
  

  
Abstract—Records duplication is one of the prominent 

problems in data warehouse. This problem arises when various 
databases are integrated. This research focuses on the 
identification of fully as well as partially duplicated records.  In 
this paper we propose a de-duplicator algorithm which is based 
on numeric conversion of entire data. For efficiency, data 
mining technique k-mean clustering is applied on the numeric 
value that reduces the number of comparisons among records. 
To identify and remove the duplicated records, divide and 
conquer technique is used to match records within a cluster 
which further improves the efficiency of the algorithm. 
 

Index Terms—Data cleansing, De-Duplicator, partial 
duplication, K-Mean clustering.  
 

I. INTRODUCTION 
Data warehouses store large amount of data that is used in 

analysis and decision making process. Data is integrated 
from various heterogeneous sources. In heterogeneous 
sources data has different formats. Data is noisy in nature [1], 
[2] and needs to be cleaned in data warehouse.  Data 
cleansing is a process of detecting incorrect, redundant and 
missing values and then correcting them. This process also 
checks the format, completeness, and other business rules 
related errors in data. 

Data cleansing process is used to improve the quality of 
data [3]. Some data quality problems occur because of data 
entry operator errors such as spellings mistakes, missing 
integrity constraints, missing field (e.g., date of birth used in 
the field of admission date), noise or contradicting entry, null 
values, misuse of abbreviations, and duplicated records 
[3]-[9]. Data quality measures the accuracy, integrity, 
completeness, validity, consistency and redundancy aspects 
of data [1], [8].  

In data warehouse, data cleansing has a vital role. If the 
quality of data is not good, the strategic decisions taken on 
the basis of that data may not be good [3]. Records 
duplication is one of the major issues in data quality [3], [10]. 
It is the representation of the same real world object more 
than once in the same table [6], [10]-[12].  It is necessary to 
eliminate duplicated records in order to bring consistency and 
improve the quality of the data. Identification and removal of 
the duplicated records is an important issue in data cleansing 
which is the subject of this research. 

This paper proposes a novel approach for detection of 
duplicated records by converting the field values into 
numeric form instead of condensing them as tokens. The 
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proposed technique identifies and removes not only fully but 
also partially duplicated records. The K-mean clustering 
algorithm is used to reduce the number of comparisons by 
forming clusters and the divide and conquer approach is used 
to match records within the clusters. 

We classified the duplicated records into three categories. 
a) Fully Duplicated Records, having two identical rows 
representing the same real world entity. b) Erroneous 
Duplicated Records, which in fact are duplicated records but 
due to the data entry operator’s erroneous entry, they seem to 
be different. Identification of such records is a challenging 
process as they cannot be separated out by sorting techniques. 
c)  Partially Duplicated Records, having partial duplication 
but the difference is original. Our proposed technique 
identifies all such kinds of records. 

The rest of paper is organized as follow. We describe the 
related work in Section II. Section III presents the core of our 
approach. Experimental results are introduced in Section IV. 
Finally, we conclude our work in Section V. 

 

II. RELATED WORK 
The problem of duplicated records has been extensively 

discussed in the literature. Bitton et al. discussed the 
elimination of duplicated records in large data files by sorting 
which brings identical records together [13]. If sorting is 
based on dirty fields, identical records can never get together. 
Sorting method is inefficient for large data files having 
typographical errors.   

Hernandez et al. discuss the problem of merge/purge in a 
large database [14]. They form token keys of selected fields 
of the database table. Records in the table are sorted by using 
that key. To reduce the number of comparisons, records 
having same token keys are sorted and put in the same 
clusters [14]. The effectiveness of merge/purge approach 
depends on the quality of the chosen keys which may fail in 
bringing possible duplicated records near each other for 
subsequent comparison. 

