
 

  
Abstract—The file server is a key factor to accomplish the 

data sharing essential in distributed systems. The file server is 
perhaps the most heavily used resource of the distributed 
systems and as an outcome; its performance is vital and 
critical to the victory of the system. The explosive growth of 
the Web contents and Internet users has led to increasing 
concentration on two major challenges in these systems: 
scalability and high availability of network file system. A 
simple load-sharing mechanism for the NFS client to switch to 
a lightly-load server based on the number of NFS client's RPC 
requests for a period of time, making these systems more 
efficient and scalable. The replication techniques are used for 
improving the availability of Distributed systems in FSG. We 
also discussed distributed application in terms of java 
programming language. In this paper we have proposed a new 
architecture for Distributed Systems that provides better 
security. Our proposed solution is more secure & efficient in 
the sense that a client can not search the whole group for a 
specific file, because the group header maintains a huge 
database of all the group members along with their specific 
services they offers. Also load balancing mechanism is 
improved where the group header keeps a record of connected 
users to a specific server. Every group member is not required 
to advertise their state.  

 
Index Terms—Sun network file system (NFS), file server 

group (FSG), andrew file system (AFS), group header (GH), 
secure file system (SFS), log-structured file system (LFS), 
serverless file system (XFS / xFS). 

 

I. INTRODUCTION 
Distributed file systems present remote access to shared 

file storage in a shared and networked environment. In FSG 
system, it improved the reliability of file system through 
replication to handle the effects of failures. An efficient 
consistency control protocol is previously proposed to 
ensure the consistency among replicas. 

High Availability is required in today distributed shared 
environments, because if services are not available any time 
to its customer, then there is the possibility that customers 
will find some substitute service providers. 

The implementation of the file server group, FSG is 
based on NFS and interacts by underlying IP multicasting. 
In designing system, the collection of replicated servers is 
treated as a group. Each group is assigned a group IP 
address. The IP address will be used by the underlying 
multicast protocol to deliver messages to all servers in this 
group. With multicast communication it is possible to 

 
Manuscript received September 28, 2012; revised November 2, 2012. 
Muhammad Zakarya and Imtiaz Ullah are with  Department of 

Computer Science, Abdul Wali Khan University, Mardan, Pakistan (e-mail: 
mohd.zakarya@awkum.edu.pk, ask4imtiaz@gmail.com). 

Izaz Ur Rahman is with Department of Computing & Mathematics, 
Brunel University, London, UK (e-mail: izaz.rahman@brunel.ac.uk). 

 

implement distributed systems without any explicit need to 
know the precise location of data. Instead, peers find each 
other by communicating over agreed upon communication 
channels. To find a particular data item, it is sufficient to 
make a request for the data on the agreed upon multicast 
channel and any node that holds a replica of the data item 
may respond to the request. This property makes multicast 
communication an excellent choice for building a system 
that replicates data.  

 

II. RELATED WORK 
NFS file handles, fHandle, are normally created by the 

server and used to identify uniquely a particular file or 
directory on the server. The client does not normally create 
file handles or have any knowledge of the contents of a 
fHandle. As shown in Fig. 1 below, it illustrates the system 
model of FSG. A user on the client machines uses the 
"mount" command to connect to the sever group as the 
general UNIX mount command. The only difference 
between a UNIX mount and the proposed “mount” 
command is that the "host:pathname" parameter is replaced 
by "multicast IP address: pathname".  

 
Fig. 1. System model for FSG 

In Client Server Scenario the following steps are taking 
hold when a client wants to read data from a specific file 
server. This solution was proposed in [1], [3], [5]. 

1) The client generates an I_fHandle for mount point. 
2) The client sends the mount request, carried I_fHandle 

to server group. 
3) Each server in that same group creates a fHandle for 

the mount point. 
4) The mountd process in server sends I_fHandle and 

fHandle to nfsd process. 
5) The mountd process replies "ok" to client. 
6) This I_fHandle is handed over to NFS client. 
7) The client issue RPC calls to server/server group. On 

server side, the server transforms the I_fHandle into 
the real fHandle before executing the request.  

