

Abstract—The safety critical systems are those whose failure

may cause the loss of human life, serious injuries and financial
disasters. The air traffic control system (ATC) is a safety
critical system and rise in the air traffic volume make it more
critical and complex which caused for the unwanted delay in the
aircraft departure process. To ensure its safety it requires
advance methodologies for its designing process. The VDM++ is
an emerging technique based on mathematical notation having
object oriented features and used to specify and verify the
software system. This technique is used to formalize the
departure process of ATC system. The departure process is
controlled by the air traffic controllers. The air traffic
controllers control the aircraft traffic. This departure process is
made possible with the help of the ground and local controller.
Initially, the aircraft is under the control of ground controller.
Further the control is transfer to the local controller. These
both controllers communicate to aircraft and also to each other
for safe and secure movement of aircraft and finally the aircraft
depart from the airport.

Index Terms—VDM, VDM++, ATC, formal method.

I. INTRODUCTION
Computers are increasingly being used in safety critical

system, interactive control systems for transport (like road,
rail and air) medical equipment and power stations and
process plants are example of it [1]. The air traffic control
system (ATC), a part of the airspace system, has a
responsibility to manage the complex mixture of air traffic
from general, commercial, corporate and military aviation [2].
ATC system is a name of service which provides guideline to
aircrafts, prevents collision and manages secure and orderly
traffic flow. It is a vast network consisting of equipment and
people, which ensure the safe operation of aircrafts [3]. The
primary objective of ATC system is the safety of aircrafts and
its passenger. To ensure the safety we must satisfy that there
is no conflicting situation in any stage of the aircraft
departure and arrival procedure. The air traffic controllers
play important role to avoiding the collision of aircrafts. The
term collision refers to both mid-air and ground collision.
The effectiveness of a system means the departure and
landing of any aircraft without any collision.

The ATC system is safety critical system where the miner
mistake can cause intolerable loss. It needs to develop

Manuscript received September 10, 2012; revised October 23, 2012.
Shahid Yousaf is with Department of Computer Science & IT, The

University of Lahore, Pakistan (e-mail: shahid.usaf@yahoo.com).
Nazir Ahmad Zafar is with the Department of Computer Science, College

of CS & IT, King Faisal University, Al Hassa, Saudi Arabia (e-mail:
nazafar@kfu.edu.sa).

Sher Afzal khan is with the Department of Computer Science, Abdul Wali
Khan University, Mardan, Pakistan (e-mail: sher.afzal@awkum.edu.pk).

carefully to prevent the precious lives. ATC system provides
verity of service to aircraft like weather updates, flight profile
information, emergency relief services and navigational etc.

A number of failures in the safety critical systems have
been reported in [4], [5], [6], [7]. Therac-25 system failed due
to the error in software, this system was a radiation therapy
machine controlled by computer which overdoses the six
peoples. In 1996 another disaster happened when the
European Ariane 5 launcher crashed after 40 sec of its take
off. The inquiry board consisting of European space agency
and CNES (French National Centre for Space Studies)
documented that this explosion was the consequence of
software error. The F-16 is fighter jet that has faced number
of accidents. According to the inquiry report the reason of
these accidents are the combination of both onboard
computer controller and human error. Many more example of
safety critical system failures have been documented which
caused the loss of precious human life and equipment.

The major reason of the software failure is an inconsistent
and ambiguous specification. A significant problem of
developing software for safety critical systems is how to
guarantee that the functional behavior of a developed
software system will satisfy the corresponding functional
requirements and will not violate the safety requirements of
overall system. In order to solve this problem, it is important
to analyze thoroughly the safety properties of the overall
system, to achieve accurate software functional requirements
and to verify properly the implementation of the software.
But it is difficult to analyze all of the above mentioned
properties of the software system by the traditional software
development methods. Because these development methods
are based on the natural languages which are inherently
ambiguous and hence it is not possible to write the
unambiguous specification from the ambiguous language [8].
In [9] it is described that formal methods are widely
recognized as a mean to write precise, consistent and
unambiguous specification and are helpful to analyze
thoroughly the properties of the overall system due to which
we can achieve accurate software functional requirements.
Formal methods research began in the 1960s, which focused
on establishing mathematical and rigorous approaches to
program construction and analysis [10], [11], [12], [13].
Formal methods are mathematically-based techniques, often
supported by reasoning tools that can offer a rigorous and
effective way to model, design and analyze computer systems
[14]. Typical techniques used in formal methods are
invariants, proof obligations, and a calculus for refining
specifications or proving properties about specifications and
implementations, and the relationship between a
specification and its implementation [15]. Due to the above

