
  

  
Abstract—The dynamically reconfigurable Field 

Programmable Gate Arrays (FPGAs) are most frequently 
employed for developing adaptive embedded systems. They are 
also being increasingly used as co-processors in high 
performance computing applications. For these systems to be 
fielded in harsh environments such as those encountered in 
space, extra- terrestrial locations and regions of extreme 
conditions on the earth, one must adopt fault tolerant design 
techniques to ensure uninterrupted and reliable operation 
despite the occurrence of faults. Commercial Off-the-Shelf 
(COTS) FPGA components offer a cost effective design 
trajectory where the designer can choose among a rich variety 
of FT approaches and techniques. This paper compares the 
various FT techniques and proposes a novel method in which 
these techniques can work together to provide a synergetic 
approach for fault tolerant FPGA design. 
 

Index Terms—FPGA, fault tolerance techniques, dynamic 
partial reconfiguration. 
 

I. INTRODUCTION 
Reconfigurable Computing (RC) is an upcoming field that 

bridges the gap between hardware and software. The 
principal benefits of RC are the ability to execute larger 
hardware designs with fewer gates and to realize the 
flexibility of a software-based solution while retaining the 
execution speed of a more traditional, hardware-based 
approach. 

Field Programmable Gate Arrays (FPGAs) are a general 
class of RC hardware which contain an array of 
programmable logic blocks (PLBs), with programmable 
interconnect between PLBs, as well as programmable I/O 
cells. The configuration bits used to program the FPGA 
determine the function of the device. 

Advances in digital technology provide the means to make 
each generation of FPGAs significantly more attractive and 
useful than their predecessors. Each generation introduces 
additional benefits and utilities besides the expected larger 
size and faster processing. One of the advancements of 
significant importance is the ability to reconfigure a portion 
of an FPGA, leaving the others unchanged. This feature is 
called Partial Reconfiguration (PR). It is much faster than the 
reconfiguration of the entire FPGA board, especially when 
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only a small part of the FPGA logic needs to be changed. 
Dynamic PR is a step ahead as it allows PR to be executed at 
runtime. It therefore can potentially reduce the number of 
devices or the device size, thereby reducing both size and 
power consumption. As an example, a system that requires 
either transmit or receive capabilities at any given time, but 
not both, can switch between the two modes in a fraction of a 
second using “partial reconfiguration”.  

FPGAs are excellent candidates for applications that 
require hardware software co-design. They can also serve as 
hardware acceleration coprocessors for building high 
performance computing applications. Practical experience 
with FPGA-based coprocessors shows at least a ten-fold 
improvement in the execution speed of algorithms as 
compared to processors alone [1]. FPGAs especially find 
applications in any area or algorithm that can make use of the 
massive parallelism offered by their architecture. Some 
examples of the applications areas of FPGAs are code 
breaking (in particular brute-force attack, of cryptographic 
algorithms), digital signal processing, ASIC prototyping, 
image processing, encryption/decryption engines, space 
missions, speech recognition, defense, avionics, industrial 
control, automotive, medicine and a growing range of many 
other areas. 

In all these applications, and, specifically applications 
deployed in mission critical environments, there is a strong 
need for availability and reliability. This is achieved through 
the provision of Fault Tolerance (FT) to such systems. As a 
result a lot of academic research has been done in the recent 
past in this area and various methods/techniques of providing 
FT to reconfigurable platforms have been developed. This 
paper emphasizes on the need of a flexible FT approach by 
comparing the important proposals/techniques that have been 
devised for the provision of FT on RC platforms. It proposes 
a new technique that incorporates hierarchical levels of 
online FT for applications running on reconfigurable 
platforms. 

The paper is organized as follows – Section II talks about 
the need of FT for FPGAs. Section III discusses some key 
FPGA features and tools that are used in providing FT. 
Section IV discusses the related work. Section V provides a 
comparative analysis of the FT techniques. Section VII 
describes the proposed FT technique. Finally, we conclude in 
Section VIII. 
 

II.  NEED FOR FT FOR FPGAS 
Fault tolerance is defined as the ability of a system to 

operate normally given the presence of malfunctioning 
resources, or faults [2]. A fault tolerant system, therefore, 
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consists of two parts: fault detection and fault repair (if 
possible) or fault bypass. 

The provision of FT gains significant importance for 
mission critical applications like space, automotive, avionics 
and medicine. Since FPGAs are being used in such mission 
critical systems, there is a strong need for the provision of 
fault tolerance (FT) to the reconfigurable platforms as well. 
The provision of FT for an FPGA-based system is typical 
because it involves reconfiguration of the FPGA. This might 
hamper the performance of the FPGA-based system. Hence 
FT does not just entail overcoming the faults, but also 
overcoming the faults with minimum impact to performance 
and delays. 

There can be various kinds of faults that can occur in an 
FPGA-based system:  
• Aging faults: These types of faults are caused due to the 

degradation of the components, which can be attributed 
to a number of mechanisms [3].  

