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Abstract— The multi-objective problem of the generation 
and emission dispatch is solved to find the generation levels that 
best compromise the generation cost and the emission level 
while satisfying the power balance constraint. The solution is 
attempted using non-dominated sorting genetic algorithms–II 
(NSGA-II) to find non-dominated solutions of with good 
diversity. The best compromise solution has been obtained 
using Fuzzy cardinal priority ranking. The results are 
presented for a system of 6-generators by neglecting the losses 
and accounting them for different combinations of Fuel cost, 
NOx, COx and SOx emission objectives. The simulated results 
demonstrate the effectiveness of the proposal formulation. 

Index Terms— Generation dispatch, Emission dispatch, 
Multi-objective optimization, Evolutionary algorithm.  

I. INTRODUCTION

The cost of power system operation is minimized by 
economic or generation dispatch, which is the allocation of 
generation to various units to meet a given load demand. For 
thermal units, operating cost is mainly due to the fuel cost. 
The operation of these units also produces large amount of 
emission like oxides of sodium SOX, nitrogen NOX, carbon 
COX etc. These emissions, an environmental concern, have 
forced the utilities to adopt various practices like use of 
higher quality fuel, upgrading older plants with new efficient 
cleaner plants or considering emission-free alternate forms of 
energy. The economic dispatch with reference to clean air act 
[2] has been discussed. The clean air act persuades the 
utilities to change their practices to meet the environmental 
emission norms. Thus, it becomes important to perform the 
emission dispatch with generation dispatch.  

Many studies have been carried out to solve the generation 
dispatch with or without emission dispatch.  These studies 
include use of Goal programming techniques [3], Linear 
programming techniques [4], fuzzy approach [5,6] and 
Evolutionary Algorithms [7-11].  

The generation and emission dispatch problem has been 
reduced to a single objective problem [12,13] by treating the 
emission as a constraint with a permissible limit. 
Alternatively, minimizing the emission has been handled as 
another objective in addition to usual cost objective. A linear 
programming based optimization by considering one 
objective at a time has been presented in [14]. The 
multi-objective emission and generation dispatch problem 
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has been converted to a single objective problem by linear 
combination of different objectives as a weighted sum 
[15,16]. A set of non-inferior (or Pareto-optimal) solutions is 
obtained by varying the weight and therefore requires 
multiple runs. Goal programming method was also proposed 
for multi-objective generation and emission dispatch 
problem [17]. This method requires a prior knowledge about 
the shape of the problem search space. 

The methods arising from evolutionary computation are 
fast and effective techniques capable of finding a 
well-distributed set of diverse trade-off solutions, with little 
or no more effort than sophisticated single-objective 
optimizer. Most multi-objective evolutionary algorithms 
(MOEAs) use the concept of Pareto domination to guide the 
search. A solution is said to dominate another solution, if it is 
no worse than other in all objectives and better than in at least 
one objective. A solution is said to be non dominated if it is 
not dominated by any other solution. Various evolutionary 
algorithms in [18, 19] are reported for multi-objective 
optimization.   

In this paper, an elitist evolutionary  non-dominated 
sorting algorithm (NSGA-II) is used for solving the 
multi-objective generation and emission dispatch problem. 
After obtaining various optimal solutions using NSGA-II, the 
single best compromise solution is obtained using Fuzzy 
cardinal priority ranking. 

II.MULTI-OBJECTIVE GENERATION AND EMISSION DISPATCH

Multi-objective problems are often characterized by 
several non commensurable and often competing objectives 
[6, 7] subjected to a number of equality and inequality 
constraints. The general structure of multi-objective 
generation and emission dispatch problem is expressed as- 
Find :  [PG] =[PG1, PG2, ….PGNg]T  

By Minimizing: F = [FFC, FNX, FCX, FSX]

Subjected to:  h(PGi)  = 0 

  g(PGi) ≤ 0             (1)
where,            i = 1, 2, 3……Ng 
where Ng is the total no of generation units, PGi is the real 
power output of ith generator, h(PGi) is the equality 
constraints and g(PGi) is the inequality constraints. 

