationships expressed in natural language [1]. Natural

language semantic is related to knowledge representation,

which is a source of empirical data and also a source of rich

formalisms and computable operations. Both stimulate and

complement each other. Below are the traditional

requirements for natural language representation [5], [6] in

[7]:

Normalization Strategy of Logical Knowledge

Representation for Text Document

Rabiah A. Kadir, T. M. T. Sembok, Fatimah Ahmad, and Azreen Azman

98

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 1, February 2013

Manuscript received November 13, 2012; revised December 31, 2012.

This work is supported in part by the Ministry of Higher Education (MoHE),

Malaysia under Grant LRGS/TD/2011/UITM/ICT/03.

Rabiah A. Kadir is with the School of Computer Science and Information

System, Najran University, Kingdom of Saudi Arabia, Seconded from

Faculty of Computer Science and Information Technology, Universiti Putra

Malaysia, 43400 UPM Serdang, Selangor, Malaysia (e-mail:

rabiah.akadir@gmail.com).

T. M. T. Sembok is with the Kulliyyah of Information and

Communication Technology, International Islamic University Malaysia, P.

O. Box 10, 50728, Kuala Lumpur, Malaysia (e-mail:

tmtsembok@gmail.com).

Fatimah Ahmad is with the Computer Science Department, Faculty of

Defence Science and Technology, National Defence University of Malaysia

(e-mail: fatimah@upnm.edu.my).

Azreen Azman is with the Faculty of Computer Science and Information

Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor,

Malaysia (e-mail: azreen.azman@gmail.com).

DOI: 10.7763/IJET.2013.V5.520

1) Meta-language must be capable of representing precisely,

formally and unambiguously any information presented

by an inquiry.

2) Meta-language should facilitate the canonic translation

from the syntax representation language.

3) It should facilitate subsequent application of reasoning

in the course of the process of semantic analysis.

Knowledge representation is at the very core of a radical

idea for understanding intelligence. Instead of trying to

understand or build brains from the bottom up, its goal is to

understand and build intelligent behavior from the top down,

putting the focus on what an agent needs to know in order to

behave intelligently, how this knowledge can be represented

symbolically, and how automated reasoning procedures can

make this knowledge available as needed [8]. A knowledge

representation at the conceptual level can support inferences

that are not possible at the level of character strings. The

inference depends on the representation of linguistic

expression for the question answering relation.

There is a research such as studied the problem of

conjunctive query answering over acyclic description logic

ontologies as knowledge representation has been done [9].

Two approaches of knowledge representation that actively in

this domain of research are logical and ontology. However,

this paper will be concentrated on logical-oriented model for

represent the semantic knowledge representation and will be

discussed further in the following sections.

III. NORMALIZATION PARSING STRATEGY

A practical parser should do more than just suggest

whether or not a sentence is acceptable. It should also report

the structure of the sentence. The parsing technique must be

designed in a way that it communicates with the semantics

precisely at the points at which the semantics begin to have

the necessary information to provide helpful feedback [10] -

[14]. For this purpose, we present the arguments for the

assertion of incremental interpretation of natural language

sentence by modeled bi-DCG parsing technique, based on

DCG parser. This parser raises two steps and has been

extended with the bi-clausifier functionality. The two steps

represent a tree diagram that corresponds to Prolog structure

and produces the representation itself. To illustrate our

representing tree, consider the sentence as found in the

passage entitled Storybook Person Found Alive!, with the

sentence winnie the pooh was written in 1925, taken as an

example. This same sentence can be equally derived as

shown in derivation tree as indicated by Fig. 1.

Fig. 1. Derivation Tree

The tree can be represented as the following phrase

structure:

s(np(pn(winnie),pn(det(the),pn(pooh))),

vp(auxverb(was),vp(tv(written),pp(prep(in),

n(pn(1925)))))

To produce this representation, the parser will make each

rule fill in the part of the structure which it is responsible for.

For example, parsing begins with the rule s --> np, vp. This

rule must therefore contribute the outermost s(..., ...) in the

structure, where the portions represented by ... will be filled

in by the np and vp rules, respectively. The np rule in turn

will contribute np(..., ...) with arguments to be supplied by

sub-rules within the above phrase structure.

Implementation of this process relies on the fact that the

DCG notation allows extra arguments on predicates. If, for

example, the following rule is written as:

s(a,b) --> np(c,d), vp(e,f). the translator will produce:

s(a,b,L1,L) :- np(c,d,L1,L2), vp(e,f,L2,L).