• Manufacturing defects: These can be exhibited as circuit 
nodes which are stuck-at 0 or 1 or switch too slowly to 
meet the timing specification. Defects also affect the 
interconnect network and can cause short or open 
circuits and stuck open or closed pass transistors [4].  

• Single Event Upsets (SEUs) and Single Event Transients 
(SETs): These faults occur when an energetic particle 
(typically a proton, neutron or a heavy ion) collides with 
atoms in the silicon lattice and leaves electric charge in 
its wake. SEUs can cause state bits to change and logic 
outputs to evaluate incorrectly.  

• Software Faults: FPGAs are being used in applications 
that require hardware software co-design. In such 
applications, software faults are always a possibility that 
must be catered. 

 

III.  FPGA FEATURES USED FOR FT 
The recent technological development in FPGAs has led to 

the availability of some very useful FPGA features and tools. 
These features/tools are often coupled along with the 
traditional FT techniques discussed in section IV, to develop 
a robust fault-tolerant FPGA-based system. The 
features/tools are:  
• Placement and Routing Tools: These tools physically 

place and map the application design to the physical 
resources of the FPGA [5], [6].  

• Readback: Configuration is the process of loading a 
design bit stream into the FPGA internal configuration. 
Readback is the process of reading that data [7].  

• Scrubbing: It involves periodical reloading of the 
contents of the configuration memory [8].  

• Dynamic Partial Reconfiguration: It is the ability to 
reconfigure only a specific portion of an FPGA at 
runtime [9].  

 

IV. RELATED WORK 
Most of the earlier works focused on tolerating the 

manufacturing defects and aging faults and manufacturing 
defects at either device level or configuration level using 

offline FT methods [2], [10]-[15]. However, provision of 
online FT is required to cater SEUs and software faults. With 
the advent of the dynamic partial reconfiguration capabilities 
of the new generation of FPGAs, the recent focus is on the 
provision of online FT, which is certainly the need of the 
hour. 

Ambramovici et al [16]-[18] have demonstrated how self 
testing of small portions of a circuit can be carried out 
simultaneously with normal functioning of other parts. In 
[17], [18], a Self Testing Area, so called STAR, is first 
offloaded by reconfiguring its functionality on another area 
so that normal functioning is not affected at all, thus enabling 
online self testing using BIST (Built In Self Testing).  

The TMR technique has been exploited for systems 
requiring high reliability, safety-critical applications, such as 
space missions [19]-[22]. The Xilinx Triple Modular 
Architecture [23], [24] replicates three identical copies of the 
same circuit and generates their voted outputs.  

A volume of work has been done for providing FT to space 
applications built using SRAM-based FPGAs [19]- [22], [25]. 
The case of space applications is typical because here the 
FPGAs are exposed to high radiation environments. 
Radiation can cause both short term and permanent device 
failures. In short term they can cause transient upsets in 
circuits (SEUs and SETs). Additionally, radiation can cause 
permanent damage to silicon devices over time, rendering all 
or part of the device unusable. Authors of [21] have 
concluded that the TMR technique is not able to mask all the 
faults induced by SEUs. TMR is often coupled with 
scrubbing [8] to avoid fault accumulation. The authors of [6] 
have proposed coupling of reliability oriented place and route 
algorithms in order to make complete SEU immune circuits.  

The concept of partial TMR has been introduced in [19]. 
Using device level TMR and a separate radiation hardened 
voter ASIC with integrated configuration management logic 
is another FT technique [20]. D. Fay et al [22] talk about 
device level TMR accompanied with adaptive FT for the 
distributed memory system. The authors of [25] have 
proposed and demonstrated a framework for Reconfigurable 
Fault Tolerance (RFT) that enables FPGA-based systems to 
change at run-time the amount of fault tolerance being used. 
 

V. COMPARISION OF FT TECHNIQUES USED FOR FPGAS 
The design exploration process of an application must be 

able to weigh the pros and cons of different FT 
methodologies on factors such as system performance, cost, 
power etc. Table I provides a comprehensive summary of the 
comparative analysis between the various FT techniques that 
can be devised for an FPGA based system. 
 

VI. THE PROPOSAL 
The comparison amongst the various FT techniques for 

RC platforms in Section 5 clearly indicates that choosing a 
single FT technique for a given application shall require a 
tradeoff between the robustness of FT and factors like cost, 
system performance and power. The TMR technique is one 
of the most robust online FT techniques; however, it incurs 
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significant penalties in terms of area utilization, so much so, 
that, for certain designs it’s not even feasible to use this 
technique. 

The partial dynamic reconfiguration feature of the latest 
generation of FPGAs has opened gates for a very effective 
and an entirely new methodology for the provision of FT for 
FPGA-based systems. This methodology allows the choice of 

any of the available FT techniques as per the application and 
environment requirements. Two very recent works have been 
based on this approach [25], [27]. In the case of [25], an 
application is run in different modes, with each mode having 
a different FT level. In the case of [27], the demonstrator 
application autonomously improves its FT features based on 
the current workload. 

