
  

  
Abstract— A software fault prediction is a proven technique 

in achieving high software reliability. Prediction of fault-prone 
modules provides one way to support software quality 
engineering through improved scheduling and project control. 
Quality of software is increasingly important and testing 
related issues are becoming crucial for software. This 
necessitates the need to develop a real-time assessment 
technique that classifies these dynamically generated systems as 
being faulty/fault-free. A variety of software fault predictions 
techniques have been proposed, but none has proven to be 
consistently accurate. These techniques include statistical 
method, machine learning methods, parametric models and 
mixed algorithms. Therefore, there is a need to find the best 
techniques for Quality prediction of the software systems by 
finding the fault proneness. In this study, the performance of 
the Density-Based Spatial Clustering of Applications with Noise 
(DBSCAN) is evaluated for Java based Object Oriented 
Software system from NASA Metrics Data Program (MDP) 
data  repository on the basis of fault proneness of the classes. 
 

Index Terms— DBSCAN, Software Quality, Fault Proneness, 
NASA fault dataset.  
 

I. INTRODUCTION 
Highly reliable software is becoming an essential 

ingredient in many systems. Public safety and the fabric of 
modern life depend on software-intensive systems. We can ill 
afford for important systems to fail due to inadequate 
software reliability. Software reliability engineering is one of 
the most important aspect of software quality [1]. A software 
fault prediction is a proven technique in achieving high 
software reliability. Prediction of fault-prone modules 
provides one way to support software quality engineering 
through improved scheduling and project control. Quality of 
software is increasingly important and testing related issues 
are becoming crucial for software. Although there is diversity 
in the definition of software quality, it is widely accepted that 
a project with many defects lacks quality. Methodologies and 
techniques for predicting the testing effort, monitoring 
process costs, and measuring results can help in increasing 
efficiency of software testing. Being able to measure the 
fault-proneness of software can be a key step towards 
steering the software testing and improving the effectiveness 
of the whole process. The interest of the software community 
in program testing continues to grow – as does the demand 
for complex, and predictively reliable programs. It is no 
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longer acceptable to postpone the assurance of software 
quality until prior to a product’s release.  As the cost of 
removing bugs increases exponent means earlier the bugs 
detected lesser is the cost. Recent research in the field of 
computer program reliability has been directed towards the 
identification of software modules that are likely to be 
fault–prone, based on product and/or process–related metrics, 
prior to the testing phase, so that early identification of 
fault–prone modules in the life–cycle can help in channeling 
program testing and verification efforts in the productive 
direction. Hence, the quality prediction has become 
important. 

Software metrics represent quantitative description of 
program attributes and the critical role they play in predicting 
the quality of the software has been emphasized by Perlis et 
al [3]. That is, there is a direct relationship between some 
complexity metrics and the number of changes attributed to 
faults later found in test and validation [4]. Many researchers 
have sought to develop a predictive relationship between 
complexity metrics and faults. Crawford et al [5] suggest that 
multiple variable models are necessary to find metrics that 
are important in addition to program size. Consequently, 
investigating the relationship between the number of faults in 
programs and the software complexity metrics attracts 
researchers’ interesting. There are several different 
techniques have been proposed to develop predictive 
software metrics for the classification of software program 
modules into fault–prone and non fault–prone categories. 
Hence, a metric based approach can be investigated for 
prediction of software quality by identification of fault prone 
modules. 

The code metric, design metric and other metrics used in 
the literature for the quality prediction are shown in table 1. 
When the artificial neural network is applied to model 
software reliability, the invalid software time in the software 
mistake reports is adopted as the input of software quality 
prediction model [6-8], and the software quality metrics is 
used as the input of the neural networks [9-11].  

Recently, the object-oriented software metrics has been 
adopted as the inputs of the neural networks in order to 
predict object-oriented software quality [12-16]. By applying 
the software quality metrics as the inputs of neural networks, 
Khoshgoftaar et al [17-18] proposed some software quality 
prediction models using neural network of BP (back 
propagation) and compared these models with the one using 
nonparametric discriminant, and they found that the software 
quality prediction models using neural network of BP 
obtained good prediction accuracy. Hu and Zhong [19] 
applied the learning vector quantization network to predict 
the software quality and proposed a software module risk 
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model. With consideration of software fault severity, Zhao 
and Zhong et al [20] presented a software fault-proneness 
prediction model by support vector machine and the 
Chidamber-Kemerer (C&K) object-oriented metrics. In most 
of the literature of fault-proneness prediction the 
performance of the techniques are compared by Accuracy 
Percentage, Probability of Detection and Probability of False 
Alarms. The details of these performance criteria are given in 
the methodology section. 
 
