
  

 

Abstract—Horizontal vibration of a rigid circular foundation 

rested on the top of a transversely isotropic half-space is 

presented. By using fundamental Green’s functions and 

applying Hankel integral transform in the radial direction and 

Fourier series  the problem may be changed to a system of four 

separate integral equations, which, in turn, are reduced to a 

pair of Fredholm equation of the second kind. Under dynamic 

excitation, the related compliance function are numerically 

evaluated. The present solutions are analytically and 

numerically in exact agreement with the existing solutions for a 

half-space with isotropic material. 

 
Index Terms— Horizontal vibration, rigid foundation, dual 

integral equation, transversely isotropic half -space, green’s 

function. 

 

I.  INTRODUCTION 

In soil-structure interaction problems, the dynamic 

compliance of a foundation on a half-space plays a key role in 

determining the response of the surface structures to dynamic 

loadings, in particular, seismic excitation and machine 

vibration. On the dynamic interaction of a rigid disc with an 

elastic medium, treatments of the surface disc are available as 

in Bycroft [1], Gladwell [2].The results on the axial, torsional, 

horizontal, and rocking response of a surface disc can be 

found in Luco & Westmann [3]. Later, Pak and Saphores [4] 

presented an analytical formulation for the general problem 

of a rigid disc embedded in an isotropic half-space under 

lateral load, which was solely considered earlier. Recently, 

applications of anisotropic media have been increased in 

foundation engineering. Based on the differences between 

isotropic and anisotropic media, wave propagation problem 

in these two media is significantly different. In addition, 

deposited soils show an anisotropic behavior such that in 

application, they need to be modeled as transversely isotropic 

or orthotropic materials. However the analytical treatment of 

the problem of vibrations of a circular disc associated with a 

general anisotropic medium is left unsolved, mainly because 

of the more complicated nature of its constitutive behavior. In 

this class, Selvadurai [5] studied rigid disc inclusion in a 

transversely isotropic full-space for different boundary 

conditions. Recently, Rahimian et al. [6] studied the 

Reissner–Sagoci problem for a transversely isotropic 

half-space. The main concern of the present work is the 

horizontal vibration of a rigid circular disc on a transversely 

isotropic half space. It is particularly important in the seismic 
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design of structures, because generally it is the horizontal 

component of earthquake excitation that governs the seismic 

response. The coupled partial differential equations are 

uncoupled with the use of potential functions introduced by 

Eskandari-Ghadi et al. [7]. Khojasteh et al. [8] obtained 

fundamental Green’s functions for a transversely isotropic 

elastic half-space subjected to an arbitrary, time-harmonic, 

finite, buried source. Numerical evaluations for various 

transversely isotropic materials along with computed 

functions are graphically illustrated in order to show the 

effect of different material anisotropy. This rigorous study 

can lead to more reliable benchmarks for broadly used 

numerical studies which may be used as a rational basis for 

developing approximate and more advanced treatments. 

 

II.    PROCEDURE FOR MATHEMATICAL FORMULATIONS 

Consider a rigid massless disc of radius a on a 

homogeneous transversely isotropic, elastic half-space. A 

prescribed time-harmonic horizontal movement, Δ eiωt, with 

Δ and ω, being the amplitude and circular frequency of the 

motion, respectively, is considered for the disc. A relaxed 

treatment of this mixed boundary-value problem can be 

stated in terms of the components of the displacement vector 

u and the Cauchy stress tensor σ as follows:    

   𝑢𝑟 𝑟, 𝜃, 0 = ∆ cos 𝜃 𝑒𝑖𝜔𝑡 , 

   𝑢𝜃 𝑟, 𝜃, 0 = −∆ sin 𝜃 𝑒𝑖𝜔𝑡 ,                     (1) 

   𝑟 < 𝑎   
 

   𝜍𝑧𝑖 𝑟, 𝜃, 0 = 0,        𝑖 = 𝑟, 𝜃                 𝑟 > 𝑎               (2) 

