

Abstract—The dynamically reconfigurable Field

Programmable Gate Arrays (FPGAs) are most frequently
employed for developing adaptive embedded systems. They are
also being increasingly used as co-processors in high
performance computing applications. For these systems to be
fielded in harsh environments such as those encountered in
space, extra- terrestrial locations and regions of extreme
conditions on the earth, one must adopt fault tolerant design
techniques to ensure uninterrupted and reliable operation
despite the occurrence of faults. Commercial Off-the-Shelf
(COTS) FPGA components offer a cost effective design
trajectory where the designer can choose among a rich variety
of FT approaches and techniques. This paper compares the
various FT techniques and proposes a novel method in which
these techniques can work together to provide a synergetic
approach for fault tolerant FPGA design.

Index Terms—FPGA, fault tolerance techniques, dynamic
partial reconfiguration.

I. INTRODUCTION
Reconfigurable Computing (RC) is an upcoming field that

bridges the gap between hardware and software. The
principal benefits of RC are the ability to execute larger
hardware designs with fewer gates and to realize the
flexibility of a software-based solution while retaining the
execution speed of a more traditional, hardware-based
approach.

Field Programmable Gate Arrays (FPGAs) are a general
class of RC hardware which contain an array of
programmable logic blocks (PLBs), with programmable
interconnect between PLBs, as well as programmable I/O
cells. The configuration bits used to program the FPGA
determine the function of the device.

Advances in digital technology provide the means to make
each generation of FPGAs significantly more attractive and
useful than their predecessors. Each generation introduces
additional benefits and utilities besides the expected larger
size and faster processing. One of the advancements of
significant importance is the ability to reconfigure a portion
of an FPGA, leaving the others unchanged. This feature is
called Partial Reconfiguration (PR). It is much faster than the
reconfiguration of the entire FPGA board, especially when

Manuscript received June 22, 2012; revised July 28, 2012. This work was
funded by the Department of Science and Technology, Government of India
under the Women Scientist Scheme.

Upasana Sharma was with the Division of Computer Engineering, Netaji
Subhas Institute of Technology, New Delhi, India -110078. She is now with
Safenet Inc., Noida, (U.P.), India - 201301 (e-mail: upasanash@yahoo.com).

Shampa Chakraverty is with the Division of Computer Engineering,
Netaji Subhas Institute of Technology, New Delhi, India - 110078 (e-mail:
apmahs@gmail.com).

only a small part of the FPGA logic needs to be changed.
Dynamic PR is a step ahead as it allows PR to be executed at
runtime. It therefore can potentially reduce the number of
devices or the device size, thereby reducing both size and
power consumption. As an example, a system that requires
either transmit or receive capabilities at any given time, but
not both, can switch between the two modes in a fraction of a
second using “partial reconfiguration”.

FPGAs are excellent candidates for applications that
require hardware software co-design. They can also serve as
hardware acceleration coprocessors for building high
performance computing applications. Practical experience
with FPGA-based coprocessors shows at least a ten-fold
improvement in the execution speed of algorithms as
compared to processors alone [1]. FPGAs especially find
applications in any area or algorithm that can make use of the
massive parallelism offered by their architecture. Some
examples of the applications areas of FPGAs are code
breaking (in particular brute-force attack, of cryptographic
algorithms), digital signal processing, ASIC prototyping,
image processing, encryption/decryption engines, space
missions, speech recognition, defense, avionics, industrial
control, automotive, medicine and a growing range of many
other areas.

In all these applications, and, specifically applications
deployed in mission critical environments, there is a strong
need for availability and reliability. This is achieved through
the provision of Fault Tolerance (FT) to such systems. As a
result a lot of academic research has been done in the recent
past in this area and various methods/techniques of providing
FT to reconfigurable platforms have been developed. This
paper emphasizes on the need of a flexible FT approach by
comparing the important proposals/techniques that have been
devised for the provision of FT on RC platforms. It proposes
a new technique that incorporates hierarchical levels of
online FT for applications running on reconfigurable
platforms.

The paper is organized as follows – Section II talks about
the need of FT for FPGAs. Section III discusses some key
FPGA features and tools that are used in providing FT.
Section IV discusses the related work. Section V provides a
comparative analysis of the FT techniques. Section VII
describes the proposed FT technique. Finally, we conclude in
Section VIII.

II. NEED FOR FT FOR FPGAS
Fault tolerance is defined as the ability of a system to

operate normally given the presence of malfunctioning
resources, or faults [2]. A fault tolerant system, therefore,

A Novel Approach for Providing Fault Tolerance to
FPGA-Based Reconfigurable Systems

Upasana Sharma, Member, IACSIT and Shampa Chakraverty

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 6, December 2012

821DOI: 10.7763/IJET.2012.V4.492

consists of two parts: fault detection and fault repair (if
possible) or fault bypass.

