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Abstract—An intrinsic disease where blood clots form in a 
deep vein in the body is known as Deep Venous Thrombosis 
(DVT). Since DVT has a high mortality rate, predicting it early 
is important.  Decision trees are simple and practical prediction 
models but often suffer from excessive complexity and can even 
be incomprehensible.  Here a genetic algorithm is used to 
construct decision trees of increased accuracy and efficiency 
compared to those constructed by the conventional ID3 or C4.5 
decision tree building algorithms.  Experimental results on two 
DVT datasets are presented and discussed.  

Index Terms-Decision Trees, DVT and Genetic Algorithm.  

I. INTRODUCTION

Deep Venous Thrombosis (DVT) is the formation of a 
thrombus (blood clot) in a deep vein in the body, typically in 
a lower leg or thigh.  Figure 1 (a) shows a DVT patient with a 
painful and swollen leg.  DVT is a disease of intrinsic origin 
and of great threat because it can occur without symptoms 
and have a high mortality rate [1]. While good medical 
technologies, such as Duplex Ultrasonography examination 
shown in Fig. 1 (b), can diagnosis DVT accurately, over two 
million DVT patients do not benefit from such technologies 
[2] .  

To reduce the risk and to ensure that more patients can be 
treated before complications such as pulmonary embolism
(PE) occurs predicting a DVT based on simple symptoms and 
medical history becomes critical.  The prediction model must 
be as simple as possible. 

Decision trees approximate discrete-valued target 
functions as trees and are widely used practical methods for 
inductive inference in knowledge discovery and decision 
support systems because of their natural and intuitive 
paradigm to classify a pattern through a sequence of 
questions [3]. Algorithms for constructing decision trees 
such as ID3 [3-5] and C4.5 [6] often use heuristics to find a 
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shorter tree. Nevertheless, finding efficient and accurate 
decision trees is a difficult optimization problem [7, 8].  

(a) Swollen leg due to DVT (b) DVT examination 
Fig. 1 Swollen leg and duplex Ultrasonography. 

TABLE I: DVT DATASET ATTRIBUTES
Name  Description  

1 Sex (GN) 0 = female; 1 = male 
2 Age (A6) 0 = age < 60; 1 = age ≥ 60 
3 Diabetes 

(DB) 
0 = normal;  
1 = receiving some treatments 

4 Smoking (SM) 
(SS, SB) 

0 = never smoked;  
1 = active Smoker;  
2 = stopped smoking 

5 Surgery 
(SR) 

0 = never had surgery;  
1 = previous surgery 

6 Pain (PN) 
(LP, RP) 

0 = none; 1 = pain in the leg  
{None, Right, Left, Bilateral} 

7 Swelling 
(SW) 

0 = none;  
1 = swelling in the leg 

8 Chest Pain (CP) 0 = none; 1 = pain in Chest 
9 Cancer (CR) 0 = normal; 1 = positive  
10 Cellulitis (CL) 0 = normal; 1 = positive 
11 Injury (IJ) 0 =none; 1 = previous  injuries 
12 Pulmonary 

embolism (PE) 
0 = never diagnosed;  
1 = previously diagnosed 

13 Congestive heart 
failure (HF) 

0 = never diagnosed;  
1 = previously diagnosed 

14 Obesity (OB) 0 = none; 1 = specified 
15 Accident (AC) 0 = none; 1 = had a fall 
16 Hyperlipidemia 

(LIP) 
0 = never diagnosed;  
1 = previously diagnosed 

17 Cardiac 
Dysrth-ythmia 
(CD) 

0 = normal;  
1 = previously diagnosed 

18 Lymphoproliferat 
disease (LD) 

0 = normal;  
1 = previously diagnosed 

 DVT 0 =  negative for DVT;  
1 = positive for DVT 

This paper employs a method of constructing binary 
decision trees using a genetic algorithm as previously 
suggested [8]. Two data sets were extracted from the 
databases in the Montefiore Medical Center Vascular 
Laboratory and the general patient registry.  Then, selected 
attributes were converted into binary attributes, and shorter 
and/or more accurate decision trees were created using the 
genetic algorithm on both of the DVT datasets.  
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The rest of the paper is organized as follows.  Section 2 
provides details of the DVT datasets, section 3 shows the 
decision tree experimental results on the two DVT datasets, 
and section 4 presents the conclusion and suggestions for 
future work. 