 

   𝜍𝑧𝑟  𝑟, 𝜃, 0 = −𝑃 𝑟, 𝜃 ,     𝜍𝑧𝜃  𝑟, 𝜃, 0 =
   −𝑄 𝑟, 𝜃              𝑟 < 𝑎                                                             (3) 

 

Here, P(r,θ) and Q(r,θ) denote the components of the 

unknown tangential contact-load distribution acting on the 

disc in the radial and angular directions, respectively. It was 

noticed that all the above equations hold for 0 < 𝜃 < 2𝜋 .For 

a half-space, the foregoing requirements must be appended 

by the regularity condition at infinity that σ →0 as 

 𝑟2 + 𝑧2 → ∞ . The equations of motion for a homogeneous 

transversely isotropic elastic solid in terms of  displacements 

and in the absence of body forces can be found in [8] .In order 

to uncouple this Equations , a set of complete potential 

functions F and χ introduced by Eskandari-Ghadi [7] is used. 

With the aid of F, χ and conditions (3) provide equations 

required for the solution of the ur and uϴ  in terms of the 

transform of the Fourier components Pm and Qm of the 

contact-load distribution (see [8]).In particular, one may 
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verify that the radial and angular displacements  and stress 

can in general be expressed as  

 

 

    𝑢𝑟𝑚 ∓ 𝑖 𝑢𝜃𝑚
=  𝜉{±𝛾1 𝜉, 𝑧 

∞

0

𝑋𝑚 −𝑌𝑚

2c44
+ 𝛾2 𝜉, 𝑧 

𝑋𝑚 +𝑌𝑚

2c44
}𝐽𝑚∓1 𝑟𝜉 𝑑𝜉                                                          (4) 

 

     𝜍𝑧𝑟𝑚 ∓ 𝑖 𝜍𝑧𝜃𝑚
=  𝜉{±𝛱1 𝜉, 𝑧 

∞

0

𝑋𝑚 −𝑌𝑚

2c44
+ 𝛱2 𝜉, 𝑧 

𝑋𝑚 +𝑌𝑚

2c44
}𝐽𝑚∓1 𝑟𝜉 𝑑𝜉                                                     (5) 

Here,  

 

    𝑋𝑚 = 𝑃 𝑚
𝑚−1 𝜉 + 𝑖𝑄 𝑚

𝑚−1 𝜉 , 𝑌𝑚 = 𝑃 𝑚
𝑚−1 𝜉 − 𝑖𝑄 𝑚

𝑚−1 𝜉   
 

In addition  𝛾1 𝜉, 𝑧 , 𝛾2 𝜉, 𝑧 , 𝛱1 𝜉, 𝑧  and  𝛱2 𝜉, 𝑧  can be 

found in [8]. On the account of (1) and the orthogonality of 

{𝑒𝑖𝑚𝜃 }, it can be shown that: 

    𝑋1 = 𝑌−1, 𝑋−1 = 𝑌1,   𝑋𝑚 = 𝑌𝑚 = 0   𝑚 ≠ ±1                (6) 

By recourse to (4, 5), the remaining four conditions of the 

mixed boundary-value problem can thus be reduced to 

 
1

𝜉
{ 𝛤 1(𝜉)

∞

0
𝑋(𝜉) + 𝛤 2(𝜉)𝑌(𝜉)}𝐽0 𝑟𝜉 𝑑𝜉 = 𝛥 𝑟 < 𝑎      (7) 

 

 
1

𝜉
{ 𝛤 2(𝜉)

∞

0
𝑋(𝜉) +  𝛤 1(𝜉)𝑌(𝜉)}𝐽2 𝑟𝜉 𝑑𝜉 = 0      𝑟 < 𝑎            (8) 

 

      𝑋(𝜉)
∞

0
𝐽0 𝑟𝜉 𝑑𝜉 = 0    𝑟 > 𝑎                                                     (9) 

 