An Overview of File Server Group in Distributed Systems 

Muhammad Zakarya, Izaz Ur Rahman, and Imtiaz Ullah 

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 6, December 2012

730DOI: 10.7763/IJET.2012.V4.473



 

 

 
Fig. 2. Scenario of proposed mount procedure 

Replication is a technique that allows improving the 
quality of distributed services. But still some major issues in 
this design are [2] 
1) How do we select and estimate the metrics for taking 

replication decisions? 
2) When do we replicate a given document? 
3) Where do we place the replicas of a given document? 
4) How do we ensure consistency of all replicas of the 

same document? 
5) How do we route client requests to appropriate replicas? 

In this solution scalability & efficiency is achieved 
through load balancing technique, which enables NFS client 
to switch to a lightly-load server based on the number of 
NFS client's RPC requests for a period of time, making 
these systems more efficient and scalable. In this case every 
server is responsible for advertising its load state to all 
clients. Using these information NFS clients decides their 
connection scenario. 

 

III. ANATOMY OF DISTRIBUTED APPLICATIONS 
A distributed application is built upon numerous layers. 

At the lowest stage, a network connects a group of host 
systems collectively so that they can speak to each other. 
Network protocols like TCP/IP permit the systems send data 
to each other over the network by providing the facility to 
wrap up and address data for delivery to another machine. 
Higher-level services are defined on top of the network 
protocol, for example directory services and security 
protocols. To finish, the distributed application runs on top 
of all these layers, using the mid-level services and network 
protocols in addition to the computer operating systems to 
carry out coordinated tasks across the network. A 
distributed application can be divided into Processes, 
threads, objects and agents [12]. 

 Process is created by describing a progression of 
steps in a programming language, compiling the 
program into an executable form, and run it in the 
operating system.  

 Every process has at least one thread of control. 
Some operating systems hold up the creation of 
multiple threads of control inside a single process.  

 Programs written in object-oriented programming 
languages are made up of objects.  

 Agent is a higher-level system component, defined 
around a particular function or utility. 

In [12], [13], a java programming language is used for 
distributed computing. It is because that java provides some 
functionalities that other object oriented programming 
languages can not. Java is concerned with simplicity, 

reliability and architecture neutrality. Such functionalities 
includes 

Java is a pure OO language, having support for abstract 
interfaces, platform independence, fault tolerance through 
exception handling, network communication, better security 
using two dimensions i.e. secure runtime environment and 
secure remote transactions. Java also has the capability of 
multi threading. So it means that java is a better approach to 
develop distributed applications. 

 

IV.  EXISTING SYSTEMS 
NFS was developed at a time when we weren't able to 

share our drives like we are able to today in the Windows 
environment. It offers the ability to share the hard disk 
space of a big server with many smaller clients. Again, this 
is a client/server environment. While this seems like a 
standard service to offer, it was not always like this. In the 
past, clients and servers were unable to share their disk 
space. 

AFS is another way to move files around the Internet. It 
is a distributed file system that allows hosts to share files 
across local area networks--and bigger networks, such as 
the Internet. AFS, also known as "Andrew File System," 
was originally developed at the Information Technology 
Center at Carnegie-Mellon University.  

Coda is a distributed file system with its origin in AFS2. 
It has many features that are very desirable for network file 
systems. Currently, Coda has several features not found 
elsewhere.  

 disconnected operation for mobile computing  
 is freely available under a liberal license  
 high performance through client side persistent 

caching  
 server replication  
 security model for authentication, encryption and 

access control  
 continued operation during partial network failures 

in server network  
 network bandwidth adaptation  
 good scalability  
 well defined semantics of sharing, even in the 

presence of network failures  

We study different distributed or in other words network 
file systems, like NFS, XFS, LFS, SFS and Coda file 
system. A comparison made in [7] is given in Fig. 3 below. 