TABLE I: METRICS USED IN THE LITERATURE FOR THE QUALITY PREDICTION 

[46] 

 
 
However, this necessitates the need to develop a real-time 

assessment technique that classifies these dynamically 
generated systems as being faulty/fault-free. A variety of 
software fault predictions techniques have been proposed, 
but none has proven to be consistently accurate. These 
techniques include statistical method, machine learning 
methods, parametric models and mixed algorithms. 
Therefore, there is a need to find the best techniques for 
Quality prediction of the software systems by finding the 
fault proneness. 

II. LITEARATURE REVIEW 
The following is the literature survey related with the 

prediction of faults in software systems:  

Saida et al [21] surveyed that the basic premise behind the 
development of object-oriented metrics is that they can serve, 
as early predictors of classes that contain faults or that are 
costly to maintain. In their paper they have shown that size 
can have an important confounding effect on the validity of 
object-oriented metrics [21].  

A critical review of the literature is given by Fenton & Neil 
[22] and they also made heroic contributions to the subject. In 
their study, most of the wide range of prediction models used 
size and complexity metrics to predict defects. Others are 
based on testing data, the “quality” of the development 
process, or take a multivariate approach. They also argued for 
research into a theory of “software decomposition” in order 
to test hypotheses about defect introduction and help 
construct a better science of software engineering. The 
comparison of Fault-Proneness Estimation Models and 
conclusion that software quality has become one of the most 
important requirements in the development of systems and 
fault-proneness estimation could play a key role in quality 
control of software products. The main objective was to find 
a compromise between the fault-proneness estimation rate 
and the size of the estimation model in terms of number of 
metrics used in the model itself [23].  

With the existence of a correlation between a reasonable 
set of static metrics and software fault-proneness. Static 
metrics, e.g., the McCabe's cyclomatic number or the 
Halstead's Software Science, statically computed on the 
source code, try to quantify software complexity. Dynamic 
metrics, e.g., structural and data flow coverage measure the 
thoroughness of testing as the amount of elements of the 
program covered by test executions. Such metrics only 
partially reflect the many aspects that influence the software 
fault-proneness, and thus provide limited support for tuning 
the testing process [24].  

The conclusion to remain competitive in the dynamic 
world of software development, organizations must optimize 
the usage of their limited resources to deliver quality 
products on time and within budget. The proposed fault 
prediction model used in his study was based on supervised 
learning using Multilayer Perceptron Neural Network and the 
results were analyzed in terms of classification correctness 
and based on the results of classification, faulty classes were 
further analyzed and classified according to the particular 
type of fault [25].  

Yan Ma [26] suggested that accurate prediction of fault 
prone modules in software development process enables 
effective discovery and identification of the defects. Thomas 
Zimmermann and Nachiappan Nagappan [27] in their paper 
suggested that in the software development, the resources for 
quality assurance are limited by time and by cost.  

Bindu Goel  et al [31] as suggested in their book published 
in 2008 that the predictions can be used to target 
improvement efforts to those modules that are likely to be 
faulty during the operation. The basic hypothesis of software 
quality prediction is that a module currently under 
development has defects if a module with the similar product 
or process metrics in an earlier project (or release) developed 
in the same environment had defects [32]. Therefore, the 
information available early within the current project or from 
the previous project can be used in making predictions. The 
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empirical study detailing software maintenance for web 
based java applications can be performed to aid in 
understanding and predicting the software maintenance 
category and effort [33]. Software maintenance organizations 
are no exception. Visual approach [34] can be used to 
uncover the relationship between evolving software and the 
way it is affected by software bugs. By visually putting the 
two aspects close to each other, we can characterize the 
evolution of software artifacts. Software maintenance is 
central to the mission of many organizations. Thus, it is 
natural for managers to characterize and measure those 
aspects of products and processes that seem to affect cost, 
schedule, quality, and functionality of a software 
maintenance delivery [35].  