     𝑌(𝜉)
∞

0
𝐽2 𝑟𝜉 𝑑𝜉 = 0      𝑟 > 𝑎                                                  (10) 

 

in which: 

 
    𝛤 1 𝜉 = (𝛾1 𝜉, 0 + 𝛾2 𝜉, 0 )𝜉 , 

    𝛤 2 𝜉 = (𝛾2 𝜉, 0 − 𝛾1 𝜉, 0 )𝜉, 

    𝑋 𝜉 =
𝑋1𝜉

2c44
 ,     𝑌 𝜉 =

𝑌1𝜉

2c44
  

 

  𝛤 1 𝜉  and 𝛤 2 𝜉  have the properties that: 

   𝑙1 = lim𝜉→∞  𝛤 1 𝜉 =
c33 ( s1−s2 2 s1+s2 +s0 s1

2+s2
2 )−2s0(c13 +2c44 )

c33 s0 s1+s2  s1−s2 2                                              (11) 

 

   𝑙2 = lim
𝜉→∞

 𝛤 2 𝜉 =
c33  s1−s2 2 s1+s2 −s0 s1

2+s2
2  +2s0(c13 +2c44 )

c33s0 s1+s2  s1−s2 2                                                      (12) 

 

In the above equations, s1 and s2 are the roots of the 

following equation, which in view of the positive definiteness 

of the strain energy, are not zero or pure imaginary numbers 

 

 𝑐33𝑐44𝑠
4 +  𝑐13

2 + 2𝑐13𝑐44 − 𝑐11𝑐33 𝑠
2 + 𝑐11𝑐44 = 0           (13) 

 

In addition, cij is the elasticity constants of the solid. 

III. REDUCTION OF SYSTEM OF DUAL INTEGRAL EQUATIONS 

With the aid of Sonine's integrals [9], the system of 

coupled dual integral equations in (7-10) can alternatively be 

expressed as: 

 

 

    
1

 𝜉
  (1 +  𝐻 1 𝜉  

∞

0
𝑋(𝜉) +

𝑙2

𝑙1
(1 −  𝐻 2(𝜉))𝑌(𝜉)}𝐽

−
1

2

 𝑟𝜉 𝑑𝜉 = 𝛿 
2

𝜋𝑟
                𝑟 < 𝑎                                         (14) 

 

    
1

 𝜉
  (1 −  𝐻 2 𝜉  

∞

0
𝑋(𝜉) +

𝑙1

𝑙2
(1 +  𝐻 1(𝜉))𝑌(𝜉)}𝐽3

2

 𝑟𝜉 𝑑𝜉 = 0                            𝑟 < 𝑎                                         (15) 

  

    
1

 𝜉
𝑋(𝜉)

∞

0
𝐽
−

1

2

 𝑟𝜉 𝑑𝜉 = 0                                                         𝑟 > 𝑎                                        (16) 

 

    
1

 𝜉
𝑌 𝜉 

∞

0
𝐽3

2

 𝑟𝜉 𝑑𝜉 = 0                                                         𝑟 > 𝑎                                       (17) 

 

where: 

  𝐻 1 𝜉 =
 𝛤 1 𝜉 

𝑙1
− 1 ,        𝐻 2 𝜉 = 1 −

 𝛤 2 𝜉 

𝑙2
  ,          𝛿 =

∆

𝑙1
             

 

for further reduction, it is useful to define a function  θA  and θB  through  

 

     𝜃𝐴 𝑟 =     
𝜋𝑟

2
 

1

 𝜉
𝑋 𝜉 

∞

0
𝐽
−

1

2

 𝑟𝜉 𝑑𝜉, 𝜃𝐵 𝑟 =     
𝜋𝑟

2
 

1

 𝜉
𝑌 𝜉 

∞

0
𝐽3/2 𝑟𝜉 𝑑𝜉                𝑟 < 𝑎                                (18) 

 
        𝜃𝐴 𝑟 = 𝜃𝐵 𝑟 =  0                                                𝑟 > 𝑎                

 

