
  

  
Abstract—Human ear is perhaps one of the relatively 

promising features that can be used in biometrics applications. 
Hence, the aim of this work is to assess the validity of using 
human ear recognition in real biometrics applications. A 
proposed system for ear recognition is presented and 
experimentally tested. The system employs equiangular ear 
signatures. Cross Correlation Function (CCF) is employed in 
the system to find best angular match and apply angular shift to 
ear-signatures accordingly. Image scene size problem is 
overcome by using normalised values of the ear-signatures. 
Re-arrangements of the ear-signature data set is applied using 
equiangular steps where equally stepped size angles are used to 
acquire signature data set of same and fixed length array points, 
hence, comparison and matching of point to point can be readily 
applicable. Two parameters, namely error energy and 
Pareto’s-based indicator, to assess the signature similarities are 
proposed and used in the investigation. Results showed the 
validity of the approach and encourage the adopting of the 
developed technique in real applications. 
 

Index Terms—Ear biometrics, ear matching, human ear 
recognition.  
 

I. INTRODUCTION 
The use of biometrics has become a core research area due 

to the growing demand and the need of reliable techniques 
that are readily applicable in real applications. One of the 
promising biometric features is the human ear. This is due to 
that [1]: 

• Human ear has a dedicated shape for each individual. 
• Human ears are less affected by aging and muscle 

tension/relaxation compared to human faces. 
It has been stated that the importance of ear in establishing 

identity was realised by Imhofer in the year 1906 [2]. Today, 
possible application areas for the use of human ear as a 
biometric feature may include security, surveillance, and 
other civil oriented applications. 

Detecting of ear shape from an image of arbitrary 
orientation of human face is a challenging problem due to 
that ear images can vary in appearance from different 
viewing angles and illumination conditions. Recognition and 
matching of detected ear shapes present additional 
challenging task. In spite of the already conducted research 
work, there is a need to develop techniques with better 
invariance, perhaps more model based, and to seek out high 
speed recognition techniques to cope with the very large 
datasets that are likely to be encountered in practice [3]. 
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Investigation of human ear detection and recognition is 
gaining more research attention in recent years [4]. Different 
techniques for human ear detection and recognition were 
attempted by a number of researchers e.g. [5-15], however, 
the conducted literature review strongly assures that although 
a number of attempts were made more research 
investigations are required to develop reliable and more 
robust techniques in the areas of detection, feature extraction 
and recognition in order to facilitate the implementation of 
ear biometrics in real applications. In this work a system for 
ear recognition is proposed, experimentally tested and 
evaluated. 

Fig. 1 presents the anatomy of the human ear. It should be 
noted that the ear does not have a completely random 
structure but it is made up of standard features [3]. 

 
Fig. 1. Human ear anatomy.. 

 

II. THE PROPOSED SYSTEM FOR HUMAN EAR RECOGNITION 
The block diagram of the proposed and developed system 

is shown in Fig. 2. The system assumes that the ear is clearly 
visible to the vision system with adequate resolution. In 
addition the system uses a fixed camera position and aims to 
overcome the problems associated with image size as well as 
angular orientation due to “Pitch” angular movement. 
Handling of problems associated with “Yaw” and “Roll” 
angular movements are not included in the current study, 
however, planned for future work. The system aims to 
recognise and measure the similarity of ear image with a 
reference based on the outer rim and lobe as these two ear 
features form the outer profile of the ear shape. 

The system starts by loading image data and acquire closed 
loop contour of the ear shape using a traditional method of 
feature extraction presented in [16]. Centroid of all boundary 
points is then calculated:  ܺ஼௘௡௧௥௢௜ௗ = ଵே   ∑    xn

N
n=1  and  ஼ܻ௘௡௧௥௢௜ௗ = ଵே      ∑ ௡ே௡ୀଵݕ      

where N is the total number of points in the contour array, xn 
and  ݕ௡  are the coordinates of point n in the array, and 
(ܺ஼௘௡௧௥௢௜ௗ , ஼ܻ௘௡௧௥௢௜ௗ ) is the centroid coordinates. 
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Fig. 2. Proposed human ear biometric system. 