These extra arguments make a DCG more powerful than

an ordinary phrase-structure grammar.

In the present case, the following arguments represent the

tree. So the syntactic rules need to look like this:

 s(s(NP,VP)) --> np(NP), vp(VP).

 np(np(PNP)) --> pnp(PNP).

 vp(vp(AUX,VP)) --> auxvev(AUX), vp(VP).

 vp(vp(TV,PP)) --> tv(TV), pp(PP).

 pnp(pnp(PN,PNP)) --> pn(PN), pnp(PNP).

 pnp(pnp(D,PN)) --> d(D), pn(PN).

 pp(pp(P,PN)) --> prep(P), pn(PN).

 pn(pn(winnie)) --> [winnie].

 pn(pn(pooh)) --> [pooh].

 pn(pn(1925)) --> [1925].

 d(d(the)) --> [the].

 auxverb(auxverb(was)) --> [was].

 tv(tv(written)) --> [written].

prep(prep(in)) --> [in].

When the first rule is invoked, its argument is immediately

instantiated as s(NP,VP), but the variables NP and VP are not

yet instantiated. The np rule then instantiates NP to np(PNP)

so that the whole structure is s(np(PNP), VP) but PNP and

VP do not yet have values. The structure will be completely

instantiated when parsing is complete. Moreover, if

execution backtracks out of a rule, the instantiations

established by that rule are undone. The key idea here is that

unification and instantiation gives way to working with

information that do not yet have a value. This technique gives

Prolog much of its power.

To solve the problem, the used of two parsing processes

that proceed sequentially from the same input allow scanning

of the input sentence in the same direction. This characteristic

allows the use a normalize skolem constant for every single

variable name in PSC representation. The lexicons together

with the lexicon-dictionary are provided. The parser will use

the DCG grammar.

The output of the first parsing is a collection of nouns with

the skolem constant that will be used for the second parsing

to generate the PSC representation. Each skolem constant

was associated with the types of variable names. In this case,

there are two symbols fn represents the quantified variable

names, while gn represents ground term variable names.

99

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 1, February 2013

IV. TRANSLATION STRATEGY

Translation rules are relatively simple because each of

them is supposed to match the whole list of words. The

output of a translation rule is a list of atoms which, when

converted back into character strings and concatenated, will

give the appropriate simplified form of logical-linguistic. The

first of these rules handle the „quit‟ command that the user

will use to exit from the program. The procedure that applies

the translation rule will simply find a rule that applies to the

input, then execute a cut, or complain if no rule is applicable.

% translate (-InputSentence, +LogicalForm)

% Applies a translation rule, or complains

% if no translation rule matches the input.

parse(Sentence, LF, quit) :-

quit(LF, Sentence, [.]).

parse(Sentence, LF, query) :-

query(LF, Sentence, [?]).

parse(Sentence, LF, assertion) :-

sentence(LF, nogap, Sentence, [.]).

 translate(InputSentence, LogicalForm) :-

 parse(InputSentence, LogicalForm, Type),

 tr(LogicalForm, Clauses),

!.

 translate(_, []) :-

write(„I do not understand your sentence.‟), nl.

To present the story passage into a simplified form of

logical-linguistic, it is necessary to encode the syntactic and

semantic aspect of each sentence. The parser recognizes two

types of semantic entities: predicate and names, and its

predicate arguments relation to give the relationship of these

entities. It returns error message on receiving ill-formed input.

An input is considered ill-formed if it contains one of the

following conditions:

1) Unknown words – are words that are not predefined in

lexicon, and these include misspelled words.

2) Non-covered lexicon-dictionary – the structure of the

lexicons is not covered by the lexicon-dictionary

implemented, even though it is grammatically correct.

3) Illegal grammatically syntactic structure – the structure

of the input is grammatically wrong.

To describe the meaning of natural language utterances, a

precised way of describing the information that they

contained is needed. It relies on the logical model and set

theory, both of which are precisely defined knowledge bases.

Consider a simple formula such as lives(chris, england)

(Chris lives in England). This formula shows a part of a

logical language. A logical model consists of an Entity (E),

which is the set of individual people and things that can be

talked about, plus a Semantic function (S) which gives a

relation onto entities. This model has two important

advantages. First, it assigns meaning to all parts of every

formula, rather than just assigning truth values to a complete

sentence. Second, a logical model works with knowledge

bases without making any claims about the real world as a

whole. This is important because it corresponds closely to

computer manipulation of a database.