Statistical, machine learning, and mixed techniques are 
widely used in the literature to predict software defects. 
Khoshgoftaar used zero-inflated Poisson regression to 
predict the fault-proneness of software systems with a large 
number of zero response variables. He showed that 
zero-inflated Poisson regression is better than Poisson 
regression for software quality modeling.  

Munson and Khoshgoftaar [36] also investigated the 
application of multivariate analysis to regression and showed 
that reducing the number of “independent” factors (attribute 
set) does not significantly affect the accuracy of software 
quality prediction. Menzies, Ammar, Nikora, and Stefano [37] 
compared Decision Trees, Naïve Bayes, and 1-rule classifier 
on the NASA software defect data. A clear trend was not 
observed and different predictors scored better on different 
data sets. However, their proposed ROCKY classifier 
outscored all the above predictor models.  

Emam, Benlarbi, Goel, and Rai [38] compared different 
case-based reasoning classifiers and concluded that there is 
no added advantage in varying the combination of parameters 
(including varying nearest neighbor and using different 
weight functions) of the classifier to make the prediction 
accuracy better.  

Salah Bouktif et al [39] presented how the general problem 
of combining quality experts, modeled as Bayesian 
classifiers, can be tackled via a simulated annealing 
algorithm customization. The general approach was applied 
to build an expert predicting object-oriented software 
stability, a facet of software quality. The findings 
demonstrate that, on available data, composed expert 
predictive accuracy outperforms the best available expert and 
it compares favorably with the expert build via a customized 
genetic algorithm. 

Ping Guo et al. [40] showed Expectation-Maximum 
likelihood (EM) algorithm to build the quality model. By 
only employing software size and complexity metrics, this 
technique can be used to develop a model for predicting 
software quality even without the prior knowledge of the 
number of faults in the modules. The technique was 
successful in classifying software into fault-prone and non 
fault-prone modules with a relatively low error rate, 
providing a reliable indicator for software quality prediction.  

III. PROBLEM FORMULATION 
Fault-proneness of a software module is the probability 

that the module contains faults. A correlation exists between 

the fault-proneness of the software and the measurable 
attributes of the code (i.e. the static metrics) and of the testing 
(i.e. the dynamic metrics). Early detection of fault-prone 
software components enables verification experts to 
concentrate their time and resources on the problem areas of 
the software system under development. Software quality 
models ensure the reliability of the delivered products. It has 
become important to develop and apply good software 
quality models early in the software development life cycle, 
especially for large-scale development efforts. Software 
quality prediction models seek to predict quality factors such 
as whether a component is fault prone or not.  

Faults in software systems continue to be a major problem. 
Many systems are delivered to users with excessive faults. 
This is despite a huge amount of development effort going 
into fault reduction in terms of quality control and testing. It 
has long been recognized that seeking out fault-prone parts of 
the system and targeting those parts for increased quality 
control and testing is an effective approach to fault reduction. 
A limited amount of valuable work in that area has been 
carried out previously. Despite this it is difficult to identify a 
reliable approach to identifying fault-prone software 
components. The aim of software metrics is to predict the 
quality of the object oriented software products. Various 
attributes, which determine the quality of the software, 
include maintainability, defect density, fault proneness, 
normalized rework, understandability, reusability etc.  

In the literature density clustering based approach is not 
experimented. There are a number of advantages of Density 
based clustering approach particularly DBSCAN:  

• It does not require you to know the number of clusters 
in the data a priori, as opposed to k-means. 

• It can find arbitrarily shaped clusters.  
• The algorithm has a notion of noise. 
• It requires just two parameters and is mostly 

insensitive to the ordering of the points in the 
database.  

Hence, due to the advantages of Density based clustering 
approach, the proposed work is aimed at “Quality Prediction 
of Object Oriented software using Density Based Clustering 
Approach”.   

IV. OBJECTIVES 
Use The following are the objectives that are proposed to 

be covered in the study: 
1. Studying the Code and Design attributes of Object 

oriented ware systems  
2. Collection of metric and fault proneness data for the 

object oriented systems  
3. Evaluates the worth of a subset of attributes by 

considering the individual predictive ability of each 
feature means finding the important subset of 
attributes.  