The provision of FT gains significant importance for
mission critical applications like space, automotive, avionics
and medicine. Since FPGAs are being used in such mission
critical systems, there is a strong need for the provision of
fault tolerance (FT) to the reconfigurable platforms as well.
The provision of FT for an FPGA-based system is typical
because it involves reconfiguration of the FPGA. This might
hamper the performance of the FPGA-based system. Hence
FT does not just entail overcoming the faults, but also
overcoming the faults with minimum impact to performance
and delays.

There can be various kinds of faults that can occur in an
FPGA-based system:
• Aging faults: These types of faults are caused due to the

degradation of the components, which can be attributed
to a number of mechanisms [3].

• Manufacturing defects: These can be exhibited as circuit
nodes which are stuck-at 0 or 1 or switch too slowly to
meet the timing specification. Defects also affect the
interconnect network and can cause short or open
circuits and stuck open or closed pass transistors [4].

• Single Event Upsets (SEUs) and Single Event Transients
(SETs): These faults occur when an energetic particle
(typically a proton, neutron or a heavy ion) collides with
atoms in the silicon lattice and leaves electric charge in
its wake. SEUs can cause state bits to change and logic
outputs to evaluate incorrectly.

• Software Faults: FPGAs are being used in applications
that require hardware software co-design. In such
applications, software faults are always a possibility that
must be catered.

III. FPGA FEATURES USED FOR FT
The recent technological development in FPGAs has led to

the availability of some very useful FPGA features and tools.
These features/tools are often coupled along with the
traditional FT techniques discussed in section IV, to develop
a robust fault-tolerant FPGA-based system. The
features/tools are:
• Placement and Routing Tools: These tools physically

place and map the application design to the physical
resources of the FPGA [5], [6].

• Readback: Configuration is the process of loading a
design bit stream into the FPGA internal configuration.
Readback is the process of reading that data [7].

• Scrubbing: It involves periodical reloading of the
contents of the configuration memory [8].

• Dynamic Partial Reconfiguration: It is the ability to
reconfigure only a specific portion of an FPGA at
runtime [9].

IV. RELATED WORK
Most of the earlier works focused on tolerating the

manufacturing defects and aging faults and manufacturing
defects at either device level or configuration level using

offline FT methods [2], [10]-[15]. However, provision of
online FT is required to cater SEUs and software faults. With
the advent of the dynamic partial reconfiguration capabilities
of the new generation of FPGAs, the recent focus is on the
provision of online FT, which is certainly the need of the
hour.

Ambramovici et al [16]-[18] have demonstrated how self
testing of small portions of a circuit can be carried out
simultaneously with normal functioning of other parts. In
[17], [18], a Self Testing Area, so called STAR, is first
offloaded by reconfiguring its functionality on another area
so that normal functioning is not affected at all, thus enabling
online self testing using BIST (Built In Self Testing).

The TMR technique has been exploited for systems
requiring high reliability, safety-critical applications, such as
space missions [19]-[22]. The Xilinx Triple Modular
Architecture [23], [24] replicates three identical copies of the
same circuit and generates their voted outputs.

A volume of work has been done for providing FT to space
applications built using SRAM-based FPGAs [19]- [22], [25].
The case of space applications is typical because here the
FPGAs are exposed to high radiation environments.
Radiation can cause both short term and permanent device
failures. In short term they can cause transient upsets in
circuits (SEUs and SETs). Additionally, radiation can cause
permanent damage to silicon devices over time, rendering all
or part of the device unusable. Authors of [21] have
concluded that the TMR technique is not able to mask all the
faults induced by SEUs. TMR is often coupled with
scrubbing [8] to avoid fault accumulation. The authors of [6]
have proposed coupling of reliability oriented place and route
algorithms in order to make complete SEU immune circuits.

The concept of partial TMR has been introduced in [19].
Using device level TMR and a separate radiation hardened
voter ASIC with integrated configuration management logic
is another FT technique [20]. D. Fay et al [22] talk about
device level TMR accompanied with adaptive FT for the
distributed memory system. The authors of [25] have
proposed and demonstrated a framework for Reconfigurable
Fault Tolerance (RFT) that enables FPGA-based systems to
change at run-time the amount of fault tolerance being used.