A. Logical Translation

Logic form is derived from the syntactic parse of the text

input and each lexicon in the text will recognize two types of

semantic entities: nouns and verbs. The first thing to be noted

is that names are logical constant („Chris‟ = chris), but

common nouns, and noun with adjective are predicates

(„children‟ = (x) children (x)). An adjective, such as „small‟

is considered a property, not an entity. This has to do with the

distinction between sense and reference. A name refers to

only one individual, thus the translation is directed to a

logical constant. But a common noun such as „children‟ can

refer to many different individuals, so its translation is the

property that these individuals share. The reference of

„children‟ in any particular utterance is the value of x that

makes children(x) true.

Second, note that different verbs require different numbers

of arguments. The intransitive verb „barked‟ translates to a

one-place predicate (x) (barked(x). A transitive verb

translates to a two-place predicate (y) (x) (cuts(x,y).

These arguments are filled in, step by step, as you progress

up from common noun to NP, from verb to VP, and then S.

The following example of text is used to serve an illustration:

 “At noon, two small children cut a ribbon.”

noon(x1 ^ at(x1)) & two(x2 : (small(x2) & children(x2)) &

exists(x3,ribbon(x3) & cuts(x2,x3))

 “The ribbon was made from paper.”

exists(x4,ribbon(x4) & paper(x5 ^ makes(x4,x5))

B. Skolem Constant Generation

Before PSC can be generated, it is required to generate a

new unique constant symbol known as Skolem Constant.

Each logic expression involves predicate, functions and

quantifier, so that the generation of skolem constant

implements an algorithm to convert a formula into clausal

form that has modified its skolem function. The following is

an algorithm needed to convert logical formula into a

logically equivalent sentence that is in a clause form [15].

1) Eliminate all connection (<=>) by replacing each

instance of the form ((P <=> Q) by the equivalent

expression ((P => Q) ^ (Q => P)).

2) Eliminate all connection (=>) by replacing each instance

of the form (P => Q) by (~P  Q).

3) Reduce the scope of each negation symbol to a single

predicate by applying equivalents such as converting:

a) ~~P to P

b) ~(P  Q) to ~P ^ ~Q

c) ~(P ^ Q) to ~P  ~Q

d) ~(x) P to (x) ~P

e) ~(x) P to (x) ~P

1) Standardize variables - rename all variables so that each

quantifier has its own unique variable name. For

example, convert (x)P(x) to (y)P(y) if there is another

place where variable x is already used.

2) Skolemizing - eliminate existential and universal

quantification and ground term by introducing Skolem

functions. For example:

a) (x)P(x) to P(c) where c is a brand new constant

symbol that is not used in any other sentence. c is

called a Skolem constant.

b) More generally, if the existential quantifier is within

the scope of a universally quantified variable, then

introduce a Skolem function that depends on the

universally quantified variable. (x)(y)P(x, y) is

100

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 1, February 2013

converted to (x)P(x,f(x)). f is called Skolem

function, and must be a brand new function name

that does not occur in any other sentence in the

entire knowledge bases.

c) P(x) to P(c) where c is a brand new constant symbol

that is not used in any other sentence. c is called a

Skolem constant.

1) Remove universal quantification symbols by first

moving them all to the left end and make the scope of

each the entire sentence, and then just drop the „prefix‟.

For example, convert (x)P(x) to P(x).

2) Distribute “and” over “or” to get a conjunction of

disjunctions called conjunctive normal form. Convert:

a) (P ^ Q)  R to (P  R) ^ (Q  R)

b) (P  Q)  R to (P  Q  R)

3) Split each conjunction into separate clauses, which is

just a disjunction (“or”) of negated and un-negated

predicate, called literals.

4) Standardize variables apart again so that each clause

contains variable names that do not occur in any other

clause.