By virtue of (18) and some recurrence relations between 

Bessel functions of different orders, the governing system of 

coupled dual integral equations can be reduced to a pair of 

Fredholm integral equations of the second kind  
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        𝜃𝐴 𝑟 +
𝑙2

𝑙1
  

𝜃𝐵 𝜌 

𝜌

𝑎

𝑟
𝑑𝜌 − 𝜃𝐵 𝑟  +  𝐾𝐴𝐴(𝑟, 𝜌)

𝑎

0
𝜃𝐴 𝜌 𝑑𝜌 +  𝐾𝐴𝐵(𝑟, 𝜌)

𝑎

0
𝜃𝐵 𝜌 𝑑𝜌 = 𝛿                             (19) 

 

       𝜃𝐵 𝑟 +
𝑙2

𝑙1
 

1

𝑟
 𝜃𝐴 𝜌 

𝑟

0
 𝑑𝜌 − 𝜃𝐴 𝑟  +  𝐾𝐵𝐵(𝑟, 𝜌)

𝑎

0
𝜃𝐵 𝜌 𝑑𝜌 +  𝐾𝐵𝐴(𝑟, 𝜌)

𝑎

0
𝜃𝐴 𝜌 𝑑𝜌 = 0                             (20) 

 

        𝐾𝐴𝐴 𝑟, 𝜌 =  𝑟𝜌   𝜉 𝐻 1 𝜉 
∞

0
𝐽
−

1

2

 𝑟𝜉 𝐽
−

1

2

 𝜌𝜉 𝑑𝜉                                                                  (21) 

 

        𝐾𝐵𝐵 𝑟, 𝜌 =  𝑟𝜌   𝜉 𝐻 1 𝜉 
∞

0
𝐽3

2

 𝑟𝜉 𝐽3

2

 𝜌𝜉 𝑑𝜉                                                                      (22) 

 

       𝐾𝐴𝐵 𝑟, 𝜌 = 𝐾𝐵𝐴 𝜌, 𝑟 = −
𝑙2

𝑙1
 𝑟𝜌   𝜉 𝐻 2 𝜉 

∞

0
𝐽
−

1

2

 𝑟𝜉 𝐽3

2

 𝜌𝜉 𝑑𝜉                                                 (23) 

 

By utilizing similar relations like Pak and saphores [4] the 

contact-load distribution in angular and radial directions can 

be evaluated directly in terms of the solution of the Fredholm 

equation. By Projecting the radial and angular contact-load 

distributions P and Q onto the Cartesian frame, one finds that 

the rectangular components of the force F required to achieve 

the disc displacement Δ are given by 

 

   𝐹𝑥 = 8c44  𝜃𝐴(𝜌)
𝑎

0
𝑑𝜌                             (24) 

 

Fy is identically zero as can be expected from the 

symmetry of the problem. Also, It can be rewritten in terms of 

the horizontal impedance which is defined as: 

 

   𝐾𝐻𝐻 =
𝐹𝑥

c44𝑎∆
                                           (25) 

 

It may also express into the dynamic horizontal 

compliance, which is the ratio of Δ to Fx.  

 