The various objective functions for the generation and 
emission dispatch problem are : 

A. Minimization of Fuel Cost (FFC) 
B. Minimization of NOX Emission (FNX) 
C. Minimization of COX Emission (FCX)
D.Minimization of SOX Emission (FSX)
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A. Minimization of Fuel Cost (FFC) 
The minimization of total fuel cost FFC is expressed as, 

( )2

1

min
Ng

FC i i Gi i Gi
i

F a b P c P
=

= + +∑   $/hr        (2) 

where ia , ib and ic  are the fuel cost coefficient 

B. Minimization of NOX  emission (FNX) 
The minimization of NOX emission FNX is represented as, 

( )2

1
min

Ng

NX Ni Ni Gi Ni Gi
i

F a b P c P
=

= + +∑   kg/hr      (3) 

where Nia , Nib and Nic  are the NOX emission coefficient 

C. Minimization of COX  emission (FCX) 
The minimization of COX emission FCX is expressed as, 

( )2

1
min

Ng

CX Ci Ci Gi Ci Gi
i

F a b P c P
=

= + +∑   kg/hr      (4) 

where Cia , Cib and Cic  are the COX emission coefficient 

D. Minimization of SOX emission (FSX) 
The minimization of SOX emission FSX is represented as, 

( )2

1
min

Ng

SX Si Si Gi Si Gi
i

F a b P c P
=

= + +∑   kg/hr      (5) 

where Sia , Sib and Sic  are the SOX emission coefficient 

Power balance constraints 
The total power generation must be equal to the total 

demand PD and the real transmission loss PLOSS. Hence, 

( ) 0
1

=−−∑
=

LOSSD

Ng

i
Gi PPP              (6) 

Where PLOSS is the total power loss given as below 

∑∑
= =

=
Ng

i

Ng

j
GjijGiLOSS PBPP

1 1

             (7) 

Limits on generator output PGi

For stable operation, the generator outputs must be within 
the limiting values as follows: 

maxmin GiGiGi PPP ≤≤               (8) 

III. ELITIST MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM

The main objective of multi-objective evolutionary 
algorithm is to find multiple Pareto-optimal solutions in one 
single simulation run [8]. To enhance the convergence 
properties of multi-objective elitist operator [9] is used. The 
elitism helps to keep the best solution of the current 
population and does not allow it to deteriorate in next 
generation.  

The NSGA-II which is known as elitist non-dominated 
sorting genetic algorithm, has the following features: 
1) It uses non dominated sorting techniques to provide the 

solution as close as possible to the pareto-optimal 
solution. 

2) It uses crowding distance techniques to provide diversity 
in solution. 

3) It uses elitist techniques to preserve the best solution of 
current population in next generation. 

There are two stages in solving multi-objective problem: 
determination of the set of non-dominated solutions and 
selection of the best compromise solution. 

A. Description of Algorithm based on NSGA-II  
1) Initialize the population Pt.  
2) Create the offspring population Qt from the current 

population Pt. 
3) Combine the two populations Qt and Pt to form Rt

where Rt = Pt U Qt

4) Find non-dominated fronts Fi of Rt. 
5) Initiate the new population Pt+1 = null and the counter 

of front for inclusion i = 1. 
6) While Pt+1 + Fi ≤ Npop, do: Pt+1←Pt+1 U Fi, where  i ←

i+1 
7) Sort the last front Fi using the crowding distance in 

descending order and choose the first (Npop – Pt+1)
elements of Fi

8) Use selection, crossover and mutation operators to 
create the new offspring population Qt+1 . 