Formal Verification and Validation of Aircraft Departure
Process in Air Traffic Control System Using VDM++

Shahid Yousaf, Nazir Ahmad Zafar, and Sher Afzal Khan

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 6, December 2012

755DOI: 10.7763/IJET.2012.V4.478

distinguish properties of the formal methods we have used
the formal methods “VDM++” for specification of air traffic
control system. It is a formal specification language, derived
from VDM, it is extends by providing object-orientation,
parallel and real time features [16]. In this work, we model
the system for the ground level aircraft departure process
with the help of ground and local controller, which are the
parts of air traffic controllers. An air traffic controller
collaborates with other controllers to hand off an aircraft,
after successfully hand off the aircraft communicates with
other controllers.

The organization of this paper is as fallow. In section II
formal methods are explored. Formal modeling using
VDM++ is given in section III and finally the last section IV
will describe the conclusion.

II. FORMAL METHODS
The software engineers and designers always try to

develop reliable and consistent software but the behavior of
software is often a surprise for them. Mostly software
systems fail and cannot fulfill the requirements, there are
many reasons of their failure but most of them fail due to
incomplete and ambiguous requirement specification, which
are hardly difficult to handle by using traditional software
development process. Formal methods are used as an
emerging technology which handles these problems in
systematic way using logical arguments. Formal methods [17]
consist of the set of techniques and tools based on
mathematical modeling and formal logic that are used to
specify and verify requirements and designs for computer
systems and software. Further, formal methods [18] refer to
mathematical rigorous techniques and tools for the
specification, design and verification of software and
hardware systems. Single formal technique is not well
suitable for all kinds of problems, therefore integration of
methods in same time is necessary. Formal specification
provides the power to clearly express the meanings, across
natural languages barriers, just like legal languages, which
were developed to prevent misinterpretation of law. Formal
specification was developed to prevent misinterpretation of
specifications.

III. FORMAL MODELING USING VDM++
Modeling is an engineering technique, which plays an

important role to proceed the project toward the success. The
modeling clearly reflects the behavior of real world system.
The ATC is a highly complex and safety critical system that
requires visualization, complexity management and
communication. VDM++ will help in handling complexities
and drawbacks of existing ATC systems and help to clearly
understand the domain.

A. Aircraft
The aircraft is a core part of this modeling and other two

are supporting of it. It is defined as class AirCraft. The types
which are used in this class are string and Aircraft, where the
string is sequence of character and the Aircraft is a composite

type which has aircraft id and callsign.
class AirCraft
types
public string = seq of char;
public Aircraft:: ACid:string
 callsign:string;

The instance variables used in the specification are given
below. “LC” is the object of the local controller and “GCC”
is the object of ground controller which allow accessing all
the instance variables of the ground and local controller in
this class.
instance variables
LC:LocalController;
GCC:Groundcontroller;
public Aircrafts:set of Aircraft;
public NIL:string;
public Taxiway:string;
public TaxiwayQ:seq of string;
public RTTaxiclcQ:seq of string;
public RunwayQ:seq of string;
public Taxiin:seq of string;
public RTdepartclcQ:seq of string;
public Runsonrunway:string;
private CancelDepart:set of string;
private Recoverplan: seq of string;
private FinalDept:seq of string;

Operations are the key features of the specification. The
following operations are modeled to perform certain task.