Character and token based techniques are used by 
Elmagrmid et al. for detecting record duplication [6]. 
Character based technique deals well with the typographical 
errors. But sometimes typographical conventions lead to 
rearrangement of words e.g. (“Bilal Khan”, versus “Khan, 
Bilal”). Character based technique fails in order to compare 
such kind of strings. The token base technique is used to 
overcome this problem. 

Token based data cleansing technique defines smart tokens 
that are used to identify and remove duplicated records [4], 
[15]. To identify the duplicated records, user selects two or 
three fields on the basis of unique identification of records 
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and then produces sorted token tables over these fields. 
Tokens are created on the basis of initials of letters. An 
obvious drawback of this technique is that in many cases it 
considers non duplicated records as duplicated recorders, 
causing an increase in the value of false positive (non 
duplicated records considered as duplicated records). For 
example, token created for the name column containing 
values ‘Aslam Khan’ and ‘Asim Khan’ will be ‘AK’. 
Although actual values are different but token created for 
these values is same. Thus non duplicated records are 
considered as duplicated records. 

 

III. PROPOSED DE-DUPLICATOR ALGORITHM 
Data cleansing process is used to identify and remove 

duplicated records. This problem can be explained as an 
example in the healthcare business. If a customer’s record is 
stored more than one times, the company will send him mails 
more than once as he is considered another individual but in 
fact he is the same person. Similarly in data warehousing 
where analysts make decisions, such redundancy can cause 
the analysis to produce the wrong result that leads to wrong 
decisions and thus the business will suffer. 

There is a need to detect and remove duplicated records 
from the data warehouse. Duplication affects the overall 
performance of data warehouse and also slows down the 
knowledge extraction process by data mining.  

The proposed de-duplicator algorithm is primarily used to 
identify and remove duplicated records in data warehousing. 
This algorithm not only improves the data quality but also the 
performance of the data warehouse. The algorithm uses three 
steps to identify fully and partially duplicated records.  These 
steps are conversion, clustering and matching. 

A. Conversion 
De-duplicator algorithm first brings the data into a uniform 

format. As the data fed to the data warehouse comes from 
different operational systems, there could be numerous 
formatting issues in data. One of them is data type format 
mismatch. For example, a date may be in the formats of 
dd-mm-yyyy, mm-dd-yyyy, or yyyy-mm-dd. Similarly, a 
phone number having country code and city code in one 
record but in another record same phone number without city 
and country code. Such formatting and missing values issues 
are resolved and data is brought to a uniform format. 
Similarly, abbreviations are expanded. 

To standardize and remove inconsistency in the data, our 
approach brings the data into a uniform format and then 
converts all field values (whether string, numeric or date) into 
numeric form by applying the radix formula on data. After 
conversion of the field values into numeric form, an extra 
column is appended storing all the calculated values into that 
column corresponding to relevant row separated with comma 
(,). 

Table I contains three fields; first of all field values of the 
table are converted into numeric form and then stored in the 
appended column. 

 ∑[((radix) position × alphvalue) mod m]                           (1) 

where alphvalue is marked from 0-9 and aA=10, bB=11,……, 

zZ=35 and m is any large prime number. 
The value of radix is greater than or equal to 36 because it 

consists of 36 characters (10 digits i.e. 0-9 + 26 alphabets + 
special characters). As the value of radix depends on digits, 
alphabets and special characters that is why its value is 
greater then or equal to 36 (e.g. radix>=36). The use of 
special characters may increase the value of radix because 
special character values are also used in alphval. The value of 
position is marked from right to left starting with 0. Fig. 1 
describes the process of conversion. Fig. 2 describes the 
complete algorithm of data cleansing and numeric 
conversion. 