Initialization 
Initialize the population Pt by the randomly generating 

PGi’s and satisfying power balance equation (6). After 
initialization it creates offspring population Qt from the 
current population Pt and then combines the two populations 
to form Rt. Where Rt is define as: 

Rt = Pt U Qt 

Non-Dominated Sorting 
After the initialization the population is sorted on the basis 

of on non-domination as shown in Fig. 1. The pseudo code 
for this is -  

for each   )( Pp ∈

     for each )( Pq ∈

         if )( qp p then 
    { }qSS pp ∪=               

         elseif )( pq p then 
         1+= pp nn           
          end 
     end 
     if )0( ==pn then 
  { }pFF ∪= 11

     end 
end 
The pseudo code suggests that if p dominates q then add q

in the set Sp. If p dominated by q then increment the 
dominated counter np by 1. If there is no any solution which 
dominate p i.e (np = 0), then p belong to first front F1. 

while )( nullFi ≠
     nullQ =

     for each )( iFp ∈

          for each )( pSq ∈
               1−= qq nn
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               If )0( =qn  then 
                    { }qQQ ∪=

               end 
          end 
     end 
     i = i+1 
     QFi =

end 

Assign the front to each q in the set Sp according to its 
domination level given by nq 

where, Pt  Current population 
Qt  Offspring population 
Rt  Population after recombination 
np  Number of solutions dominated by solution, p 
Sp  Solutions which dominate the solution, p 
Fi  ith front of non-dominated solutions 
nq  Number of solution dominated by solution, q 

    Q  Set of non-dominated solutions belongs to q 

Fig. 1.  Non-dominated and Crowding distance sorting 

Crowding distance 
To provide the diversity in population, the crowding 

distance is calculated[19]. The following pseudo code is used 
to calculate the crowding distance of each point in set I.  

l = |I|  
for each i
     set I[i]distance = 0 
end 
for each m
     I = sort(I,m)  
     I[1]distance = I[l]distance   = ∞
end 
for (I = 2 to ( l - 1) )

I[i]distance = I[i]distance  +                     
)/()).1().1(( minmax

mm ffmkImkI −−−+

end 

Firstly assign the boundary value to infinity and then 
calculate the crowding distance. Here, I(k).m is the crowding 
distance for the mth objective function of the kth  individual. 
Where, I  Set of non-dominated solutions 

l  Total number of solutions in set I
m  Number of objective functions 
fm

max Maximum fitness value of mth objective function 
fm

min Minimum fitness value of mth objective function 

Selection 
  Once the individuals are sorted based on non-domination 

with the crowding distance assigned, the selection is carried 
out using a crowded-comparison-operator (>n) and best 
solution is selected. As shown in Fig. 1, it will be used to 

create Front 4 of small size than obtained after the 
non-dominated sorting. It assumes that every solution has 
two attributes: 

1)     A Non-domination rank (ri) in population  
2)     A local Crowding distance (I[i]distance) 

i >n j 
if (ri < rj) 
or 
if ((ri = rj) and (I[i]distance > I[j]distance)) 

The solution i is better than j if rank of ith solution is better 
than jth or if they have same rank but the crowding distance of 
ith solution is better than jth

Crossover and Mutation
The real coded genetic algorithm [10] employed in this 

paper uses Simulated Binary Crossover and Polynomial 
Mutation to create population Qt as shown in Fig. 2 . 

Fig. 2.  Crossover and Mutation operation 

1) Simulated Binary Crossover (SBX) 
To generate the offsprings or child solutions using 

crossover, randomly select two parents solution (p1,k, p2,k)
from the initial population and then generate the two child 
solution (c1,k, c2,k)  as per the given pseudo code. 

Npop = |pop|  
for each k

   r1,k = random(1,Npop)  
   r2,k = random(1,Npop) 

p1,k = pop(r1,k) 
p2,k = pop(r2,k) 

      uk = random(0,1) 
      if (uk > 0.5) 

( ) )1/(12 += cn
kk uβ

      else 
       

( ){ } )1/(112
1

+−
=

cn
k

k
u

β

      end 
      c1.k = ½ [(1-βk).p1,k + (1+βk).p2,k] 
      c2.k = ½ [(1+βk).p1,k + (1-βk).p2,k] 
      Qt = Qt U c1.k