1) Request for Taxi Clearance: In the operation denoted
by RequestTaxiclarence(craftin:string) the aircraft sends
request for taxi clearance. The pre-condition ensures that
prior to this, aircraft must be a registered aircraft, departure
list has been assigned to it and it does not send request for taxi
clearance. The post-condition includes it to those aircrafts
which are waiting for taxi clearance.
RequestTaxiclarence(craftin:string)
ext wr RTTaxiclcQ:seq of string
 rd Aircrafts:set of Aircraft
 wr GCC:Groundcontroller
pre exists a in set Aircrafts & a. callsign = craftin
 and craftin not in set elems RTTaxiclcQ
 and craftin in set elems GCC.Deplist
post RTTaxiclcQ = RTTaxiclcQ~ ^ [craftin];

2) Taxing: The pre-condition of this operation ensures
that the aircraft must be a registered aircraft, it does not
belong to taxing aircrafts and it has permit of taxi clearance.
The post-condition of this operation includes it to those
aircrafts which are in taxing.
Taxing(craftin:string)
ext wr GCC:Groundcontroller
 wr Taxiin:seq of string
 rd Aircrafts:set of Aircraft
pre exists a in set Aircrafts & a.callsign = craftin
 and craftin not in set elems Taxiin
and craftin in set elems GCC.issutaxiclec post Taxiin
= Taxiin~ ^ [craftin];

3) Aircaft on Runway: The pre-condition of this
operation ensures that the aircraft is registered aircraft, it does
not belong to those aircrafts which are in runway queue and it
belongs to those aircraft which are in start departure queue.
The post-condition includes it to runway queue list and
discarded it from the select for departure queue.
AircraftonRunway(craftin:string)
ext wr RunwayQ:seq of string
 wr LC:LocalController
 rd Aircrafts:set of Aircraft
pre exists a in set Aircrafts & a.callsign = craftin
 and craftin not in set elems RunwayQ
 and craftin in set elems LC.SDepartQ
post RunwayQ = RunwayQ~ ^ [craftin]
 and LC.SDepartQ = tl LC.SDepartQ~;

4) Request for Departure Clearance: For the request of
departure clearance the operation denoted by

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 6, December 2012

756

RequestDepartureClerance(craftin:string) is defined. The
pre-condition ensures that before sending a request for
departure clearance the aircraft must be a registered aircraft,
also belongs to RuwayQ and does not have permission for
taxi clearance. The post-condition includes it for the request
of departure clearance.
RequestDepartureClerance(craftin:string)
ext rd RunwayQ:seq of string
 wr RTdepartclcQ:seq of string
 rd Aircrafts:set of Aircraft
pre exists a in set Aircrafts & a.callsign = craftin
 and craftin not in set elems RTdepartclcQ
 and craftin in set elems RunwayQ
post RTdepartclcQ = RTdepartclcQ~ ^ [craftin];

5) Start Departure: In this operation the aircraft runs on
the runway. The start departure operation is denoted by
Startdeparture(craftin:string). The pre-condition ensures
that the aircraft must be a registered aircraft, it has clearance
for departure and there is no aircraft on the runway. In the
post-condition the aircraft runs on the runway and the runway
is busy.
Startdeparture(craftin:string)
ext wr Runsonrunway:string
 wr LC:LocalController
 rd Aircrafts:set of Aircraft
pre exists a in set Aircrafts & a.callsign = craftin
 and craftin in set elems LC.Gdepartclc
 and Runsonrunway = NIL
post Runsonrunway = craftin
 and Runsonrunway <> NIL;

6) Diversion: In this operation departure of aircraft is
cancelled and diverts it to any safe area.
Deviation(craftin:string)
ext wr CancelDepart:set of string
pre true
post CancelDepart=CancelDepart~ union {craftin};

7) Recovered Plan: In this operation the canceled
departure is planed again for departure, this is the aircraft
whose departure is canceled.
Recoverdplan(craftin:string)
ext wr CancelDepart:set of string
 wr Recoverplan: seq of string
pre craftin in set CancelDepart
post Recoverplan = Recoverplan~ ^[craftin]
 and CancelDepart = tl CancelDepart~;

8) Final Departure: Final departure procedure is
described in this operation.
Finaldepart(craftin:string)
ext wr Recoverplan: seq of string
 wr FinalDept:seq of string
pre craftin in set elems Recoverplan
 or Runsonrunway = craftin
post FinalDept = FinalDept~ ^ [craftin]
 and Recoverplan= tl Recoverplan~;
end AirCraft