Knowing that the polar coordinates of object contours are 
the contour signatures, the next step in the process is to 
convert the contour point coordinates, (for both the reference 
and the image under investigation contours), into polar (ݎ,  (ߠ
presentation. This can be achieved by application of: 

௡ߠ  = tanିଵ ቀ௬ି௒಴೐೙೐೟ೝ೚೔೏௫ି௑಴೐೙೐೟ೝ೚೔೏ቁ                       (1) 

௡ݎ          = ඥ(ݔ−ܺ஼௘௡௧௥௢௜ௗ)ଶ  + −ݕ) ஼ܻ௘௡௧௥௢௜ௗ)ଶ                (2) 

The outcome from this process concludes arrays having N 
points. However, the number of points N in each array differs 
according to the size of the ear, image resolution, digitization 
limitation, as well as other influences related to camera 
distance from the object. Hence because of the different array 
lengths, point to point array comparison cannot be applied.  

To overcome such drawback, a re-calculation of the polar 
coordinates of contour points using unit steps of angle θ is 
required to be carried out by interpolation, therefore equal 
length data from different size arrays are acquired; step 
angles can be selected to suit the image resolution and the 
required accuracy. In the current work the step size angle is 
set to 1o hence each contour signature length is 360 points. 

The problem of image size is overcome by normalising the 
radii components of the contour polar coordinates: 

௡௢௥௠೙ݎ   = ௥೙ ௥೘ೌೣ   for   n=1, 2, 3, ..., N               (3) 

where  ݎ௠௔௫ is the maximum value of all radii components in 
the signature array of the contour.  

Next step of the process is to eliminate the angular 
orientation problem. This is achieved by application of cross 
correlation and re-arranging signature data according to the 
maximum value of correlation outcome and its angle.  

Having two sets of N elements signature radii arrays 
namely the reference R1(n) and the signature under 
investigation R2(n), the cross correlation function CCF can be 
defined as: 

(݇)ܨܥܥ  = ∑ ܴଵ(݊)ே௡ୀଵ × ܴଶ(݊ + ݇)                (4)  

where ݇ is the shift value and has the values ݇ =1,2,3,...,N. 
The maximum value of ܨܥܥ(݇) presents the best match 

between the two sets of signature radii data which occur at ݇ 
elements shift of the ܴଶ set of data.  

One advantage gained from the closed loop contours of the 

ear is its periodicity over each complete cycle, hence:  

               ܴଵ(ܰ + ݇) = ܴଵ(݇) and  ܴଶ(ܰ + ݇) = ܴଶ(݇) 

 where k=1,2,3,...,N.  
Therefore the computation of the CCF will imply equal set 

of iterative multiplication for k=1 to k=N. 
Based on the outcome from the application of the CCF, the 

data set ܴଶ can now be re-arranged as follow: 

         ܴതଶ(݊) = ܴଶ(ܰ + ݊ − ത݇) for n=1,2,3,...,N            (5) 

where ത݇  is the angular shift value that produce maximum 
value of CCF. 

Once this stage is completed the two signature radii data 
sets become ready to be implemented in point by point 
comparison. Hence a deviation error, signature comparison 
error, to record the output of the comparison process can be 
defined as: 

(݊)ܧ                = |ܴଵ(݊) − ܴଶ(݊)| for n=1,2,3,...,N         (6) 

The output ܧ(݊) from the comparison process can be then 
statistically analysed with proper selection of threshold value 
levels to decide whether the two compared sets are positively 
matched or unmatched. One parameter that could be used to 
measure the similarity of compared signature pairs is the 
“error energy” parameter which is defined as the area under 
the acquired error curve. In other words the error energy 
parameter ܧ௘௡௘௥௚௬ is: ܧ௘௡௘௥௚௬ = ∑ ே௡ୀଵ(݊)ܧ                       (7) 

Never the less, Pareto's "vital few and trivial many" 80/20 
rule may also be applied to calculate the error energy of the 
largest 20% of the resulting ܧ(݊)  computed according to 
Equation 6. This can be carried out by re-arranging the 
elements of ܧ(݊) from largest to smallest and summing the 
error values associated with the first 20% of the elements; the 
20% of the conducted experiment in this article is 72 
elements. 

In reality, the successfulness of these measures depends on 
whether a distinguished threshold value can be identified for 
each to properly classify matched and unmatched pairs of ear 
profile signatures. 
 