      Qt = Qt U c2.k 

end 

2) Polynomial Mutation 
  This operator randomly selects one parent solution from 

the  population and applies the mutation operator to generate 
a single offspring. The pseudo code is given as : 

for each k
      rk = random(1,Npop) 
      pk = pop(rk) 
      uk= random(0,1) 
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      if (uk < 0.5) 

( ) 12 1
1

−= +mnkk rδ

      else 
        ( ){ } 1

1
121 +−−= mnkk rδ

       end 
      k

l
k

u
kkk pppc δ)( −+=

      ktt cQQ ∪=

end 
where, r  randome number for selecting the parent 
solution  

p  Parent solution from population, pop 
c  Child solution
uk  random number 
nc  Crossover distribution index
nm Mutation distribution index 

kβ Spread factor

kδ Small variation 

B. Best Compromise Solution 
The optimization of the above-formulated multi-objective 

formulation using NSGA-II yields set of Pareto optimal 
solutions [11], in which one objective cannot be improved 
without sacrificing other objectives. For practical 
applications, however, we need to select one solution, which 
will satisfy the different goals to some extent. Such a solution 
is called best compromise solution. The best compromise 
solution is obtained using Fuzzy cardinal priority ranking. 
The pseudo code for this is given as: 

for each )( Mk ∈

     for each )( objNi ∈

          if )( max
Mk

i ff ≥   
                0=k

iu

          else if )( maxmin
Mk

i
M fff ≤≤

               ( ) ( )MMk
i

Mk
i ffffu minmaxmax / −−=

          else 
               1=k

iu

          end 
     end 
end 

for each )( objNi ∈

     
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
= ∑∑∑

= ==

objN

i

M

k

k
i

M

k

k
ii uu

1 11

/β

end 

where iβ  is the  normalize membership function. The 

iβ provides the fuzzy cardinal priority ranking of the 
non-dominated solution. the solution that attains the 
maximum membership iβ in fuzzy set is considered as best 
compromise solution.  
where,  Nobj Number of non-dominated solutions

k
iu   Membership for kth objective and ith solution 

iβ   Cardinal pirority ranking 

IV. RESULTS AND DISCUSSION

The study is carried out for a system of six generators [20] 
detailed in the Appendix. The results are obtained for 
multi-objective generation and emission dispatch by using 
the power balance and generator capacity constraints for the 
following five cases of optimization formulations: 

Case-A  Fuel Cost and NOX Emission  
Case-B  Fuel Cost and COX Emission  
Case-C  Fuel Cost and SOX Emission  
Case-D  Fuel Cost, NOX Emission and COX Emission 
Case-E  Fuel Cost, NOX Emission and SOX Emission 
  
The results are obtained by neglecting and considering the 

losses at the load demand of 1800 MW with the following 
parameters - 

• Population size = 100 
• Maximum generation = 20000 
• Crossover Distribution index = 20 
• Mutation Distribution index = 20 
• Crossover Probability = 0.9 
• Mutation Probability =  0.1 

In typical NSGA-II implementations, the mutation rate is 
small, typically around 10%. Whereas crossover rate is high, 
typically around 90%. The proposed study is carried out for 
two and three objectives functions to yield the relationship 
between the thermal units operating costs and emission. In all 
the cases the size of the initial population is 100. The 
maximum generations are 6000 and 20000 for the 
optimization of two and three objectives respectively. 

A. Multi-Objective optimization when losses are neglected 
The results obtained for the multi-objective optimization 

using the developed algorithm for the above mentioned Cases 
are summarized in Table I-V. The Table summarizes the 
solution at the minimum of the respective objective function 
and the best compromise solution for the respective set of 
objectives considered. In Case A, B and C two objectives are 
considered, the pareto optimal front for these are having 
similar nature. As a sample case the Pareto optimal fronts for 
case-B, case-D and case-E are shown in Fig. 3, Fig. 4 and   
Fig. 5 respectively. From the Tables I-V, it is clear that the 
minimum fuel cost is obtained close to 17520. The marginal 
difference is due to the solution is being run at different 
occasion and the convergence is based on evolutionary 
technique. The cost corresponding to best compromise 
solution is bound to change as it depends on all the objectives 
under investigation. The cost in best compromise solution is 
changing between 17520-17530. 