4. Use Density clustering based modeling approach 
with Object Oriented metrics for predicting faulty 
classes. 

5. Calculate the performance   of the proposed approach 
using Accuracy, Probability of Detection and 
Probability of false Alarm. 
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V. PROPOSED METHODOLOGY 
The proposed methodology will consist of the following 

steps: 
1. First of all, find the structural code attributes of 

software systems. 
2. Select the suitable metric values as representation of 

statement 
3. Collect the metric data of structural code attributes 
4. Analyze, refine metrics and evaluates the worth of a 

subset of attributes by considering the individual 
predictive ability of each feature along with the 
degree of redundancy between them. Subsets of 
features that are highly correlated with the class 
while having low intercorrelation are preferred. 

5. Apply the Density Based Clustering algorithm to find 
the Fault Proneness: 

Clustering is an approach that uses software measurement 
data consisting of limited or no fault-proneness data for 
analyzing software quality. In this study, Density based 
clustering algorithm is being used for predictive models to 
predict faulty/non faulty modules. Density-based approaches 
apply a local cluster criterion. Clusters are regarded as 
regions in the data space in which the objects are dense, and 
which are separated by regions of low object density (noise). 
These regions may have an arbitrary shape and the points 
inside a region may be arbitrarily distributed.  Density based 
clustering is based upon two parameters. 

• Eps:  Maximum radius of the neighborhood 
• MinPts: Minimum number of points in an 

Eps-neighbourhood of that point. 
The key idea of a density-based cluster is that for each 

point of a cluster its Eps-neighborhood for some given  Eps > 
0 has to contain at least a minimum number of points, i.e. the 
“density” in the Eps-neighborhood of points has to exceed 
some threshold[23]. 

 In a density based clustering a cluster is defined as 
maximal set of density connected points. The main feature of 
density based clustering is that it discovers features of 
arbitrary shape and it can handle noise. 

6. Implementing the model and test the performance of 
the model. 

7. Compare the result using the following Performance 
Criteria and deduce conclusions. 

A. Performance Criteria   
The set of evaluation measures that are being used in 

carried out the results are discussed below: 

TABLE II: A CONFUSION MATRIX OF PREDICTION OUTCOMES [47] 

 
As shown in Table 2, let a is the number of modules that 

actually have no fault and classifier predicts no defects in 
those modules, b is the number of modules that actually have 
defects and classifier predicts no defects in those modules, c 

is the number of modules that actually have no defects and 
classifier predicts no defects in those modules, and d is the 
number of modules that actually have defects and classifier 
predicts defects in those modules.  

• Accuracy: It indicates proximity of measurement results 
to the true value, precision to the repeatability or 
reproducibility of the measurement. The accuracy is the 
proportion of true results (both true positives and true 
negatives) in the population. As represented in equation  
below: 

( ) ( )dcbadaAcc ++++= /
 

(1)

• Probability of detection: Probability of detection is the 
probability of system failure. That means that the probability 
of any component B failing given that a component A has 
already failed is the same as that of B failing when A has not 
failed. Probability of detection is calculated as shown below: 

( )dbdPd += /  (2)

• Probability of false alarm: Intuitively probability of 
false alarm is the fraction of buggy execution that raises an 
alarm.  The formula for Probability of false alarm is given 
below: 

( )cacPf += /     (3)

VI. RESULTS AND DISCUSSIONS 
The datasets used in this study come from the NASA 

Metrics Data Program (MDP) data repository [44] named as 
KC3. The KC3 software is written in Java programming 
Language for Storage management for ground data in the 
safety critical project.  

There are 39 metrics values calculated for the 458 instances 
and for each exemplar the last column tells whether the fault 
exists in the module or not. There are 415 modules that are 
having no fault and 43 modules are faulty modules as shown 
in the table below: 

 
TABLE III: COUNT OF FAULTY AND NON-FAULTY MODULE SIN THE 

DATASET 

 
The following are the parameters used in the DBSCAN 

algorithm implementation in the WEKA as shown in figure 
1: 

• database_Type – It is the used database name and path 
• database_distanceType – It tells us the type of distance 

used. It is set to Euclidian Distance. 
• epsilon – It is radius of the epsilon-range-queries. It is 

set to 0.9 value. 
• minPoints – This parameter tells the minimum number 

of DataObjects required in an epsilon-range-query. It is set to 
6 values.   
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Fig. 1. Snapshot of the Parameters Set for DBSCAN 

 
The DBSCAN clustering algorithm has created clusters 

numbered as 0 to 1 and assigned the 412 ( means 93%) 
examples to cluster number 0 and 31 ( means 7%) examples 
to cluster number 1. The confusion matrix calculated is 
shown below:  
TABLE IV: CONFUSION MATRIX OF PREDICTION OUTCOMES OF DBSCAN 

ALGORITHM. 
               