V. COMPARISION OF FT TECHNIQUES USED FOR FPGAS
The design exploration process of an application must be

able to weigh the pros and cons of different FT
methodologies on factors such as system performance, cost,
power etc. Table I provides a comprehensive summary of the
comparative analysis between the various FT techniques that
can be devised for an FPGA based system.

VI. THE PROPOSAL
The comparison amongst the various FT techniques for

RC platforms in Section 5 clearly indicates that choosing a
single FT technique for a given application shall require a
tradeoff between the robustness of FT and factors like cost,
system performance and power. The TMR technique is one
of the most robust online FT techniques; however, it incurs

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 6, December 2012

822

significant penalties in terms of area utilization, so much so,
that, for certain designs it’s not even feasible to use this
technique.

The partial dynamic reconfiguration feature of the latest
generation of FPGAs has opened gates for a very effective
and an entirely new methodology for the provision of FT for
FPGA-based systems. This methodology allows the choice of

any of the available FT techniques as per the application and
environment requirements. Two very recent works have been
based on this approach [25], [27]. In the case of [25], an
application is run in different modes, with each mode having
a different FT level. In the case of [27], the demonstrator
application autonomously improves its FT features based on
the current workload.

TABLE I: COMPARISON OF VARIOUS FAULT-TOLERANT TECHNIQUES FOR FPGA BASED SYSTEM DESIGN.

FT Parameter Built-in Self Duplicate & Triple Modular Concurrent Error
 Test(BIST) Compare(D&C) Redundancy Correcting
 [16][17][18] [25][27] (TMR) Codes(CEC)
 [19][25][27] [25][26]

Mode of checking: Generally, testing is Online provision Online error Online error
Offline or Online carried out in offline for error security. correction by detection /

 mode. majority voting. correction with
 [17][18] overlaps information
 testing of portions of redundancy.
 FPGA with online
 functioning of
 remaining portions

Ability to handle No. In [17][18], time Yes: Can detect Yes: Can correct Yes: Can detect
transient faults to detect fault is upper transient faults transient faults. /correct transient

 bounded by time to faults.
 reconfigure and test
 full FPGA area.

Space overhead due BIST circuitry. Duplication Triplication, Circuitry for error
to circuitry and And Voter code generation,

A) Added FT Comparator circuitry checker and code
functions converters.

Space overhead due Routing test clock, test Routing input Routing input Routing error signal
to data input and output signals to both signals to to dependant circuits

B) Communications through scan chain modules and error triplicate modules and diagnosis/
requirement path. signal to other and their outputs recovery system

 parts of system to voter.
Memory space Stores signatures of the None*. None*. *For data storage

requirement circuit as in [17] [18] integrity, CRC
 codes are stored
 with data.
 *To diagnose permanent fault an n-bit history needs to be
 recorded

Time overhead Time for offline *Time for *Time for voting *Time to generate
 testing. comparison and on multiple coded values, detect
 In [17] [18], time propagating error results. non-code values and
 incurred for signal rectify errors.
 reconfiguring and *In all cases, pipelining techniques increase throughput at the
 roving the STARS cost of initial latency and extra space required by latches.

Diagnostic Can diagnose all stuck- Can detect faulty Identifies minority Can identify faulty
capability at logic faults at test pair. unit as faulty. module at run time

 clock speed. Provides and additionally
 very high fault locate faults.
 coverage.

Recovery Bypass faulty blocks *Avoid unsafe *Use majority *Avoid unsafe
mechanism by reconfiguring their operation by output as correct. operation by

 functionality. blocking output of Can switch to blocking output of
 erroneous error secure mode erroneous modules.
 modules. when a faulty For error-correcting
 module is circuits, rectify
 removed. erroneous data.
 *By monitoring past results, permanently faulty module can be
 identified and isolated. Its functionality can then be reconfigured
 on spare logic cells and switched in.

Comments Gives best diagnosis. Eliminates unsafe Highest hardware Hardware
 But continuous self operation. redundancy incurs redundancy is
 testing incurs time However, it is not high cost but usually less than
 overhead and extra possible to gives the best duplicated. Using
 power dissipation identify which of reliability extra redundancy in
 the pair is the coding data, errors
 faulty. can also be located
 and corrected.

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 6, December 2012

823

Our proposal is also based on this novel methodology and
intends to provide hierarchical levels of FT. Unlike [25] and
[27], we intend to attach an FT level with each task
comprising of the application that is being run on the FPGA.
Thus, our approach combines scheduling along with the
provision of FT. FPGA Scheduling is itself a very typical and
wide topic that attracts the interest of a lot of researchers and
various techniques are being devised and proposed for the
same [28]-[32].