II. DVT BINARY DATASETS 
Known risk factors for DVT include diabetes, surgery, 

smoking, cancer, obesity, congestive heart failure, swelling, 
cellulitis, injury, and pulmonary embolism [9].  These factors 
can be determined by patients and physicians without 
medical examinations.  Hence, eighteen potential attributes 
which can contribute to DVT were extracted from 515 
records in databases at the Montefiore Medical Center 
Vascular Laboratory and the general patient registry.  The 
dataset attributes are summarized in Table 1 together with the 
DVT outcome.  Of the 515 records 350 patients were positive 
and 165 negative for DVT.  

To use the genetic algorithm to build a binary decision tree, 
the attribute types must be binary [8].  The numeric data, 
‘age’ attribute (A6) is binarized: 1 if over 60 and 0 otherwise.  
Non-binary nominal attributes include ‘smoking’ and ‘pain’ 
where they have three and four possible values, respectively.  
These are binarized as shown in Table 2.  

 
TABLE 2: NOMINAL TO BINARY PREPROCESSING 

Leg Pain  Smoking  
LP       RP  SB        SS  
1          1 Bi 1           1 Smoking 
1          0 L 1           0 Stopped 
0          1 R 0           0 Never 
0          0 None   

 
The nominal type ‘Leg Pain’ attribute which has four 

possible values {L, R, Bi, N} in the original table is 
represented by two binary attributes, LP (pain in the left leg) 
and RP (pain in the right leg). The ternary attribute, 
‘Smoking’ in the original table is represented by two binary 
attributes ‘SB’ (smoked before) and ‘SS’ (still smoking).  
Note that in certain datasets, the smoking attribute is denoted 
as simply ‘SM’ having either 0 (nonsmoker) or 1 (smoker). 
This is because not all questionnaires distinguish the stopped 
smoker. Similarly, the pain attribute may appear as simply 
‘PN’ in some datasets.   
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Fig. 2 Dataset I and II Relationship 

 
In Fig. 2 we show the relationship between Dataset I and 

Dataset II.  An overlap is depicted for the case when the 
tables share some common variables.  The shared variables 
are gender, age, diabetes, surgery, swelling, and smoking.  

Potential users for the proposed prediction models include 
patients at home and physicians. Two datasets were created – 
one for patients and one for physicians and those with 
medical knowledge.  Because most patients have little 
medical knowledge, Dataset I was created with attributes 
which can be determined easily without much medical 
knowledge. Dataset II was created using all the attributes in 
Table 1 (except for PN) and this dataset is for physicians or 
users with some medical knowledge.  

 

III. DVT DECISION TREES 
Consider the binary decision trees in Fig. 3 which are built 

from Dataset I. For each node the left branch is 0 (no) and the 
right branch is 1 (yes). Tree leaves indicate whether DVT is 
considered positive or negative.  
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Fig. 3 Decision trees from Dataset I. 

 
The decision tree in Fig 3 (b) suggests that a patient might 

have DVT if he/she never had surgery but has diabetes and is 
over 60 year old or might have DVT if he/she had previous 
surgery and feels pain in the leg and had previously smoked. 
The positive DVT cases can be logically expressed in the 
disjunctions of conjunctions form: (SR = 0 ∧ DB = 1 ∧ A6 = 
1) ∨ (SR=1 ∧ PN=1 ∧  SB = 1).  