B. Multi-Objective Optimization by Accounting Losses 
The losses are now accounted with the help of 

B-coefficients. Keeping the load demand at the previous 
level, the generation is bound to increases. The results are 
obtained for all five cases mentioned earlier and are 
summarized in Tables VI-X. As expected, the total 
generation level increases which results into increase in the 
operation cost and also the emission level. The optimum 
pareto front for case-A, D and E are shown in Fig. 6, 7 and 8 



  

respectively. The total fuel cost for the best compromise 
solution changes marginally around Rs. 18900. 

 
 

TABLE I: RESULT FOR FUEL COST AND NOX OPTIMIZATION 

 
TABLE II: RESULT FOR FUEL COST AND COX OPTIMIZATION 

 Units 
(in MW) 

Solution at 
minimum FFC 

Solution at 
minimum FCX  

Best Compromise 
Solution 

PG1 221.8656 250.0000 238.9509 
PG2 229.9998 229.9999 229.9994 
PG3 437.0433 402.1071 419.3458 
PG4 264.9987 264.9987 264.9961 
PG5 441.7217 405.8301 424.0666 
PG6 202.5707 245.2628 220.84114 

FFC ($/hr) 17520.2842 17537.8799 17524.0739 
FCX (kg/hr) 53260.5444 51912.1721 52308.2522 

 
TABLE III: RESULT FOR FUEL COST AND SOX OPTIMIZATION  

 Units 
(in MW) 

Solution at 
minimum FFC 

Solution at 
minimum FSX  

Best Compromise 
Solution 

PG1 221.8976 208.5284 214.7362 
PG2 230.0000 230.0000 230.0000 
PG3 436.8933 445.9464 441.9424 
PG4 265.0000 264.9999 264.9999 
PG5 441.0918 445.9877 443.7248 
PG6 203.3173 202.7375 202.7965 

FFC ($/hr) 17520.2825 17520.8838 17520.4607 
FSX (kg/hr) 10510.5739 10510.2146 10510.2916 

 
TABLE IV: RESULT FOR FUEL COST, NOX AND COX OPTIMIZATION  

 Units 
(in MW) 

Solution at 
minimum 

FFC 

Solution at 
minimum 

FNX  

Solution at 
minimum 

FCX 

Best 
Compromise 

Solution 
PG1 222.3661 166.8411 250.0000 197.9152 
PG2 230.0000 194.2191 229.9987 229.7943 
PG3 438.5525 486.0322 404.5769 454.4389 
PG4 264.9977 264.9365 264.9993 264.9926 
PG5 438.8981 486.1711 403.4438 448.8072 
PG6 203.3856 200.0000 245.1813 202.2704 

FFC ($/hr) 17520.2987 17582.2152 17537.8536 17522.6806 
FNX(kg/hr) 1848.9139 1805.3370 1929.2176 1828.2927 
FCX(kg/hr) 53212.0024 58053.8654 51911.6072 54114.1258 

 
TABLE V: RESULT FOR FUEL COST, NOX AND SOX OPTIMIZATION 

Units 
(in MW) 

Solution at 
minimum 

FFC 

Solution at 
minimum 

FNX  

Solution at 
minimum 

FSX 

Best 
Compromise 

Solution 
PG1 222.9468 166.4123 209.1126 173.5119 
PG2 229.9999 194.1320 229.9999 229.6355 
PG3 438.1437 486.0273 446.8517 465.7849 
PG4 264.9942 264.9999 264.9982 264.9944 
PG5 442.1101 486.6284 447.0476 464.2745 
PG6 200.0000 200.0000 200.1898 200.0000 

FFC ($/hr) 17520.3408 17582.5052 17520.9603 17528.5431 
FNX(kg/hr) 1847.2415 1805.3021 1834.9453 1816.6648 
FSX(kg/hr) 10510.6022 10544.2067 10510.2455 10512.8993 

 

 
Fig. 3.  Pareto optimal solution for fuel cost and COX optimization 

 
 