TABLE I: NUMERIC VALUE CONVERSION 
Name Fname Sal Numeric Conversion 

Asim Asghar 14000 1321, 1487, 728 

 

 
Fig. 1. Numeric value conversion formula 

 

 
Fig. 2. Algorithm for numeric conversion 

B. Clustering 
After storing the values in the Numeric Conversion 

column, again radix formula given in equation (1) is applied 
on values of the Numeric Conversion column and output is 
stored in the Final Output column as shown in Table II. Then 
K-means clustering algorithm [16], [17], [18] is applied on 
the data stored in Final Output column and results are stored 
in the Clustered column. In this manner matching records are 
stored in one cluster. But clustering reduces the number of 

ASIM 
 

Let m = 731 (large prime number) 
 

∑{((36)3 × 10) mod 731) + ((36)2 × 28) mod 731)+ 
((36)1 × 18) mod 731) + ((36)0 × 22) mod 731) } 

= 182+ 469 + 648 + 22 
 

= 1321 

Input: Table with different data format, and 
abbreviations 
Output: Uniform format table with extra appended 
attribute having numeric value 
 
Algorithm 
Begin 
For attribute j = 1 to last attribute, n 
 
      For row i = 1 to last row, m 
 

1. Bring attribute values into uniform format  
2. Remove the special character  
3. Remove the variation of attribute values 
4. Expand abbreviations  
5. Convert all the values into numeric form 
6. Put the numeric value into appended 

attribute separated with comma (,) 
 
end 

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 6, December 2012

751



  

comparisons and ultimately improves the performance. 
In Table II, the total numbers of groups are two and total 

records are four. If there is a single group in table then the 
numbers of comparisons will be 6. Because row 1 is 
compared with 3 rows i.e. row 2nd, 3rd and 4th, row 2 
compared with 2 different rows i.e. 3rd and 4th rows and row 
3rd row compared with only one row i.e. row 4. But with two 
groups, it reduces the number of comparisons. For example 
in Table II, we have two groups. To find the duplicated 
records, we compare the records within a cluster which 
reduces the number of comparison and our de-duplicator 
algorithm works faster.  

 
TABLE II: CLUSTERING 

Name Fname Sal Numeric 
Conversion 

Final 
Output Clustered

Amjad Qasim 8000 1686, 1397, 438 2559 G1 

Zaker Qasim 8000 1319, 1397, 438 2794 G1 

Zaheer Tanveer 14321 2105, 2767, 1034 3482 G2 

Daud Thalet 16233 1424, 2186, 1713 3261 G2 

C. Matching 
After conversion step, the divide and conquer approach is 

applied on each row of the cluster.  This approach divides the 
values recursively into smaller pieces and continues the 
process until certain smallest size is reached. Then compares 
the single value of one record is with the single value of other 
record. If match is found between values of records then the 
percentage duplication of records is calculated. 

In Table III, three attribute values of both records are 
match and total attribute values are four. That’s why both of 
these records are 75% duplicated (3/4×100 = 75%). 

The difference between these records is due to data entry 
operator error. In Table III, data entry operator types ‘Dajid’ 
instead of typing ‘Sajid’ in the name field value in second 
row. Such a difference is called erroneous difference and 
corrected by the domain expert. 

 
TABLE III:  PARTIALLY DUPLICATED RECORDS 

Name Fname Job Salary Appended Column 

Sajid Asif Accountant 10500 1707,1314,2535, 1141 

Dajid Asif Accountant 10500 1382,1314, 2535, 1141 

 

In Table IV, two records are 75% duplicated. There is an 
original difference between these records. For example, 
difference occurs in the name field of row 1 and 2.  These two 
records are for two different individuals. Only name field 
values are different i.e. ‘Imad’ and ‘Iman’ and other 
attributes value of both the records are same.  When domain 
expert analyzes that the difference is original then he/she 
keeps the records. 

If both records are fully duplicated as in Table V, then the 
duplicate records are discarded and the original row is kept. 
For example, in Table V both the records are 100% 
duplicated, when the divide and conquer approach is applied 
on these records, the system identifies that these records are 
fully duplicated. 