The three major functional components of our proposed
design along with their roles are presented below:
• Task Analyzer

This module analyzes the task graph of the given
application that is to be run on the FPGA. Depending on the
criticality of a task, it assigns a level of FT to it. As an
example, the most critical tasks are provided the highest level
of FT using the TMR technique; the tasks with a defined
second level of criticality are duplicated and the tasks that are
not critical at all are not provided any FT.
• Scheduler

This is an enhanced version of the scheduler discussed in
[32]. When a task is being scheduled, the FT level assigned to
that task also plays an important role along with the other
factors. For example, if a task has been assigned the highest
level of FT, the scheduler will have to schedule three copies
of that task.
• FT Manager

This module is responsible for the provision of FT using
the framework created by the other two modules. It has a list
of the executing tasks along with their assigned FT level.
Depending on the FT technique assigned to a task, it checks
for the proper functioning of that task. In case of a fault, this
module is responsible for taking corrective actions.

VII. CONCLUSIONS
We have presented the work being done by the various

research groups for the provision of FT for reconfigurable
platforms. A comparative analysis of the various FT
techniques has also been done. We have proposed a novel FT
technique that shall integrate scheduling to provide an
optimum, flexible and hierarchical FT to an application. The
implementation part of the proposed approach is in progress
and our future work shall focus on deriving significant
experimental results out of the same.

ACKNOWLEDGEMENT
The authors would like to thank the Department of Science

and Technology, Govt. of India, for funding this work under
the Women Scientist Scheme.

REFERENCES
[1] Accelerating high-performance computing with FPGAs. [Online].

Available: http://www.altera.com/literature/wp/wp-01029.pdf.
[2] J. A. Chetham, J. M. Emmert, and S. Baumgart, “A survey of fault

tolerant methodologies for FPGAs,” ACM Transactions on Design
Automation of Electronic Systems, vol. 11, no. 2, April 2006.

[3] S. Srinivasan et al., “FLAW: FPGA lifetime awareness,” Design
Automation Conference, pp. 630-635, 2006.

[4] I. G. Harris et al., “Testing and diagnosis of interconnect faults in
cluster-based FPGA architectures,” IEEE Transactions on CAD of
Integrated Circuits and Systems, vol. 21, no. 11, pp. 1337-43 Nov.
2002.

[5] L. Sterpone and M. Violante, “A new reliability-oriented place and
route algorithm for SRAM-based FPGAs,” IEEE Transactions on
Computers, vol. 55, Issue 6, pp. 732 – 744, June 2006.

[6] L. Sterphone and N. Battezzati, “A novel design flow for the
performance optimization of fault tolerant circuits on SRAM-based
FPGAs,” NASA/ESA conference on Adaptive Hardware Systems, IEEE
2008.

[7] Xilinx Application Notes XAPP015, “Using the XC4000 readback
capability”.

[8] J. Heiner, B. Sellers, M. Wirthlin, and J. Kalb, “FPGA partial
reconfiguration via configuration scrubbing,” International
Conference on FPL, 2009.

[9] Correcting single event upset through Virtex partial reconfiguration,
Xilinx Application Notes XAPP216, 2000.

[10] H. Ito Doumar, “Detecting, diagnosing, and tolerating faults in
SRAM-based Field Programmable Gate Arrays; a survey,” IEEE
Transactions on VLSI Systems, vol. 11, no. 3, June 2003.

[11] N. Goel and K. Paul, “Hardware controlled and software independent
fault tolerant FPGA architecture,” 15th International Conference on
Advanced Computing and Communications, IEEE 2007.

[12] N. Campregher, P. Y. K. Cheung, G. A. Constantinides, and M.
Vasilko, “Yield modeling and yield enhancement for FPGAs using
fault tolerant schemes,” International Conference on Field
Programmable Logic and Applications, 2005.

[13] J. Lach, W. H. Mangione-Smith, and M. Potkonjak, “Efficiently
supporting fault-tolerance in FPGAs,” International Symposium on
Field Programmable Gate Arrays, pp. 105-15, 1998.

[14] F. Hanchek and S. Dutt, “Methodologies for tolerating cell and
interconnect faults in FPGAs,” IEEE Transactions on Computers, vol.
47, no. 1, pp. 15 – 33, 1998.

[15] J. Lach, W. H. Mangione-Smith, and M. Potkonjak, “Low overhead
fault-tolerant FPGA systems,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 6, no. 2, pp. 212 – 221, 1998.

[16] J. Emmert, C. Stroud, B. Skaggs, and M. Abramovici, “Dynamic fault
tolerance in FPGAs via partial reconfiguration,” Field-Programmable
Custom Computing Machines, 2000 IEEE Symposium on 17-19 April
2000, pp.165 – 174.

