

Abstract—With an excess of information in recent times,

sound information retrieval is the need of the hour. Document
Classification, where a document is classified as being under
one of a number of predefined categories, is the foundation of
an efficient and effective Information Retrieval system. Once
information has been retrieved, the next step is unearthing the
relevant and essential information. Query-based Multi-
Document Summarization will do just that. In this paper, we
analyze the different variants of the k Nearest Neighbors (kNN)
Classification Algorithm and from them design the CAST
Algorithm for Classification, which, as precision and recall
results will show, performs better in most cases. For document
summarization, we analyze and improvise on a Hypergraph
based algorithm. Further, we design and describe the CAST
Algorithm for Summarization and show that it performs well
for Query-based Multi-Document Summarization.

Index Terms—Document Classification, Multi-Document

Summarization, Query-based summary.

I. INTRODUCTION
The 20th century and beyond, with the advent of the

personal computer and the internet, has rightly been called
the Information Age. The amount of information available is
vast and is only growing exponentially. It has now become
critical to search through this huge amount of information
with speed and accuracy and finally find the required
information. Document Classification is categorizing a
document as being under one of a number of predefined
classes. Categorizing helps, because it is now easier to find
information and this has been put to a number of uses like
spam filtering, topic filtering, language guessing, organizing
documents, etc.

There are broadly two approaches to classification- the
supervised approach where predefined category labels are
given to documents based on the likelihood suggested by a
training set of labeled documents [1] and the unsupervised
approach where no training set or human intervention is
required at any point of the process. The unsupervised
approach includes k-means clustering and other clustering

Manuscript received April 22, 2011 and revised June 28, 2011.
Suzanne D’Silva is with the Veermata Jijabai Technological Institute,

Matunga, Mumbai – 400019, India (email: suzanne.d1411@gmail.com).
Neha Joshi is with the Veermata Jijabai Technological Institute, Matunga,

Mumbai – 400019, India (email: nehaj_26@yahoo.co.in).
Sudha Rao is with the Veermata Jijabai Technological Institute, Matunga,

Mumbai – 400019, India (email: raosudha89@gmail.com).
Sangeetha Venkatraman is with the Veermata Jijabai Technological

Institute, Matunga, Mumbai, India (email: sangeetha2089@gmail.com).
Seema Shrawne is with the Veermata Jijabai Technological Institute,

Matunga, Mumbai – 400019, India (email: scshravane@vjti.org.in).

algorithms which simply try to organize data into clusters
such that similarity within a cluster is maximized and
similarity between clusters is minimized. Such an approach is
well suited for systems like the World Wide Web where
classes are dynamic and cannot be defined beforehand. In
other scenarios the supervised approach has been found to be
adequate.

Among the supervised approaches are Support Vector
Machines (SVM), k Nearest Neighbors (kNN), Naive Bayes
Classifier, Neural Networks (NN) and Decision Trees.
Among these, kNN is one of the most popular and extensive
[2], but it still has many defects, such as great calculation
complexity and bias towards classes which have more
training documents. In this paper, we mention methods to
reduce the bias of kNN and design an algorithm using these
methods.

While searching for information on a particular topic, it is
often the case that we cannot decide whether an article is
relevant or not without having read it entirely. Instead of
having to read the entire article, if we could simply specify
our search area of interest and have a system summarize the
contents of the document that matched that interest we could
then conclude whether the article was relevant. Thus, much
time and effort could be saved. Document Summarization is
converting a large text into a brief explanation that conveys
all the important information present in the text, but omits
trivial or redundant data.

Summarization approaches can be divided into two types –
Extractive summarization and Abstractive summarization.
Extractive summarization deals with identifying the most
relevant sentences or passages in one or more documents and
combining them together to form a non-redundant summary
that is shorter than the original set of documents with as little
information loss as possible. Abstractive summarization, on
the other hand, involves parsing the original text in a deep
linguistic way, interpreting it semantically and converting it
into a formal representation, finding new more concise
concepts to describe the text and then generating a new
shorter text- an abstract, with the same basic informative
content. While there has been quite a bit of work in using
extractive summarization, there has been limited study in
abstractive summarization as this is much harder to achieve.
The algorithm presented in this paper makes use of the
extractive summarization technique.