B. Ground Controller
The ground controller is responsible for the movement of

aircraft at ground. It is defined as class Groundcontroller and
types used in this class are string and Date.
class Groundcontroller
types
public string = seq of char;
public Date=token;

The instance variables used in this specification class are
given below, where “AC” and “LC” are the objects
respectively of the Aircraft and local controller which allows
accessing all the instance variables of these in this class.
instance variables
public Deplist:seq of string;
public RTRunwayQ:seq of string;
AC:AirCraft;

LC:LocalController;
public craft_id:string;
public ArngDepQ:seq of string;
public issutaxiclec : seq of string;

1) Issue Departure Information List: To issue the
departure information list the operation denoted by
issuDepInfolist (callsign: string, d_time: Date, route: string,
destination: string) is defined. The pre-condition ensures that
prior to this aircraft must reside in taxiway queue and
departure information list is not assigned to it. In the
post-condition information (callsign, departure time, rout and
destination) of aircraft is added to departure list.
operations
issuDepInfolist(craftin:string,callsign:string,d_t
ime:Date,route:
string,destination:string)
ext wr Deplist:seq of string
 wr AC:AirCraft
pre craftin in set elems AC.TaxiwayQ
 and craftin not in set elems Deplist
post Deplist =Deplist~ ^
[callsign,d_time,route,destination];

2) Check the Aircraft is in Taxiway: This operation
returns the status of the craft weather it is on taxiway or not, if
the craft is on taxiway then it returns true else false
isaircraftonTaxiway(craftin:string)Query:bool
ext wr AC:AirCraft
pre true
post Query <=> craftin in set elems AC.TaxiwayQ;

3) Request to assign runway: The operation denoted by
RequestToAssignRunway(craftin:string) is defined for the
request to assign runway. Pre-condition is check over this
operation which ensures that the aircraft must be a registered
aircraft, it does not belong to sequence of those aircrafts
which have already been assigned a runway and it must
belong to those aircrafts which have sent request for taxi
clearance. The post-condition includes it to those aircrafts
which have send request for the assignment of runway.
RequestToAssignRunway(craftin:string)
ext wr AC:AirCraft
 wr RTRunwayQ:seq of string
pre exists a in set AC.Aircrafts & a.callsign = craftin
 and craftin not in set elems RTRunwayQ
 and craftin in set elems AC.RTTaxiclcQ
post RTRunwayQ = RTRunwayQ~ ^ [craftin];

4) Issue Taxi Clearance: The operation denoted by
Issutaxiclearance(craftin:string) is defined so that taxi
clearance is granted to aircraft. The pre-condition of this
operation ensures that it must be a registered aircraft, it does
not belong to those aircrafts which already have taxi
clearance and runway is assigned to it. The post-condition
ensures taxi clearance.
Issutaxiclearance(craftin:string)
ext wr issutaxiclec:seq of string
 wr LC:LocalController
 wr AC:AirCraft
pre exists a in set AC.Aircrafts & a.callsign = craftin
 and craftin not in set elems issutaxiclec
 and craftin in set dom LC.AssignedRunway
post issutaxiclec= issutaxiclec~ ^ [craftin];

5) Arrange Aircraft for Departure: The operation
denoted by Arrangefordepart (craftin:string) is defined for
the arrangement of aircraft for departure process. The
pre-condition of this operation ensures that the aircraft must
be a registered aircraft, it does not belongs to departure
arrange queue and it has assigned runway. The
post-condition of the operation is included the aircraft into
arrange departure queue.
Arrangefordepart(craftin:string)
ext wr ArngDepQ:seq of string
 wr AC:AirCraft
 wr LC:LocalController

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 6, December 2012

757

pre exists a in set AC.Aircrafts & a.callsign = craftin
 and craftin not in set elems ArngDepQ
 and craftin in set dom LC.AssignedRunway
post ArngDepQ=ArngDepQ~ ^ [craftin];
end Groundcontroller