[17] M. Ambramovici, C. Stroud, C. Hamilton, S. Wijesuriya, and V. Verma,
“Using roving STARs for on-line testing and diagnosis of FPGAs in
fault-tolerant applications,” in Proc. International Test Conference,
1999.

[18] J. Emmert, C. Stroud, and M. Ambramovici, “Online fault-tolerance for
FPGA logic blocks,” IEEE Transactions on VLSI, 2007.

[19] Pratt, M. Caffery, P. Graham, K. Morgan, and M. Wirthlin, “Improving
FPGA design robustness with partial TMR,” MAPLD 2005.

[20] G. L. Smith and L. de la Torre, “Techniques to enable FPGA based
reconfigurable fault tolerant space computing,” IEEEAC, vol. 5, pp.
1592, 2006.

[21] P. Bernardi, M. S. Reorda, L. Sterpone, and M. Violante, “On the
evaluation of SEU sensitiveness in SRAM-based FPGAs,” in
Proceedings of the 10th International On-Line Testing Symposium
2004.

[22] D. Fay, A. Shye, S. Bhattacharya, D. A. Connors, and S. Wichmann,
“An adaptive fault-tolerant memory system for FPGA-based
Architectures in the space environment,” Second NASA/ESA
Conference on Adaptive Hardware Systems 2007.

[23] Xilinx Inc., XTMR Tool User Guide, UG156, August 2006.
[24] Carmichael, “Triple module redundancy design techniques for Virtex

FPGAs,” Xilinx Corporation, November 2001, pp. 197.
[25] A. Jacobs, A. D. George, and G. Cieslewski, “Reconfigurable fault

Tolerance: A framework for environmentally adaptive fault Mitigation
in space,” IEEE 2009.

[26] W.-J. Huang, S. Mitra, and E. J. McCluskey, “Fast run-time fault
location in dependable FPGA-based applications,” in Proceedings of
the 2001 IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems (DFT’01).

[27] J. Soto Vargas, J. M. Moreno, J. Madrenas, and J. Cabestany,
“Implementation of a dynamic fault-tolerance scaling technique on a
self-adaptive hardware architecture,” International Conference on
Reconfigurable Computing and FPGAs, 2009.

[28] A. Ahmadinia, C. Bobda, S. P. Fekete, J. Teich, and J. C. van der Veen,
“Optimal free-space management and routing-conscious dynamic

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 6, December 2012

824

placement for reconfigurable devices,” IEEE Transactions on
Computers, vol. 56, no. 5, May 2007.

[29] R. Cordone, F. Redaelli, M. A. Redaelli, M. D. Santambrogio, and D.
Sciuto, “Partitioning and scheduling of task graphs on partially
dynamically reconfigurable FPGAs,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 28, no.
5, May 2009.

[30] C. Steiger, H. Walder, and M. Platzner, “Operating systems for
reconfigurable embedded platforms: online scheduling of real-time
tasks,” IEEE Transactions on Computers, vol. 53, no. 11, November
2004.

[31] Y. Lu, T. Marconi, K. Bertels, and G. Gaydadjiev, “A communication
aware online task scheduling algorithm for FPGA-based partially
reconfigurable systems,” 18th IEEE Annual International Symposium
on Field-Programmable Custom Computing Machines, 2010.

[32] J. A. Clemente, C. González, J. Resano, and D. Mozos, “A hardware
task-graph scheduler for reconfigurable multi-tasking systems,”
International Conference on Reconfigurable Computing and FPGAs,
2008.

Upasana Sharma received the M.Sc degree in Computer Science from the
G.B. Pant University of Agriculture and Technology, Uttarakhand, India in
2000. She has worked on a research project on the devising of fault-tolerance
techniques for reconfigurable platforms at Netaji Subhas Institute of
Technlogy, New Delhi, India. She also carries a rich experience in software
development and is currently a senior developer at Safenet
(http://www.safenet-inc.com/) at its Noida (India) office.

Shampa Chakraverty is professor in the Computer Engineering Division at
Netaji Subhas Institute of Technology, New Delhi, India. She completed her
Bachelor’s degree in Electronics and Communication (’83) from Delhi
College of Engineering, MTech in Integrated Electronics and Circuits from
IIT-Delhi (’92) and PhD in Computer Engineering from Delhi University,
India. Her research interests include reconfigurable computing, design
exploration for multiprocessor embedded systems, fault tolerant design,
Information retrieval and complex adaptive systems.

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 6, December 2012

825