Predicted Value 
Modules actually has faults 

No Yes 
No 376 36 
Yes 31 0 

                 
As evidenced from the confusion matrix the incorrectly 

clustered instances are 67 means 14.6288% is the inaccurate 
percentage value and Accuracy of prediction is 85.3712%. 

Thereafter, we have used the WEKA open source software 
for the attribute evaluation that evaluates the worth of a 
subset of attributes by considering the individual predictive 
ability of each feature along with the degree of redundancy 
between them. It is considered that subsets of features that are 
highly correlated with the class while having low 
intercorrelation are preferred [45]. 

The parameters used in the attribute evaluation are: 
• locallyPredictive -- Identify locally predictive attributes. 

Iteratively adds attributes with the highest correlation with 
the class as long as there is not already an attribute in the 
subset that has a higher correlation with the attribute in 
question. Set as true. 

• missingSeparate -- Treat missing as a separate value. 
Otherwise, counts for missing values are distributed across 
other values in proportion to their frequency. Set as false. 

The search method used in the attribute evaluation is 
BestFirst that searches the space of attribute subsets by 
greedy hillclimbing augmented with a backtracking facility. 
Setting the number of consecutive non-improving nodes 
allowed controls the level of backtracking done. Best first 
may start with the empty set of attributes and search forward, 
or start with the full set of attributes and search backward, or 
start at any point and search in both directions (by 
considering all possible single attribute additions and 
deletions at a given point). 

The output of the attribute evaluation shows that the 
following 8 attributes/metrics are more important in 
prediction of the faulty modules: 

• LOC_BLANK 
• BRANCH_COUNT 

• LOC_CODE_AND_COMMENT 
• ESSENTIAL_COMPLEXITY 
• LOC_EXECUTABLE 
• HALSTEAD_LENGTH 
• NORMALIZED_CYLOMATIC_COMPLEXITY 
• PERCENT_COMMENTS 
The WEKA’s DBSCAN algorithm is run for the selected 8 

attributes as mentioned above and the following confusion 
matrix is created: 

 
TABLE V: CONFUSION MATRIX OF PREDICTION OUTCOMES FOR THE 

DBSCAN ALGORITHM WITH SELECTED ATTRIBUTES. 

               
Predicted Value

Modules actually has faults 
No Yes 

No 415 43 
Yes 0 0 

As evidenced from the confusion matrix the incorrectly 
clustered instances are 43 means  9.3886% is the inaccurate 
percentage value and Accuracy of prediction is 90.6114%.  

Probability of detection for Non-faulty modules is the ratio 
of the number of modules identified as non-faulty and those 
are actually non-faulty to the total Number of modules that 
are actually have no fault means the probability with which 
the system is able to detect the non-faulty modules out of total 
non-faulty modules present. Probability of detection for 
non-faulty modules is 1 means the system can perfectly 
identify the non-faulty modules. Probability of false alarm 
for the faulty modules is 0 means that the system has zero 
buggy execution that raises an alarm. 

VII. CONCLUSION 
In this study, the performance of the Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN) is 
evaluated for Java based Object Oriented Software system 
from NASA Metrics Data Program (MDP) data  repository 
on the basis of fault proneness of the classes.  Here, the 
metric based approach is used for prediction. First, thirty nine 
metrics are used and later the worth of a subset of attributes is 
calculated and the number of metrics are reduced to eight. 
The metric values for the exmaplars is used as Input and 
clusters are formed using DBSCAN, thereafter 10 fold cross 
validation performance of the system is recorded. As 
deduced from the results it is clear that the performance of the 
proposed algorithm is better in case of reduced set of 
attributes. The Accuracy of prediction is improved from 
85.3712%  to 90.6114% with reduced set of attributes. With  
reduced set of the factors the density based clustering 
provides Probability of detection for non-faulty modules 
equal to 1 and Probability of false alarm for the faulty 
modules equal to  0 means the it is satisfactory enough to use 
the Density-Based Spatial Clustering of Applications with 
Noise (DBSCAN) technique for the prediction of the object 
oriented software components based on the fault proneness.  
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