For this first parsing, the transformed formula and the list

of variables have been introduced by universal and

existential quantifier, and ground term. Skolem function

makes use of two new predicates. Predicate gensym must be

defined such that the goal gensym(X,Y) causes Y to be

instantiated to a new atom built up from the atom X and a

number. This is used to generate skolem constant that have

not been used before. The second new predicate mentioned is

subst. Here it is required for subst(V1, V2, F1, F2) to be true

if the result of substituting V2 for V1 every time it appears in

the formula F1 is F2.

skolem(all(X,P), all(X,P1), Vars) :- !,

 skolem(P, P1, [X|Vars]).

skolem(exists(X,P), P2, Vars) :- !,

gensym(f, F),

Sk =..[F|Vars],

subst(X, Sk, P, P1),

skolem(P1, P2, Vars).

skolem(Pred(X:P), Pred(F)&P2, Vars) :- !,

gensym(g, F), Sk =..[F|Vars],

subst(X, Sk, P, P1),

skolem(P1, P2, Vars).

skolem((P & Q), (P1 & Q1), Vars) :- !,

skolem(P, P1, Vars),

skolem(Q, Q1, Vars).

skolem((P # Q), (P1 # Q1), Vars) :- !,

skolem(P, P1, Vars),

skolem(Q, Q1, Vars).

skolem(P, P, Vars).

subst(X, Sk, exists(Y,P), exists(Y,P1)) :- !,

subst(X, Sk, P, P1).

subst(X, Sk, (P & Q),(P1 & Q1)) :- !,

subst(X, Sk, P, P1),

subst(X, Sk, Q, Q1).

subst(X, Sk, P, P1) :- functor(P,F,N),

gensym(Root, Atom) :-

 get_num(Root, Num),

 name(Root, Name1),

 integer_name(Num, Name2),

 append(Name1, Name2, Name),

 name(Atom, Name).

get_num(Root, Num) :-

 retract(current_num(Root, Num1)), !,

 Num is Num1+1,

 asserta(current_num(Root, Num)).

get_num(Root,1):-

asserta(current_num(Root, 1)).

In the process of transformation, the normalization of the

skolem constants are applied to all variable names. We

identified two types of skolem constant to differentiate

between quantified (fn) and ground term (gn) variable names.

The following shows the use of fn and gn which stand for

skolem constant in clausal form for each variable names.

cls(two, g9).

cls(small, g9).

cls(children, g9).

cls([ribbon, f55).

cls([paper, g10).

cls(pretty, f3).

cls(home, f3).

cls(three, g4).

cls(old, g4).

cls(year, g4).

cls(poem, f4).

Each skolem constant that are generated will be stored in

the list of normalization clauses skolem constant for the

second parsing process.

C. Final Parsing

Based on the research problem, before the resolution

theorem prover can be applied, a set of simplified formula is

required to be converted into what is known as clausal form.

This section explains the process of transforming the

simplified logical formula into clausal form, called PSC. This

transformation is a second parsing, whereas the step is the

same as the first parsing which implemented an algorithm to

convert a simplified logical formula into clausal form.

However, since the skolem function has been modified,

instead of generating a new skolem constant symbol, it will

retrieve an atom that was already built up in the first parsing.

skolem(Pred(X:P), Pred(F)&P2, Vars) :- !,

getatom(Pred, F),

Sk =..[F|Vars],

 subst(X, Sk, P, P1),

 skolem_v2(P1, P2, Vars).

getatom(Noun, Atom) :-

 (cls(Noun, Const) ->

 (name(Const, ListTemp),

 name(Atom, ListTemp))

 ;

 gensym_v2(g, Atom)).

The following shows a set of PSC as knowledge base

representation that can be applied in the context of natural

language question answering system. For example, after the

transformation process, we will have the following

representation is created.

two(g9)

small(g9)

children(g9)

ribbon(f55)

paper(g10)

101

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 1, February 2013

cuts(g9,f55)

makes(f55,g10)

pretty(f3)

home(f3)

calls(f3,r(cotchfield & farm))

lives(chris,f3)

three(g4)

old(g4)

year(g4)

isa(chris,g4)

poem(f4)

about(f4,him)

writes(r(mr & robin),f4)

V. DISCUSSION

The PSC capability is unified a standard constant clause

pragmatically for a text document. However, the process still

relies on the fact that the DCG notation allows extra

arguments on predicates. The implementations of two

parsing processes that proceed sequentially from the same

input allow scanning of the input sentence in the same

direction. This characteristic allows the use a normalize

skolem constant for every single variable name in PSC

representation that able to give the pragmatic relationship for

the whole of text document. This proposed logical form of

knowledge representation may cause the question answering

will be able to extract the relevant answers.

VI. CONCLUSION

Text documents are directly translated into logical

representation form which can be used as a complete content

indicator of a query system. The translation technique used

has been described in this paper in the earlier sections. The

text documents are processed to form their respective indexes

through the translation and normalization process which are

composed of simplification processes. This representation is

used to define implication rules for any particular question

answering system and for defining synonym and hypernym

words.