III. RESULTS AND DISCUSSIONS 
A large number of experiments were conducted using 

different sets of images to assess the developed methodology. 
Fig. 3 presents examples of some images used in the 
investigation. Images S1 to S9 presented in the Figure are 
extracted from the USTB database [17], whereas images S10 
to S18 in the same Figure are samples from a set of human ear 
images acquired by the authors of this article. These images 
show human ears of different persons which are acquired 
from various orientations and scene sizes having an average 
image resolution of 400x400 pixels. 

The proposed system is implemented to acquire the closed 
loop contour of the outside ear shape together with the 
generation of the boundary polar coordinates, (profile 
signature), and boundary centroid. An angular step size of 1o 
is used to acquire the radii set of the profile signature, hence 
each signature include a set of 360 radii values. 
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Fig. 3. Human ear image examples. 

Fig. 4 provides examples of the resulting profile signatures 
for the image samples given in Fig. 3. It could be observed 
from this Figure that signature profile of images (S1, S2, and 
S3), (S7, S8, and S9), and (S13, S14, and S15) sets have 
considerably similar angular arrangements of their patterns 
that minimum angular shift could be noticed. However 
signature profile of (S4, S5, and S6), (S10, S11, and S12), 
and (S16, S17, and S18) sets of images clearly demonstrate 
larger angular shift arrangement of their patterns. This is due 
to the angular orientation of the ear within each image sample, 
hence application of cross correlation to find best angular 
match of the signature profile would help to enable the 
re-arrangements of the signature radii sets to establish best 
match between each signature profile pairs.  

 

Fig. 4. Examples of acquired ear profile signatures. 

Examples of CCF results are given in Fig. 5.a and 5.f for 
the image pairs S9andS14 and S14andS15 respectively. The 
resulting best angular correlation between S9andS14 is found 
to be at 359o (-1o) whereas it is found to be at 27o (-333o) for 
the signature pair S14andS15. Sample results of angular shift 
process of the signature profiles to match best correlation are 

given in Figs. 5.b and Fig. 5.g for the same pairs respectively. 
Reconstructions of the ear profiles at their best correlated 
positions are represented in Fig. 5.c and 5.h respectively. 
Acquired error values ܧ(݊) using Equation 6 for the two 
comparisons are plotted in Fig. 5.d and Fig. 5.i where the 
total error energy, (i.e. the area under the curve), is (21.979) 
in case of comparing S9andS14 which is larger in value than 
S14andS15 signature comparison due to the differences in 
the compared profile signatures. In the case of S14andS15 
comparison, the computed error energy value is (9.445). 
However to reach a concrete decision of whether the two 
signature pairs are of the same ear a valid threshold value of 
the computed error energy to classify signature pairs must 
exist and be found.  

 
Fig. 5.  Example results of ear matching. 

Hence a number of tests were conducted to verify the 
existence of such threshold value. Table I lists examples of 
acquired results from several conducted comparisons. A 
threshold value of 11 is found to be valid for the error energy 
parameter; therefore, this value is used in the decision 
making.  However, it can be observed that although a valid 
decision is gained from the proposed procedure due to the 
proper selection of the error energy threshold value, the 
acquired error energies, in some comparison cases, are close 
to the selected threshold value from both sides. This dictates 
that the use of error energy parameter alone in the decision 
process is a critical issue and may lead, in some cases, to false 
identification/classification of human ears. In order to 
enhance the reliability of the results, another key indicator is 
introduced which is based on histogram analysis of resulting 
error values. Fig. 5.e and 5.j show constructed histograms of 
two conducted comparisons, namely S9andS14 and 
S14andS15 respectively. The error values in each array are 
distributed into a number of bins. A range of 0.015 is selected 
for each bin in the conducted trials. It is obvious from these 
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figures that the resulting histograms while comparing 
different pairs of ear signatures take wider distribution hence 
bin heights in this case are of small heights, whereas in the 
case of comparing similar ear profiles the number of 
histogram bins are less in number and these bins are 
characterised by more height which indicate less value of 
error resulting from the comparison process.  However 
reliable numerical measures or threshold values cannot be 
always identified. Hence, an alternative indicator based on 

Pareto’s principle is investigated. The sum of error values 
resulting from the highest 20% of elements in each error 
array is calculated and included in Table I. It is evident from 
these results that based on Pareto’s principle a valid threshold 
value could be found; in the conducted tests the threshold 
value based on Pareto’s principle is found to be 4.5. However, 
to ensure a definite separation between match/un-match cases 
both the error energy parameter and Pareto’s-based indicator 
can be used together to provide precise matching decision. 