The major issue in distributed systems is of security. In 
[8], [10], the authors have briefly described these issues. In 
[7], [11], the authors have discussed file services types, 
replication, consistency semantics for file sharing, 
multicasting, replica management, load balancing i.e. load 
management, load distribution, and group management. 

Another major issue in distributed systems that makes 
these systems a little bit unpractical is inconsistency when 
replication techniques are used for achieving high 
availability and Quality of Service. A file that is shared over 
the distributed system, is opened by more than one user for 
editing, or if a file is updated recently, is there any surety 
that a recent update is visible to another user? So replication 

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 6, December 2012

731



 

 

provides for HA but it has its own shortcomings, which we 
have not included in this paper. In next section we talk 
about our proposed scheme 

 

Fig. 3. Comparison between NFS & CODA 

V. PROPOSED SYSTEMS 
In this paper we have proposed a new idea for achieving 

efficiency, scalability and high availability in distributed 
systems. Below diagram in Fig. 4 shows our System 
Architecture. 

 

 
Fig. 4. System architecture 

 
Fig. 5. Working diagram of proposed solution 

In the proposed idea, a group header is responsible for 
authentication process i.e. makes the design more secure 
and it also works as a controller for the specified group. It 
means that before accessing a specific file server, AS will 
authenticate the client and will check for the file requested 
by the client. If the requested file is there on any file server, 
mounting process as defined in [1], [6], will take hold, 

otherwise connection terminate. 
The idea works fine where high security is required. The 

system is efficient because a client will not try invaluable 
searching. The group header maintains record of all 
replication servers and files they have in their secondary 
storage. Cache mechanism on Group Header will improve 
our idea, in case a file server is down, but still client may 
access these from GH. Our proposed system runs in 
following steps. 

1) The client generates an I_fHandle for mount point 
plus it’s ID for authentication. 

2) The client sends the mount plus authentication 
request, carried I_fHandle, to Group Header/AS. 

3) AS authenticate the client, check its requested file 
in record database, If the file is in its own cache 
the request is handled, otherwise select the file 
server having the requested file. The mountd 
process in server sends I_fHandle to file server. 

4) The mountd process replies "OK" to AS. 
5) This I_fHandle is handed over by AS to NFS client, 

with a request to make RPC call to specific file 
server. 

6) The client issue RPC calls to file server. The 
connection is established. 

For load balancing technique the AS is responsible to 
count the total number of connected clients to a file server. 
So there is no need that all file servers in the group must 
advertise their state periodically as in [1]. Our proposed idea 
is efficient reducing network bandwidth for such 
advertisements. When a client request comes to AS, AS will 
decide keeping connection states of all file servers, and will 
response to the clients, to request another server group. 

Our proposed solution provides the following benefits 
and a single shortcoming i.e. what happens in case of failure 
of a specific Group Header (GH). 
• Local Security Policy 
• Little computation as compared to Global security 

policy 
• User accesses AS / GH, for authenticated & 

authorization check 
• Performance Scalability + QoS + load balancing 
• No need for individual node to check the user identity 
• No Single point of failure, affect some part of the 

Distributed System 
• Local & Quick allocation of resources by AS / GH 
• Headache of AS, that are required to inform all 

corresponding AS in case of new node to any group 
community 

 

VI. CONCLUSION AND FUTURE WORK 
The file server is a key factor to accomplish the data 

sharing essential in distributed systems. The file server is 
perhaps the most heavily used resource of the distributed 
systems and as an outcome; its performance is vital and 
critical to the victory of the system. The explosive growth 
of the Web contents and Internet users has led to increasing 
attention on two major challenges in these systems: 
scalability and high availability of network file system. A 
simple load-sharing mechanism for the NFS client to switch 
to a lightly-load server based on the number of NFS client's 
RPC requests for a period of time, making these systems 

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 6, December 2012

732



 

 

more efficient and scalable. The replication techniques are 
used for improving the availability of Distributed systems in 
FSG. Our proposed solution is more secure & efficient in 
the sense that a client can not search the whole group for a 
specific file, because the group header maintains a huge 
database of all the group members along with their specific 
services they offers. Also load balancing mechanism is 
improved where the group header keeps a record of 
connected users to a specific server. Every group member is 
not required to advertise their state. 