C. Local Controller
The local controller is defined as class LocalController

and string type is also used in this class. Types used in this
class are string, date and runway where runway is a
composite data type of Runwayno and status. Rstatus is
enumerated type and the values <Available> and
<NotAvailable> are called quote types. Similarly the
Takeaction is also enumerated type and value <Actionlist> is
quote type.
class LocalController
types
 public string=seq of char;
 public Date=token;
 Rstatus=<Available>|<NotAvailable>;
 Takeaction=<Actionlist>;
 Runway::Runwayno:string
 status:Rstatus;

The instance variables used in this specification given
below, “AC “is the object of the Aircraft which allows
accessing all the instance variables of the Aircraft and
“GCC” is the object of the ground controller for accessing the
all variables of the ground controller.
instance variables
 GCC:Groundcontroller;
 AC:AirCraft;
 Runways:seq of Runway;
 public AssignedRunway:map string to string;
 public SDepartQ:seq of string;
 public Gdepartclc:seq of string;

1) Functions: The function denoted by isavailable
(runwayidin: seq of Runway)pos:nat is modeled which
returns the position of that runway whose status is available.
runwayidin is an input variable of type sequence of Runway
and pos is an output variable of type natural number.
functions
isavailable(runwayidin:seq of Runway)pos:nat
pre true
post runwayidin(pos).status = <Available> and forall
i in set {1,...,pos-1} & runwayidin(i).status <>
<Available>;

2) Update Pre-Departure Information List: For updating
pre-departure information list, the aircraft must have
assigned the departure list, i.e., it belongs to the Deplist then
the departure list is updated, i.e., new departure time, new
route and destination will be assigned to craft.
operations
UpdatePreDepartureInfo(callsign:string,d_time:Date
,route:string,destination:string)
 ext wr GCC:Groundcontroller
pre callsign in set elems GCC.Deplist
post GCC.Deplist = GCC.Deplist ++
{1|->callsign,2|->d_time,3|->route,4|->destination
};

3) Assign Runway to Aircraft: The operation denoted by
AssignRunway() is defined to assign the runway to aircraft.
The pre-condition ensures that before assigning the runway
to aircraft the runway must be available then in the
post-condition the runway is assigned to aircraft which is the
first one who sends the request for the assignment of runway.
AssignRunway()
ext wr AC:AirCraft
 wr GCC:Groundcontroller
 wr AssignedRunway:map string to string
 rd Runways:seq of Runway
pre let pos = isavailable(Runways)
 in pos <> 0

post let pos = isavailable(Runways)
 in AssignedRunway = AssignedRunway~ munion {hd
(GCC.RTRunwayQ) |-> Runways(pos).Runwayno};

4) Select for Departure: The pre-condition ensures that
before the selection of departure the aircraft which is going to
be selected must be a registered aircraft, it also belongs to
arrange for departure queue and does not belong to select for
departure queue. The post-condition select to it for departure
and discard it from those aircraft which are in arrange
departure queue.
SelectforDepart(craftin:string)
ext wr SDepartQ:seq of string
 wr GCC:Groundcontroller
 wr AC:AirCraft
pre exists a in set AC.Aircrafts & a.callsign = craftin
 and craftin in set elems GCC.ArngDepQ
 and craftin not in set elems SDepartQ
post SDepartQ=SDepartQ~ ^[craftin]
 and GCC.ArngDepQ=tl GCC.ArngDepQ~;

5) Grant Departure Clearance: Departure clearance is
granted in the operation which is denoted by
GrantDepartureclearence(craftin:string). The pre-condition
is a constraint on this operation that checked that aircraft
which is going to take permission should be a registered
aircraft, does not have permission but has sent request for
departure clearance. The post-condition grant permission to
aircraft for departure and this aircraft is discarded from the
list of those aircraft which have sent request for departure
clearance.
GrantDepartureclearence(craftin:string)
ext wr AC:AirCraft
 wr Gdepartclc:seq of string
pre exists a in set AC.Aircrafts & a.callsign = craftin
 and craftin not in set elems Gdepartclc
 and craftin in set elems AC.RTdepartclcQ
post Gdepartclc = Gdepartclc~ ^[craftin]
 and AC.RTdepartclcQ= tl AC.RTdepartclcQ~;