 
 

TABLE I: EXAMPLE OF ACQUIRED EAR RECOGNITION RESULTS 
Ear Signatures 
Compared Comments on the Compared Signatures Best Match 

Angle 
Error Energy ࢟ࢍ࢘ࢋ࢔ࢋࡱ 

Pareto's 20% 
sum of errors 

Decision based on 
 Acquired  Results 

S2 with S2R Same ear with one of which rotated by 90o 90o 3.142 1.711 Positively matched 

S10 with S11 Same ear one of which is rotated. 38o 5.245 2.675 Positively matched 

S14 with S13 Same ear one of which with smaller view size and slightly 
rotated. 356o 5.702 2.597 Positively matched 

S11 with S12 Same ear one of which with smaller view size and rotated. 22o 6.475 2.954 Positively matched 

S17 with S18 Same ear one of which with smaller view size and rotated. 99o 8.511 3.588 Positively matched 

S16 with S18 Same ear one of which with smaller view size and rotated. 29o 8.733 3.965 Positively matched 

S10 with S12 Same ear one of which with smaller size view and rotated. 61o 8.765 4.103 Positively matched 

S16 with S17 Same ear one of which with smaller view size and rotated. 290o 9.016 5.329 Positively matched 

S14 with S15 Same ear one of which with smaller view size and slightly 
rotated. 359o 9.445 4.936 Positively matched 

S13 with S15 Same ear one of which with smaller view size and slightly 
rotated. 2o 10.252 3.998 Positively matched 

S14 with S2 Different ears though having close ear contours and one of 
them is rotated 25o 11.397 5.104 Different ears 

S14 with S3 Different ear signatures and one of them is rotated 24o 13.409 6.149 Different ears 

S14 with S5 Different ear signatures and one of them is rotated 33o 13.573 6.179 Different ears 

S4 with S7 Different ear signatures 8o 13.634 6.211 Different ears 

S14 with S18 Different ears, one is right hand side whereas the other is left
hand side and rotated 188o 14.499 6.437 Different ears 

S14 with S17 Different ears, one is right hand side whereas the other is left
hand side and rotated 88o 14.975 6.499 Different ears 

S14 with S1 Different ear signatures and one of them is rotated 24o 15.178 7.035 Different ears 

S14 with S8 Different ear signatures and one of them is rotated 24o 15.284 7.057 Different ears 

S14 with S16 Different ears, one is right hand side whereas the other is left
hand side and rotated 159o 16.962 7.149 Different ears 

S1 with S3 Different ear signatures 0o 18.612 8.742 Different ears 

S14 with S9 Different ear signatures and one of them is rotated 27o 21.979 7.593 Different ears 

S14 with S4 Different ear signatures and one of them is rotated 13o 22.286 9.471 Different ears 

S14 with S6 Different ear signatures and one of them is rotated 35o 25.133 11.118 Different ears 

S14 with S7 Different ear signatures and one of them is rotated 21o 25.731 8.818 Different ears 

S14 with S12 Different ear signatures, one is right hand side and the other 
is a rotated left hand side 28o 26.120 10.237 Different ears 

S14 with S11 Different ears, one is right hand side whereas the other is left
hand side and rotated 5o 28.336 11.122 Different ears 

S14 with S10 Different ears, one is right hand side whereas the other is left
hand side and rotated 328o 31.860 12.608 Different ears 

S6 with S9 Considerably different ear signatures 353o 43.183 15.717 Different ears 

 
 

To demonstrate the validity of the system to deal with 
rotated versions of the same ear profile Fig. 6.a show acquired 
signatures of the same ear pair though rotated by 90o. Fig. 6.b 
and 6.c give the resulting CCF and resulting signatures shifted 
to their best matching position. Result error values are plotted 
in Fig. 6.d whereas Fig. 6.e gives the resulting histogram of 
error values. It is evident from these results that this pair of 
signatures are positively matched due to that the resulting 
error energy value is 3.142 and Pareto’s-based indicator is 

1.711 where in both cases the errors are less than the identified 
threshold values. 