If a patient wants to predict the likelihood of DVT, the 
decision tree prediction model such as one in Fig. 3 (c) will 
prompt a sequence of questions. First, it will ask whether the 
patient is a current active smoker. When the patient answers 
with ‘yes’, it will prompt to ask about the gender. If the 
patient is a female, it will prompt whether she is over 60 year 
old. If the answer is “yes”, it will ask whether she is a diabetic. 
If so, the decision tree predicts that she has a significant risk 
for DVT; in fact according to current laboratory records, one 
has a 66.67% chance of having a DVT under these conditions. 
Also, note that even though the decision tree predicts “No” in 
the left-most branch in Fig. 3 (c) where the patient is not 
currently smoking and does not feel pain, the chances that the 
patient may have DVT according to the database is about 
45.6%. The decision tree is capable of providing the 
probabilities.  

The popular decision tree algorithm C4.5 constructs 
pruned decision trees [6]; and was used to construct the tree 
shown in Figure 3 (a) having a performance of 59.5%.  The 
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most basic and popular algorithm to construct decision trees, 
called ID3, constructs short trees [8]. However, the decision 
tree constructed by ID3 is not shown here because it was 
unreasonably large and too complex for patients and perhaps 
even physicians to use. However, its performance on Dataset 
I was 72% for DVT prediction.  

 
(a) 

 
(b) 

Fig. 4 Prediction rate (a) and number of questions (b) fitness functions of GA 
generations on Dataset I. 

 
In this study, a genetic algorithm is used to find shorter 

and/or more accurate decision trees. It starts with 100 random 
decision trees, and only short and good decision trees survive 
to the next generation. Using mutation and cross-over 
operations, the next 100 generations are generated.  Mutation 
and crossover are the two most common genetic operators.  
The mutation operator is defined as changing the value of a 
certain position in a string to one of the likely values in the 
range.  Figures 5 illustrate the mutation process on the 
attribute selection scheduling string S1

f = (3, 1, 3, 2, 1, 2, 2) 
and with P= (PN, PE, SU, SW).  If a mutation occurs in the 
first position and changes the value to 4, which is in the range 
{1... 4}, T4

f is generated.  If a mutation happens in the third 
position and changes the value to 2, which is in the range 
{1… 3}, then T5

f is generated.  As long as the changed value 
is with the allowed range, the new string result will always 
generates a valid full binary decision tree.   

       
(a) 

 
                       (b)                    

Fig. 5 Illustration of Mutation operator 
 

Fig. 6 illustrates the crossover process by considering the 
two parents attribute selection scheduling strings, P1 and P2.  
After randomly selecting a split point, the first part of P1 and 
the last part of P2 contribute to yield a child strings S6.  
Reversing the crossover produces a second child S7.  T6

f and 
T7

f full decision trees resulted from these two children.  Fig. 4 
(a) and (b) show the highest performance positive prediction 
rate and the lowest number of questions needed, respectively, 
to determine DVT for the entire test set for 100 generations. 

 

  
                         (a) 

 
          (b)  

Fig. 6 Illustration of Crossover operator 
 

 For dataset I, several decision trees which are shorter 
and more accurate than the one created by ID3 in Fig. 3 (a) 
were identified.  A more accurate and shorter depth decision 
trees is shown in Fig. 3 (b) and an even more accurate one but 
of the same depth is shown in Fig. 3 (c).  

For dataset II, Fig. 7 shows a decision tree by the C4.5 
algorithm, and three decision trees by GA.  The C4.5 decision 
tree is a skewed and deep (depth = 12) with an accuracy of 
72.25%.  When the tree is deep, strange rules can be found; 
for example, HF at the bottom of Fig. 7 (a) tree has the 
negative DVT when HF is positive, a rule which is not 
statistically valid.   
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To find shorter and more accurate trees, the GA was 
performed for 200 generations. By limiting tree depth to 5, 
the decision tree of Fig. 7 (b) was obtained. Its performance 
rate, however, is lower than that of C4.5.  Fig. 7 (c) and (d) 
show trees found by limiting the tree depth to 6 and 7, 
respectively, and have accuracies of 73.75% and 75.25%.  It 
has been observed that greater depth usually results in higher 
accurate until over-fitting occurs.  