Our future work is to solve the main issue concerning to 
this proposed idea i.e. what about if AS fails or is 
temporarily unavailable? In that case the whole network file 
system will be offline. 

REFERENCES 
[1] F. J. Liu, C. S. Yang, and Y. K. Lee, “Achieving efficient pathname 

LOOKUP in file server group,” IEEE. 
[2] S. Sivasubramanian, M. Szymaniak, G. Pierre, and M. V. Steen, 

“Replication for web hosting systems,” ACM Journal. 
[3] M. M. Leboute and T. Weber, “A reliable distributed file system for 

UNIX based on NFS,” UFRGS, Brazil, IFIP International Workshop 
on Dependable Computing and Its Applications (DCIA 98) January 
12 - 14, 1998, Johannesburg, South Africa. 

[4] F. J. Liu and C. S.Yang, “THE DESIGN AND ANALYSIS OF A 
HIGHLY-AVAILABLE FILE SERVER GROUP,” IEICE 
Transactions on Information and System, vol. 86-E, no.11, pp. 2291-
2299, 2003. 

[5] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H. 
Siegel, and D.C.Steere, “Coda: A highly available file system for a 
distributed workstation environment,” IEEE Transactions on 
Computers, vol. 39, no. 4, pp. 447-459, April 1990. 

[6] C. S. Yang, S. S. B. Shi, and F. J. Liu, “The design and 
implementation of a reliable file server, Newsletter of the Technical 
Committee on Distributed Processing, summer 1997. 

[7] A. S. Tanenbaum and M. V. Steen, Distributed Systems Principles 
and Paradigms, Prentice Hall of India New Delhi – 110001. 

[8] E. Miller and D. Long, “Strong security for distributed file systems,” 
IEEE 2001, pp. 34 – 40. 

[9] G. Couloris, J. Dollimore, and T. Kinberg, Distributed Systems – 
Concepts and Design, 4th Edition, Addison-Wesley, Pearson 
Education, UK, 2001. 

[10] Distributed system security: issues, processes and solutions. [Online]. 
Available: http://www.researchandmarkets.com/reports/705910. 

[11] F. J. Liu and C. S. Yang, “Design and Analysis of highly efficient file 
server group,” Dept of CS & Engg, National Sun Yat-Sen University. 

[12] J. Farley. Java distributed computing. [Online]. Available: Catalog no 
http://oreilly.com/catalog/9781565922068. 

[13] W. Stalling, “Data and computer communications,” Ch. 22, 
Distributed Applications. 
 
 

Muhammad Zakary is working as lecturer in 
computer science department of Abdul Wali Khan 
University Mardan, Pakistan. He is a new researcher 
to the field of new emerging computing technologies 
like Grid, Cloud and Green Computing. He has done 
MS in Computer Science and is interested for a 
doctorate degree in computer engineering. Currently 
he is working on security issues in Grid and Cloud 
computing i.e. distributed systems. He is interested in 

implementing Cloud computing over bioinformatics. He is also working 
and interested to Green the Cloud, Energy Efficient Scheduling for Real-
Time Systems and Smarter Power Grids. 

 
Muazzam Ali Khattak is working as lecturer in 
computer science department of Abdul Wali Khan 
University Mardan, Pakistan. He is a new researcher 
to the field of distributed systems. He is given a fully 
funded overseas PhD scholarship from Abdul Wali 
Khan University. Currently he is pursuing his PhD 
from Brunel International University, London. He is 
also interested in Green Computing. He is the author 
of several research articles in high performance 

computing and bioinformatics. His research topic is Smart Grid 
technology. 

 

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 6, December 2012

733