IV. NUMERICAL RESULTS AND DISCUSSION 

In the previous sections, the Fredholm integral equations 

were expressed in terms of θ. it is not easy to deal with the 

dual integral equations analytically. For this reason, 

numerical solutions of the integral equation can be obtained 

by standard   quadrature methods. On tackling with (21-23) , 

some special considerations are needed due to the presence of 

singularities within the range of integration including branch 

points. In addition, some functions in 𝛾1 𝜉, 𝑧 , 𝛾2 𝜉, 𝑧  yields 

pole at ξR which corresponds to Rayleigh wave number. The 

numerical results presented here are dimensionless by using a 

non-dimensional frequency as:  𝜔0  = 𝑎𝜔 𝜌𝑠/𝑐44 . In the 

forgoing equations, ρs stands for soil density. To understand 

the effect of anisotropy of the materials on the interaction 

between the two media, several synthetic types of isotopic 

(mat 1) and transversely isotropic materials (mat 3–7) are 

used. The material properties are given in Table 1, where E 

and E′ are the Young’s modules in the plane of isotropy and 

perpendicular to it; ν is Poison’s ratio that characterize the 

effect of horizontal strain on the complementary vertical 

strain; ν′ is the Poisson’s ratio which characterize the effect of 

vertical strain on the horizontal one; and G' is the shear 

modulus for the plane normal to the plane of isotropy. In 

defining these materials, the positive-definiteness of strain 

energy that observe the following constraints for material 

constants cij, have been checked [10] 

 

    𝑐11 >  𝑐12  ,           𝑐11 + 𝑐12 c33 > 2c13
2 ,        c44 > 0                                                              (26) 

 
TABLE I: PROPERTIES OF SYNTHETIC MATERIALS. 

mat E E' G G' ν, ν' c11 c12 c13 c33 c44 c66 

1 5 5 2 2 0.25 6 2 2 6 2 2 

2 10 5 4 2 0.25 14 6 5 7.5 2 4 

3 15 5 6 2 0.25 26 14 10 10 2 6 

4 5 5 2 1 0.25 6 2 2 6 1 2 

5 5 5 2 0.67 0.25 6 2 2 6 0.67 2 

6 5 10 2 2 0.25 5.6 1.6 1.8 10.9 2 2 

7 5 15 2 2 0.25 5.5 1.5 1.8 15.9 2 2 

   
                                                          a)                                                                             b)  

Fig. 1. Compliance function in terms of dimensionless frequency for different isotropic and transversely isotropic materials .a)mat1,6-7 b) mat2-5. 
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The impedance/compliance function is a very significant 

parameter in the subject of soil–structure-nteraction. Figure 

1a shows the real and imaginary parts of the horizontal 

compliance function obtained from the present study and the 

respective results from Luco & westmann [3] for a high range 

of dimensionless frequency. There exists an excellent 

agreement between these two results, as seen in this figure, 

which demonstrates the accuracy of the numerical evaluation 

in different steps.Also, this figure contains tow transversely 

isotropic materials with different E' value, it was deduced 

from this figure that by increasing E' value, results similar to 

material 1 (isotropic material) were obtained e.g. E' value has 

only minor effects on form of compliance function.Figures 

1b provide the horizontal compliance function in terms of 

dimensionless frequency for rest of transversely isotropic 

materials(mat 2-5). The horizontal compliance function for 

the rigid plate is affected by changing the E and G' value.It 

was worth mentioning that Dynamic compliances computed 

in the present study are in the dimensionless form 𝐶𝐻𝐻(𝜔0)/
𝐶𝐻𝐻(𝜔0 = 0)  where 𝐶𝐻𝐻(𝜔0 = 0)  is the horizontal  

compliance of a rigid circular disc on an transversely isotopic 

half-space under static loading. 

 

V.    CONCLUSION 

One of the key steps in the dynamic analysis of foundation 

soil system under seismic or machine type loading is to 

determine the dynamic impedance/compliance functions 

associated with rigid foundations.  in the recent decade, There 

was demands to model more accurately the mechanical 

behavior of natural  geological deposits as well as many 

composites and engineered materials which often are 

transversely isotropic. Hence, in this paper a mathematical 

formulation for the horizontal vibration of a rigid circular 

disc on a transversely isotropic half space has been presented. 

To facilitate its direct engineering applications as well as its 

use as a Green's function in other boundary-value problems, 

the dynamic horizontal compliances for different transversely 

isotropic materials are included. Also, it was evident that 

between material coefficients in transversely isotropic media, 

the shear modulus for the plane normal to the plane of 

isotropy and the Young’s modules in the plane of isotropy 

would have the most significant effect on lateral load transfer 

process.  
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