For further research, the query is translated into its logical

representation as documents are translated. The

representation is then simplified and partially reduced. The

resulting representation of the query is then ready to be

proven with the document representation and their literal

answers are retrieved. The proving will perform through

uncertain implication process where predicates are matched

and propagated, which finally gives a literal answer value

between the query and the document.

ACKNOWLEDGMENT

This work was supported by the Ministry of Higher

Education (MoHE), Malaysia via National University of

Malaysia under Long Term Research Grant Scheme

LRGS/TD/2011/UITM/ICT/03.

REFERENCES

[1] J. F. Sowa, Knowledge Representation: Logical, Philosophical and

Computational Foundation. Pacific Grove, USA: Thomson Learning,

2000.

[2] R. Zajac, “Towards ontological question answering,” in Proc.

Asso-ciation for Computational Linguistics, Workshop on

Open-Domain QuestionAnswering, pp. 31-37, 2001.

[3] L. T. Lim and E. K. Tang, “Building an ontology-based multilingual

lexicon for word sense disambiguation in machine translation,” in Proc.

of the 5th Workshop on Multilingual Lexical Databases, Papillon,

2004.

[4] I. Bratko, Prolog Programming for Artificial Intelligence, Great

Britain: Addison-Wesley, pp. 555-580, 2001.

[5] W. A. Woods, “Network grammars for natural language analysis,” in

Reading in NLP, California: Morgan Kaufman, 1979.

[6] D. H. D. Warren and F. C. N. Pereira, “An efficient easily adaptable

system for interpreting natural language queries,” American Journal of

Computational Linguistics, vol. 8, no. 3-4, 1982.

[7] B. Galitsky, Natural Language Question Answering System, 2nd ed..

Adelaide: Advanced Knowledge International Pty Ltd., 2003.

[8] R. J. Brachman and H. J. Levesque, Knowledge Representation and

Reasoning, San Francisco, CA: Morgan Kaufmann, 2004.

[9] B. C. Grau, I. Horrocks, M. Kroetsch, C.Kupke, D. Magka, B. Motik,

and Z. Wang, “Acyclicity conditions and their application to query

answering in description logics,” in Proc. of the 13th International

Conference on Principles of Knowledge Representation and Reasoning

(KR 2012), 2012.

[10] E. P. Giachin and C. Rullent, “Robust parsing of severely corrupted

spoken utterances,” in Proc. COLING-88, pp. 196-201, 1988.

[11] E. K. Tang and A. H. Mosleh, “Example-based natural language

parsing based on the SSTC annotation schema,” in Proc. of National

Conference on Research and Development in Computer Science and its

Applications, pp. 1-6, 1997.

[12] A. H. Mosleh and E. K. Tang, “A flexible example-based parser based

on the SSTC” in Proc. of 36th Annual Meeting of the Association for

Computational Linguistics and 17th International Conference on

Computational Linguistics, pp. 687-693, 1998.

[13] S. Zhu, M. Zhou, X. Liu, and C. Huang, “An efficient stochastic

context-free parsing algorithm,” Journal of software, vol. 9, no. 8, pp.

592-597, 1998.

[14] Y. Zaharin and C. Boitet, “Representation trees and string-tree

correspondences,” in Proc. of Coling-88, pp. 59-64, 1988.

[15] W. F. Clocksin and C. S. Mellish, Programming in Prolog. Heidelberg,

Berlin: Springer-Verlag., 2003.

Rabiah A. Kadir was borned in East Malaysia,

Sarawak year 1969. She enrolled her diploma in

Computer Science in 1987 after finishing her

schooling at College Science Datuk Patinggi Abang

Haji Abdillah, Kuching Sarawak, Malaysia. Rabiah

furthered her study in first degree of Computer

Science year 1990 at Universiti Pertanian Malaysia. In

year 1997, she graduated her Masters in Computer

Science at Universiti Kebangsaan Malaysia. After several years, she enrolled

her PhD in Computer Science with a major field in computational linguistic

on December 2003 and completed her study on May 2007. She graduated her

PhD from Universiti Kebangsaan Malaysia. During her study in Masters and

PhD, she was attached with Universiti Putra Malaysia as a tutor and lecturer

respectively. She is a senior lecturer in Department of Computer Science,

Faculty of Computer Science and Information Technology, Universiti Putra

Malaysia with a specialization in computational linguistics in Artificial

Intelligence Research Group. Currently, she is seconded with Najran

Universiti, Kingdom of Saudi Arabia as an Assistant Professor. Her research

interests include information retrieval and expert system. Rabiah Abdul

Kadir joins Malaysian Information Technology Society (MITs) since year

2008 as Vice Treasurer. She is also a member to the Malaysian Information

Retrieval and Knowledge Management Society. She was awarded two gold

medals for her PhD research work in BIS and Eureka Exhibition in year

2007. Currently, she had published more than 30 journals and international

proceedings.