 
Fig. 4.  Pareto optimal solution for fuel cost NOX and COX optimization 

 

 
Fig. 5.  Pareto optimal solution for fuel cost NOX and SOX optimization 

 

 
Fig. 6.  Pareto optimal solution for fuel cost and NOX optimization 
 

Units 
(in MW) 

Solution at 
minimum FFC 

Solution at 
minimum FNX  

Best Compromise 
Solution 

PG1 222.9989 166.5557 169.7719 
PG2 229.9978 194.2240 486.3092 
PG3 437.9832 486.3091 467.1544 
PG4 265.0000 264.9796 265.0000 
PG5 442.2199 486.1314 466.2963 
PG6 200.0001 200.0001 200.0000 

FFC ($/hr) 17520.3429 17582.3111 17529.3159 
FNX (kg/hr) 1847.2957 1805.3127 1816.1465 
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TABLE VI: RESULT FOR FUEL COST AND NOX OPTIMIZATION 
Units 

(in MW) 
Solution at 

minimum FFC 
Solution at 

minimum FNX  
Best Compromise 

Solution 
PG1 249.9764 228.9257 249.9608 
PG2 230.0000 229.9999 229.9988 
PG3 499.9998 499.9997 499.9987 
PG4 264.9999 264.9998 264.9999 
PG5 420.9971 500.0000 458.5955 
PG6 273.5104 226.9316 240.3168 

FFC ($/hr) 18880.1011 18965.0972 18899.4910 
FNX (kg/hr) 2175.0972 2116.9552 2136.9552 

 
 

TABLE VII: RESULT FOR FUEL COST AND COX OPTIMIZATION 
 Units 

(in MW) 
Solution at 

minimum FFC 
Solution at 

minimum FCX  
Best Compromise 

Solution 
PG1 250.0000 250.0000 250.0000 
PG2 229.9992 229.9934 229.9999 
PG3 500.0000 499.9999 500.0000 
PG4 265.0000 265.0000 265.0000 
PG5 417.3858 430.3211 423.9427 
PG6 276.7428 265.1376 270.8374 

FFC ($/hr) 18879.9067 18881.9047 18880.4279 
FCX (kg/hr) 64013.6629 63931.8286 63952.1125 

 
 

TABLE VIII: RESULT FOR FUEL COST AND SOX OPTIMIZATION 
Units 

(in MW) 
Solution at 

minimum FFC 
Solution at 

minimum FSX  
Best Compromise 

Solution 
PG1 250.0000 250.0000 250.0000 
PG2 229.9999 229.9999 229.9999 
PG3 499.9998 499.9998 499.9998 
PG4 265.0000 265.0000 265.0000 
PG5 421.3522 421.3522 421.3522 
PG6 273.1897 273.1897 273.1897 

FFC ($/hr) 18880.0995 18880.0995 18880.0995 
FSX (kg/hr) 11326.0965 11326.0965 11326.0965 

 
 
TABLE IX: RESULT FOR FUEL COST, NOX AND COX OPTIMIZATION 

 Units 
(in MW) 

Solution at 
minimum 

FFC 

Solution at 
minimum 

FNX  

Solution at 
minimum FCX 

Best 
Compromise 

Solution 
PG1 250.0000 229.6664 250.0000 249.4301 
PG2 229.9998 229.9634 229.9972 229.9874 
PG3 499.9998 500.0000 499.9999 499.9865 
PG4 265.0000 264.9983 264.9999 264.9866 
PG5 417.1908 500.0000 430.1076 456.5024 
PG6 276.9186 226.1944 265.3245 242.7227 

FFC ($/hr) 18879.9055 18964.7177 18881.8366 18898.0244
FNX(kg/hr) 2180.4788 2116.9621 2163.3075 2137.8856 
FCX(kg/hr) 64016.0833 65823.4113 63931.7113 64243.3887

 
 