The best measure of efficiency (shortness) for a decision 
tree is probably the average number of questions required to 
obtain a prediction.  Other measures might be the depth off 
the tree or the number of nodes in the tree.   
 
 
 

 
 
 

 
                      

Fig. 7 Decision trees from Dataset II. 

 
TABLE 3: COMPLEXITY OF DECISION TREES WITH DIFFERENT DEPTH LIMITS 

Depth limit Performance rate The average # of question
5 69.75 2.9525 
6 73.75 3.3725 
7 75.25 3.8955 
8 76.50 4.3275 
9 76.75 4.8225 
10 78.00 5.1225 
11 78.50 5.4675 
12 79.50 5.8675 
13 80.25 6.3075 

 
Table 3 shows the depth limits in GA, the performance rate, 

and the average number of questions to be asked.  Note that 

the average number of questions increases monotonically 
with the depth limit, indicating that depth also appears to be a 
good measure of efficiency.  The average number of 
questions to be asked of a user is 7.485 for the C4.5 decision 
tree in Fig. 7 (a) whereas there are several shorter ones listed 
in Table 3.  The number of nodes is apparently not a good 
measure of efficiency – the C4.5 decision tree has 25 
compared to 19, 32, and 44 in Fig. 7 (b), (c), and (d).  From 
both a depth and average-number-of-questions  perspective 
the complexity of the decision tree in Fig. 7 (d) can be 
considered much more efficient (simpler) than the decision 
tree from the C4.5 algorithm. 
 
 
 

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

It was observed that accuracy increases as depth increases.  
At the depth of 12 the GA performance was 79.50 as 
compared with the C4.5 performance of 72.25 at the same 
depth.  ID3 depth grows until the depth of 16 with a 
performance rate of 80% versus GA 80.25% with the depth 
of 13.  These results clearly show that trees constructed by 
GA are both more accurate and more efficient. 

Fig. 8 (a) and (b) show the highest performance positive 
prediction rate and the lowest number of questions needed, 
respectively, to determine DVT for the entire test set for 200 
generations.  
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(a) 

 
(b) 

Fig. 8 Prediction rate (a) and number of questions (b) fitness function of   
GA generations on Dataset II. 

 

IV. DISCUSSION 
For the purpose of DVT classification, the genetic 

algorithm is exploited to find shorter and/or more accurate 
decision trees than ones produced by the conventional ID3 
and C4.5 algorithms.  Experimental results on two datasets 
suggest that more accurate and efficient decision trees can be 
found by the GA.  The efficiency (lower complexity) of a 
decision tree is best defined by the average number of 
questions asked to users, not by the number of nodes in the 
decision tree.  In view of this argument, GA trees were found 
to produce more accurate and more efficient trees than ones 
produced by conventional methods such as the ID3 and C4.5 
algorithms. 
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Fig. 9 DVT decision tree 

 

The decision trees produced by the GA have significant 
clinical relevance.  The results shown here increase the 
probability of predicting whether a patient would develop or 
have had DVT, which provides advancement in the diagnosis 
of DVT.  The more efficient shorter trees add additional 
support for the GA method.  Figure 9 shows a decision tree 
constructed with the input of experts after carefully 
reviewing the forest of good candidate decision trees found in 
this study.  This might be the optimal decision tree based on 
the data and indicates that combining human knowledge and 
machine speed of processing can often produce a superior 
result than either the human or machine could produce 
separately. 

With more iteration and deepening the depth of the tree, 
the decision trees produced by the GA depth limit clearly 
outperform the one produced by the ID3 method.  This study 
introduced a simple decision tree to help lay people, medical 
technologists, and physicians identify the probability of a 
patient having DVT that prompts for testing before any 
complication occurs.  

The decision trees found by using GA tend to be almost 
full binary trees, i.e., the width is large while the depth is 
short.  For future work, the C4.5 pruning mechanism could be 
applied to decision trees produced by GA to make trees 
sparse and to further avoid the potential over-fitting problem. 
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