 
TABLE I: COMPARISON OF VARIOUS FAULT-TOLERANT TECHNIQUES FOR FPGA BASED SYSTEM DESIGN. 

FT Parameter Built-in Self Duplicate & Triple Modular Concurrent Error 
 Test(BIST) Compare(D&C) Redundancy Correcting 
 [16][17][18] [25][27] (TMR) Codes(CEC) 
   [19][25][27] [25][26] 

Mode of checking: Generally, testing is Online provision Online error Online error 
Offline or Online carried out in offline for error security. correction by detection / 

 mode.  majority voting. correction with 
 [17][18] overlaps   information 
 testing of portions of   redundancy. 
 FPGA with online    
 functioning of    
 remaining portions    

Ability to handle No. In [17][18], time Yes: Can detect Yes: Can correct Yes: Can detect 
transient faults to detect fault is upper transient faults transient faults. /correct transient 

 bounded by time to   faults. 
 reconfigure and test    
 full FPGA area.    
     

Space overhead due BIST circuitry. Duplication Triplication, Circuitry for error 
to  circuitry and And Voter code generation, 

A) Added FT  Comparator circuitry checker and code 
functions    converters. 

Space overhead due Routing test clock, test Routing input Routing input Routing error signal 
to data input and output signals to both signals to to dependant circuits 

B) Communications through scan chain modules and error triplicate modules and diagnosis/ 
requirement path. signal to other and their outputs recovery system 

  parts of system to voter.  
Memory space Stores signatures of the None*. None*. *For data storage 

requirement circuit as in [17] [18]   integrity, CRC 
    codes are stored 
    with data. 
  *To diagnose permanent fault an n-bit history needs to be 
   recorded  

Time overhead Time for offline *Time for *Time for voting *Time to generate 
 testing. comparison and on multiple coded values, detect 
 In [17] [18], time propagating error results. non-code values and 
 incurred for signal  rectify errors. 
 reconfiguring and *In all cases, pipelining techniques increase throughput at the 
 roving the STARS cost of initial latency and extra space required by latches. 

Diagnostic Can diagnose all stuck- Can detect faulty Identifies minority Can identify faulty 
capability at logic faults at test pair. unit as faulty. module at run time 

 clock speed. Provides   and additionally 
 very high fault   locate faults. 
 coverage.    

Recovery Bypass faulty blocks *Avoid unsafe *Use majority *Avoid unsafe 
mechanism by reconfiguring their operation by output as correct. operation by 

 functionality. blocking output of Can switch to blocking output of 
  erroneous error secure mode erroneous modules. 
  modules. when a faulty For error-correcting 
   module is circuits, rectify 
   removed. erroneous data. 
  *By monitoring past results, permanently faulty module can be 
  identified and isolated. Its functionality can then be reconfigured 
  on spare logic cells and switched in. 

Comments Gives best diagnosis. Eliminates unsafe Highest hardware Hardware 
 But continuous self operation. redundancy incurs redundancy is 
 testing incurs time However, it is not high cost but usually less than 
 overhead and extra possible to gives the best duplicated. Using 
 power dissipation identify which of reliability extra redundancy in 
  the pair is the  coding data, errors 
  faulty.  can also be located 
    and corrected. 
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Our proposal is also based on this novel methodology and 
intends to provide hierarchical levels of FT. Unlike [25] and 
[27], we intend to attach an FT level with each task 
comprising of the application that is being run on the FPGA. 
Thus, our approach combines scheduling along with the 
provision of FT. FPGA Scheduling is itself a very typical and 
wide topic that attracts the interest of a lot of researchers and 
various techniques are being devised and proposed for the 
same [28]-[32]. 

The three major functional components of our proposed 
design along with their roles are presented below:  
• Task Analyzer  

This module analyzes the task graph of the given 
application that is to be run on the FPGA. Depending on the 
criticality of a task, it assigns a level of FT to it. As an 
example, the most critical tasks are provided the highest level 
of FT using the TMR technique; the tasks with a defined 
second level of criticality are duplicated and the tasks that are 
not critical at all are not provided any FT.  
• Scheduler  

This is an enhanced version of the scheduler discussed in 
[32]. When a task is being scheduled, the FT level assigned to 
that task also plays an important role along with the other 
factors. For example, if a task has been assigned the highest 
level of FT, the scheduler will have to schedule three copies 
of that task.  
• FT Manager  

This module is responsible for the provision of FT using 
the framework created by the other two modules. It has a list 
of the executing tasks along with their assigned FT level. 
Depending on the FT technique assigned to a task, it checks 
for the proper functioning of that task. In case of a fault, this 
module is responsible for taking corrective actions. 
 

VII.   CONCLUSIONS 
We have presented the work being done by the various 

research groups for the provision of FT for reconfigurable 
platforms. A comparative analysis of the various FT 
techniques has also been done. We have proposed a novel FT 
technique that shall integrate scheduling to provide an 
optimum, flexible and hierarchical FT to an application. The 
implementation part of the proposed approach is in progress 
and our future work shall focus on deriving significant 
experimental results out of the same. 
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