Similar results were gained by comparing same ear though 
with different scene size, Fig. 6.f to 6.j. The proposed system 
has successfully distinguished the two signature pairs as of 
the same ear. In this case the resulting error energy is 8.733 
and the resulting Pareto’s-based indicator is 3.965. In both 
cases are less than the identified threshold values. 
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Fig. 6. Example results of ear signature matching. 

 

IV. CONCLUSIONS 
In this work a system is proposed and developed to 

recognise human ears. Its potential is evaluated through large 
number of conducted experiments using different types of 
human ear image data. It is evident from the acquired results 
that the proposed system is a valid technique to recognise and 
classify, with confidence, human ears according to their 
external shape attributes that include ears’ outer rim and lobe. 
The system has showed to successfully overcome several 
problems associated with shape matching. In particular, polar 
coordinate-based signature has beneficially overcome the 
problems associated with shape orientations, the use of 
normalised radii has led to overcome the problems associated 
with image size and camera distance, and most importantly, 
the suggested use of equiangular radii data approach to 
re-generate the boundary signature has overcome the 
problems associated with varying length of boundary points in 
the image data of each signature, hence advantageously 
enabled the application of point by point data matching of 
signature pairs.    

Results associated with ear shape matching using the 
proposed error energy parameter alone showed to yield 
several critical cases where false identification may result if 
the two compared signatures have a relatively similar shape 
profiles, hence the use of an additional error key indicator 
based on Pareto’s analysis has successfully overcome the 
limitations associated with the use of error energy parameter 
alone. 

REFERENCES  
[1] A. Sana, P. Gupta, and R. Purkait, “Ear Biometrics: A New Approach,” 

International Conference on Advances in Pattern Recognition 
(ICAPR), Kolkata, India, 2007. 

[2] R. Purkait, “Ear Biometric: An Aid to Personal Identification,” 
Anthropologist Special volume no. 3, pp.215-218, 2007.  

[3] D. J. Hurley, B. Arbab-Zavar, and M. S. Nixon, “The Ear as a 
Biometric,” 15th European Signal Processing Conference (EUSIPCO 
2007), Poznan, Poland, September 3-7, pp. 25-29, 2007.  

[4] D. Frejlichowski and N.Tyszkiewicz, “The West Pomeranian 
University of Technology Ear Database – A Tool for Testing Biometric 
Algorithms,”  A. Campilho and M. Kamel (Eds.): ICIAR 2010, Part II, 
Lecture Notes in Computer Science, vol. 6112, pp. 227–234, 2010. 

[5] M. Ali, M. Y. Javed, and A. Basit, “Ear Recognition Using Wavelets,” 
Proceedings of Image and Vision Computing New Zealand, pp. 83–86, 
2007. 

[6] F. Saleh, A. Hamdy, and F. Zaki, “Hybrid Features of Spatial Domain 
and Frequency Domain for Person Identification through Ear 
Biometrics,” Pattern Recognition and Image Analysis, vol. 19, no. 1, 
pp. 35–38, 2009. 

[7] S. Ansari and P. Gupta, “Localization of Ear Using Outer Helix Curve 
of the Ear,” IEEE Computer Society, Proceedings of the International 
Conference on Computing: Theory and Applications (ICCTA'07), 
0-7695-2770-1/07, 2007. 

[8] L. Nanni and A. Lumini, “A multi-matcher for ear authentication,” 
Pattern Recognition Letters vol. 28, 2007, pp. 2219–2226.  

[9] A. P. Yazdanpanah and K. Faez, “Normalizing Human Ear in 
Proportion to Size and Rotation,” D. S. Huang et al. (Eds.): ICIC 2009, 
LNCS 5754, pp. 37–45, Springer-Verlag Berlin Heidelberg, 2009. 

[10] M. Choraś, “Ear Biometrics Based on Geometrical Feature Extraction,” 
Electronic Letters on Computer Vision and Image Analysis vol. 5, no. 3, 
pp. 84-95, 2005. 

[11] S. Attarchi, Ka. Faez, and A. Rafiei, “A New Segmentation Approach 
for Ear Recognition,” J. Blanc-Talon et al. (Eds.): ACIVS 2008, LNCS 
5259, pp. 1030–1037, Springer-Verlag Berlin Heidelberg, 2008. 