6) Check Emergency Condition: In this operation
emergency situation is checked if any type of emergency is
found then new action is performed by aircraft this action is
provided by action list that what will be done in this
emergency situation.
EmergencyCondition(craftin:string)Newaction:Takeac
tion
ext wr AC:AirCraft
pre true
post exists a in set AC.Aircrafts & a.callsign =
craftin
 and Newaction = <Actionlist>;
end LocalController

IV. CONCLUSION
The use of formal methods in the industrial area is

increasing rapidly, especially in the critical and complex
domain of systems. Formal methods are standard modeling
techniques for systems engineers to analyze, specify, design
and verify complex systems through mathematical notations
that can be used to specify system requirements. Formal
methods provide the facility to investigate the issues at early
stages of the systems development. It enhances and improves
the quality of system removes the semantic gape between the
system design and implementation. The air traffic control
system is a safety critical system where we have strong need
of dependability, avoidance of mistakes and detection of
errors and define the limits. In this research we formalized
the departure process of air traffic control system which
increases the trust of formal methods in applying the safety

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 6, December 2012

758

critical systems. This specification is written in VDM++
which is formal method’s approach with an object oriented
feature. This specification is unambiguous and reliable. This
is also semantically and syntactically true and proved by
VDM++ toolset.

REFERENCES
[1] A. Hussy, D. Leadbetter, P. Lindsay, A. Neal, and M. Humphres,

“Modeling and hazard identification in air traffic control user-
interface,” Software Verification Research Center, Technical report no.
0014. Queensland University, April, 2000.

[2] D. W. Christopher, S. M. Anne, P. Raja, and P. M. James, The future of
air traffic control human operators and automation, National academy
press, 1998.

[3] S. Ahmad and V. Saxena, “Design of formal air traffic control system
through UML,” Ubiquitous computing and communication journal,
vol. 3, no. 2, pp. 1-10, 2008.

[4] N. G. Leveson and C. S. Turner, “An investigation of the therac-25
accidents,” vol. 26, no. 7, July. pp. 18-41, IEEE, 1993.

[5] J. L. Lyons, ARINAE 5 Flight 501 failure report by the inquiry board,
July 1996.

[6] P. G. Neumann, “Risks digest forum on risks to the public in computers
and related systems,” vol. 27, no. 1, pp. 7-17, ACM., 2002.

[7] P. G. Neumann, “Risks to the public computers and related system,”
ACM SIGSOFT software engineering note, ACM., 2000.

[8] A. Nadeem, “Automated testing of object oriented systems using
VDM++ and UML communication diagrams,” Ph.D. Thesis, 2007.

[9] D. Kiper and J. E. Tomayko, “Techniques for safety critical software
development,” Proceedings of the thirty-first annual hawaii
international conference on system sciences, vol. 3, IEEE Computer
Society. 1998.

[10] E. W. Dijkstra, “A constructive approach to the problem of program
correctness,” BIT numerical mathematics, vol. 8, no. 3, pp. 174-186.

[11] R. W. Floyd, “Assigning meaning to programs,” in Proceedings of the
symposium in applied mathematics, vol. 19, pp. 19-37, 1968.

[12] C. A. R .Hoare, “An axiomatic basis for computer programming,”
Communications of the ACM. vol. 12, no. 10, pp. 576 -580, ACM.,
1969.

[13] B. J. Raymond, “Use of formal methods in the development of safety
critical control software,” Ph.D. Thesis, 2002.

[14] D. Craigen, S. Gerhart, T. Ralston, and K. Summerskill, “An
international survey of industrial applications of formal methods,” vol.
2, 1993.

[15] K. Ralf, “Limits of formal methods,” Formal aspects of computing, vol.
9, no. 4, pp. 379-394, Springer, 1997.

[16] E. Durr, K. J. Van and S. Goldsack, “Using VDM++ in the
development of a large industrial application,” in Proceedings of the
International Symposium of on-board real-time software, 1996.

[17] J. C. Kelly, “Formal Methods specification and verification guidebook
for software and computer System,” NASA. vol. 1. 1998.

[18] L. Zhang and L. Wang. “Aspect-oriented formal specification for
multimedia systems,” in Proceedings of the 2008 IEEE/ACS
international conference on computer systems and applications, pp.
260-267, 2008.

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 6, December 2012

759