TABLE IV: ORIGINAL DIFFERENCE 

Name Fname Job Salary Appended Column 

Imad Irfan Prof 18950 996, 1406, 1238, 1826 

Iman Irfan Prof 18950 1006, 1406, 1238, 1826 
 

TABLE V: FULLY DUPLICATED RECORDS 

Name Fname Job Salary Appended Column 

Ifnan Saif Clerk 6500 1614, 1267, 1357, 1326 

Ifnan Saif Clerk 6500 1614, 1267, 1357, 1326 

 
If records are partially duplicated then the threshold value 

is checked. If the percentage of duplication crosses the 
threshold, the program displays those records and mentions 
clearly those attribute values having difference among them 
as an output to analyze whether this was an actual difference 
or erroneous difference among those records.  

For example, the difference in Table III is an erroneous 
entry which is corrected and stored. In this manner, both 
records become identical or fully duplicated. The duplicated 
records are then discarded and single row is kept. But in case 
of actual difference between the records as in Table IV, both 
rows are kept. 

Sometimes column values don’t look fully matched but 
they are actually matched. For example: column name having 
two values one is “Asim Ali Asghar” and other is “Asim 
Asghar” are actually matched but it does not seem that these 
values are matched. 

To identify such matching records, domain expert defines 
threshold for column value and when threshold value is 
crossed, the algorithm considers that the values of column are 
matched. 

Our algorithm not only specifies the threshold for the 
single column value matched but it also specifies the 
threshold for all columns to identify the partial duplicated 
records. For example, we have 10 columns and two records 
having 8 columns matched values and values of two columns 
are not matched. In such a situation domain expert needs to 
specify the threshold. If the matching values of records cross 
the threshold then it display those records and mention the 
non matching values. The domain expert can correct if there 
is any erroneous difference, discard the record and keep the 
original entity otherwise leaves the records. 

In Fig. 3, De-Duplicator algorithm describes the complete 
procedure of comparison between records and identifying 
duplicated records. Symbols used in De-Duplicator 
algorithm are explained in Table VI. 

 
TABLE VI: FULLY DUPLICATED RECORDS 

Symbol Description 

Δ Percentage duplications between records  

Ξ Threshold value specified by the domain expert  

P First position of record i.e. 1 

Q Last position of record i.e. n 

V Number of values after dividing the row into two portion  
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Fig. 3. De-Duplicator Algorithm 
 

IV. EXPERIMENTAL RESULT 
The dataset has been taken from [19] for designing an 

experiment on the de-duplicator algorithm. The data set 
named “Restaurant” contains 864 records where 112 records 
are duplicated.  

Our de-duplicator algorithm identifies and removes all 
fully duplicated records with or without clustering. The use 
of clustering reduces the number of comparisons. Thus for 
fully duplicated records, it provides 100% accuracy. In Fig. 4, 
the graph shows that when the number of clusters increases, 
the elapsed time decreases. For example, when we have one 
group then it takes more time to identify and remove 
duplicated records. But when the number of clusters 
increases then elapsed time decreases. Time elapsed is used 
for fully duplicated records as well as partially duplicated 
records.  

 
Fig. 4. Graph between time elapsed and Number of cluster 

 
Fig. 5. Graph between k-cluster and accuracy 

 
We need to identify partially duplicated records which 

may occur in different groups. We can not compare partially 
duplicated records which are present in different groups. In 
Fig. 5, the graph represents the accuracy of partially 
duplicated records, which decreases by increasing the 
number of clusters.  

 

V. CONCLUSION 
A numeric conversion and matching technique of record 

de-duplication is explained in this article. An algorithm for 
numeric conversion is used which converts all attributes data 
either string, date, or numeric into a standard numeric form. 
Numeric form of attribute value is used to create clusters 
which are helpful in reducing the number of comparisons. On 
the basis of these clusters, divide and conquer technique is 
used parallel in all these clusters to identify and remove the 
duplicated records.  

In the proposed technique, only single table is used instead 
of multiple sorted tables. Our technique not only detects fully 
duplicated records but also partially duplicated records.  
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