TABLE X: RESULT FOR FUEL COST, NOX AND SOX OPTIMIZATION 
 Units 

(in MW) 
Solution at 
minimum 

FFC 

Solution at 
minimum FNX  

Solution at 
minimum 

FSX 

Best 
Compromis
e Solution 

PG1 250.0000 230.2076 250.0000 249.4956 
PG2 229.9866 229.9999 229.9866 229.9999 
PG3 500.0000 500.0000 500.0000 499.9452 
PG4 264.9986 264.9999 264.9986 264.9983 
PG5 421.7120 500.0000 421.7121 460.1639 
PG6 272.8569 225.5907 272.8567 239.4992 

FFC ($/hr) 18880.1700 18964.2999 18880.1700 18901.3563
FNX(kg/hr) 2174.1202 2116.9615 2174.1202 2135.3562 
FSX(kg/hr) 11326.1342 11374.9355 11326.1342 11338.3420

 

 
 

Fig. 7.  Pareto optimal solution for fuel cost, NOX and COX optimization 
 

 

 
Fig. 8.  Pareto optimal solution for fuel cost, NOX and SOX optimization 
 

V. CONCLUSION 
The multi-objective Generation and emission dispatch 

problem has been solved using the elitist Non-dominated 
Sorting Genetic Algorithm. The algorithm has been run on 
the six generator system by considering the system with or 
without loss. The study has been extended to two and three 
objectives problems. The following conclusions are made 
• The developed algorithm provides pareto optimal solution 

with good diversity and best compromise solution. 
• In the minimum fuel cost for neglecting the losses (or 

consider the losses) for different cases is same whereas 
the cost for best compromise solution in different because 
it depends on all the objectives considered, however the 
variation is small. 

APPENDIX 
The fuel cost, emission and loss coefficients for six 

generator system are given in Table A1, A2, A3, A4 and A5 
respectively.  

 
TABLE A1: FUEL COST COEFFICIENTS  

Units ci bi ai Pmin Pmax 
1 0.002035 8.43205 85.6348 100 250 
2 0.003866 6.41031 303.7780 50 230 
3 0.002182 7.42890 847.1484 200 500 
4 0.001345 8.31540 274.2241 85 265 
5 0.002162 7.42289 847.1484 200 500 
6 0.005963 6.91559 202.0258 200 490 
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TABLE A2: NOX EMISSION COEFFICIENTS  
Units cNi bNi aNi 

1 0.006323 -0.38128 80.9019 
2 0.006483 -0.79027 28.8249 
3 0.003174 -1.36061 324.1775 
4 0.006732 -2.39928 610.2535 
5 0.003174 -1.36061 324.1775 
6 0.006181 -0.39077 50.3808 

 
TABLE A3: COX EMISSION COEFFICIENTS  

Units cCi bCi aCi 
1 0.265110 -61.01945 5080.148 
2 0.140053 -29.95221 3824.770 
3 0.105929 -9.552794 1342.851 
4 0.106409 -12.73642 1819.625 
5 0.105929 -9.552794 1342.851 
6 0.403144 -121.9812 11381.070 

 
TABLE A4: SOX EMISSION COEFFICIENTS  

Units cSi bSi aSi 
1 0.001206 5.09928 51.3778 
2 0.002320 3.84654 182.2605 
3 0.001284 4.45647 508.5207 
4 0.000813 4.97641 165.3433 
5 0.001284 4.45647 508.5207 
6 0.003578 4.14938 121.2133 

 
TABLE A5: B- COEFFICIENTS  

2.0e-4 1.0e-5 1.5e-5 5.0e-6 0.0 -3.0e-5 
1.0e-5 3.0e-4 -2.0e-5 1.0e-6 1.2e-5 1.0e-5 
1.5e-5 -2.0e-5 1.0e-4 -1.0e-5 1.0e-5 8.0e-6 
5.0e-6 1.0e-6 -1.0e-5 1.5e-4 6.0e-6 5.0e-5 

0.0 1.2e-5 1.0e-5 6.0e-6 2.5e-4 2.0e-5 
-3.0e-5 1.0e-5 8.0e-6 5.0e-5 2.0e-5 2.1e-4 
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