[12] K. Chang, K. W. Bowyer, S. Sarkar, and Barnabas Victor, 
“Comparison and Combination of Ear and Face Images in 
Appearance-Based Biometrics,” IEEE Transactions on Pattern 
Analysis and Machine Intelligence, vol. 25, no. 9, pp.1160-1165, 
September 2003. 

[13] P. Yan and K. W. Bowyer, “Biometric Recognition Using 3D Ear 
Shape,” IEEE Transactions on Pattern Analysis and Machine 
Intelligence, vol. 29, no. 8, pp. 1297-1308, August 2007. 

[14] S. Cadavid and M. Abdel-Mottaleb, “3-D Ear Modeling and 
Recognition from Video Sequences using Shape from Shading,” IEEE 
Transactions on Information Forensics and Security, vol. 3, no. 4, 
pp.709-718, December 2008.  

[15] H. Chen and B. Bhanu, “Human Ear Recognition in 3D,” IEEE 
Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 
4, pp. 718-737, April 2007. 

[16] G. Al-Kindi, R. Baul, and K. Gill, “An Example of Automatic Two‐
Dimensional Component Inspection Using Computer Vision,” Proc 
lnstn Mech Engrs, Part. B. Journal of Engineering Manufacture, vol. 
205, pp.71-83, 1991. 

[17] Ear Recognition Lab. at the University of Science and Technology 
Beijing (USTB) http://www1.ustb.edu.cn/resb/en/index.htm. 

 
 

Ghassan A. Al-Kindi was born in Baghdad, Iraq in 
1963. He received the BSc in mechanical engineering 
in 1985 from the University of Technology (UOT), 
Iraq and received the PhD in mechanical engineering 
in 1990 from the University of Leeds, UK. He started 
his long time experience on image processing and 
pattern recognition in the 1986. Since then he 
published numerous number of research articles and 
supervised more than 40 PhD and MSc theses. One of 

his published articles won the 1989 Joseph Whitworth prize from the 
Institution of Mechanical Engineers IMechE, UK. He has also been honored 
with several national medals in recognition of his high distinct research 
outcome. Dr Al-Kindi is currently working as an Associate Professor at 
Sohar University, Oman. He is also an adjunct fellow to Queensland 
University, Australia. For the period 2005-2008 he became an honorary 
research associate to Monash University, Australia. He is currently an 
editorial board member of the International Journal of Image Processing IJIP 
and Journal on Image and Video Processing IJIVP. Dr Al-Kindi is a senior 
member of the IACSIT (International Association of Computer Science and 
Information Technology). He is also a member of several other engineering 
bodies and associations. During his last 26 years of research and industrial 
work, he has successfully handled and conducted many funded projects. The 
most recent of these is in the area of the development of vision system for 

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 3, June 2012

334



  

CNC machines to overcome their blindness; a project that is funded by Qatar 
National Research Fund QNRF. 
 

 

Brian C. Lovell was born in Brisbane, Australia in 
1960. He received the BEng in electrical 
engineering in 1982, the BSc in computer science in 
1983, and the PhD in signal processing in 1991: all 
from the University of Queensland (UQ). Professor 
Lovell is Research Leader in National ICT Australia 
and Research Director of the Security and 
Surveillance Research group in the School of ITEE, 
UQ. He was President   of   the   Australian   Pattern 

Recognition Society 1995-2005, Senior Member of the IEEE, Fellow of the 
World Innovation Forum, Fellow of the IEAust, and voting member for 
Australia on the governing board of the International Association for Pattern 
Recognition since 1998. Professor Lovell was Technical Co-chair of 
ICPR2006 in Hong Kong (Computer Vision and Image Analysis), and 
Program Co-chair of ICPR2008 in Tampa, Florida. He serves on the 
Editorial Board of Pattern Recognition Letters and reviews for many of the 
major journals in the fields of Computer Vision and Pattern Recognition. In 
March 2005, he was awarded Number 1 author at UQ with almost 35,000 
copies of his papers downloaded from the UQ library archive. His research 
interests are currently focused on intelligent surveillance techniques, optimal 
image segmentation, real-time video analysis, and face recognition. 

 

IACSIT International Journal of Engineering and Technology, Vol. 4, No. 3, June 2012

335