Tengku Mohd Tengku Sembok has over thirty years

of experience in various fields of Information

Communication Technology. He has taught

undergraduate and postgraduate programs and

managed numerous R&D and consultancy projects

successfully. He had supervised 30 PhD students

successfully to completion. He obtained his

B.Sc.(Hons) in Computer Science from Brighton

Polytechnic in 1977, MS from Iowa University in

102

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 1, February 2013

1981, and PhD from Glasgow University in 1989. His last appointment was

Deputy Vice Chancellor (Academic and International Affairs) in the

National Defence University of Malaysia. He currently holds a chair of

senior professor in Computer Science at International Islamic University of

Malaysia. He has held several academic posts at UKM prior to his current

assignment. His current research areas are in computational linguistics (for

Malay, English and Arabic languages), artificial intelligence, information

systems, information retrieval, multimedia courseware, language technology,

and knowledge management. He has published over 100 articles in these

areas. He has also received numerous awards in international invention and

innovation exhibitions for his research products in Geneve, Brussels, and

London. He was awarded the national ICT Excellent Teacher 2004 jointly by

Ministry of Science, Technology and Innovation, Ministry of Energy, Water

and Communication, Malaysian National Computer Confederation, and

MAXIS Bhd. He is a Fellow of Academy of Sciences Malaysia, and a fellow

of Malaysian Science Association. Currently he chairs the Engineering and

Computer Science Discipline of the Academy of Sciences Malaysia. He is

also the Chairman of Society of Information Retrieval and Knowledgement

Malaysia.

Fatimah Dato Ahmad is a Professor at the Department

of Computer Science, Faculty of Defence Science and

Technology, National Defence University of Malaysia

(NDUM). Currently, she is the Director of the Centre

for Information and Communication Technology,

NDUM. She obtained her Ph.D. from the National

University of Malaysia in 1995. Her research interests

include information retrieval, multimedia computing,

and natural language processing. Prof. Dr. Hjh. Fatimah

Dato Ahmad is a member of the Malaysian Information Technology Society

(MITS), the Institute of Electrical and Electronics Engineers (IEEE) and also

the Malaysian Information Retrieval and Knowledge Management Society

(PECAMP) where she is a life member. Currently, she has published more

than 100 articles in journals and proceedings both local and international.

Azreen Azman was born in Negeri Sembilan,

Malaysia in 1977. He received a Diploma in Software

Engineering from the Institute of Telecommunication

and Information Technology in 1997. Immediately, he

was accepted directly to second year in Multimedia

University, Malaysia to study Bachelor of Information

Technology majoring in Information Systems

Engineering. He completed his bachelor degree in

1999. After serving in the industry for a few years, he enrolled for a Ph.D in

January 2003, studying Computing Science specializing in Information

Retrieval in the University of Glasgow, Scotland and completed his study in

September 2007. After completing his bachelor degree, Azreen Azman

joined Motorola Semiconductor in Seremban, Malaysia on July 1999. The

company was later changed to ON Semiconductor where he served as System

Analyst until December 2002 before pursuing his Ph.D study. He was also

briefly employed by ON Semiconductor as System Engineer upon returning

from his Ph.D study in 2007. On January 2008, he joined Universiti Sains

Islam Malaysia as a lecturer and head of programme for Bachelor in

Computer Science majoring in Information Security and Assurance. He later

joined Universiti Putra Malaysia in May 2009 as a senior lecturer in the

Department of Multimedia, Faculty of Computer Science and Information

Technology. He is also a member of Digital Information Computation and

Retrieval research group. His research interest are information retrieval and

text mining. Azreen Azman joins Malaysian Society of Information Retrieval

and Knowledge Management since 2008 and recently serve as Committee

Member. He is also a member of Malaysian Information Technology

Society. Currently he also serves Malaysian Qualification Agency as panel

of assessors for programme accreditation.

103

IACSIT International Journal of Engineering and Technology, Vol. 5, No. 1, February 2013