Query-based Text Summarization goes a step further as it
summarizes data of a document based on a query entered by a
user. Query-based Multi-Document Text Summarization
takes a query, summarizes the content of a number of
documents with respect to the query and returns a single
consolidated summary. While there are now a number of
tools that provide summaries of documents, work on

Improved Algorithms for Document Classification &
Query-based Multi-Document Summarization

Suzanne D’Silva, Neha Joshi, Sudha Rao, Sangeetha Venkatraman, and Seema Shrawne

IACSIT International Journal of Engineering and Technology, Vol.3, No.4, August 2011

404

query-based text summarization is still in progress, and it is
this type of summary that we attempt to produce through the
methods that we will describe in this paper.

II. RELATED WORK

A. Classification: Problem Description
Zhou [3] described the process of text classification as

follows: given a document collection {D1, D2,..., Dn }, a
category Ci from the predefined category collection {C1,
C2,...,Cm } has to be assigned to a test document Dj. Thus we
aim to estimate a mapping function f: D x C -> {0, 1} (that
describes how documents ought to be classified). The
mapping function between collection D and collection C is :
D x C {djci | j = 1,2,.. ,n , i = 1,2, ,m} and the value of element
djci is 1 means that we classify document dj under category ci,
otherwise, the value of element djci is 0 means we do not
classify document di under category ci .

B. Preprocessing for Text Classification
For every document, Stopword filtering (where frequently

occurring words of little importance are filtered out from the
document) and Stemming (where different morphological
variants of a word are reduced to a common root called a stem}
are applied on each of the training data text files. The final set
of words forms the vocabulary of the training set.

The documents are represented in the Vector Space Model.
The core idea is to make the document become a numeral
vector in multi-dimension space. Every dimension represents
a word and the corresponding numerical value represents the
term frequency, term frequency- inverse sentence frequency
(tf-isf) or term frequency-inverse document frequency
(tf-idf).

C. k Nearest Neighbors(kNN) Algorithm
kNN is a supervised learning classification algorithm

where the classification is performed using the samples in the
training set without any additional data. kNN classification
algorithm predicts the test sample’s category based on the k
training samples which are found to be the nearest neighbors
to the test sample, assigns scores to the different categories
using a decision rule and finally classifies it under the
category which has the largest score.

The kNN algorithm for classifying a document X is:

Suppose there are a number of categories {C1,C2,..Cm} and

the total number of training documents is n. After
pre-processing each document, they all become j-dimension
feature vectors.
1) Represent document X in the same text feature vector

form (X1, X2, …, Xj) as the training samples.
2) Calculate the similarities between all training samples

and document X using Cosine Similarity, refer to (1).
Consider a training document Dl {dl1, dl2, .., dlj }.

 (1)

3) Let knn be the k documents which have the highest
similarity with X. These documents form the set of k
nearest neighbours.

4) Use a decision rule to decide the scores of each class of
X using knn.

5) Select the class with the highest score to be the category
of X.

A number of decision rules exist to give scores to classes.

1) Decision rule of Classical kNN

 ∑

∈

=
knnDj

CiDjyDjXSimCiXScore),(*),(),((2)

where y(Dj, Ci) = 1 if document Dj belongs to category Ci; = 0
otherwise.

2) Decision rule of Adaptive kNN

∑
∑

∈

∈=

)(__

__

),(

),(*),(
),(

CiknnnmtopDj

knnnmtopDj

DjXSim

CiDjyDjXSim
CiXScore (3)

 top-nm-knn(Ci) = {top nm documents of knn |

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎥

⎤
⎢
⎢

⎡
∗+)(,,

)](max[
)(min CiNk
CgN

CiNkα }

where N(Ci) is the size of class Ci, max[N(Cg)] is the
maximum size of any class, & α is a non-negative integer [4].

3) Decision Rule of Neighbour Weighted kNN

∑
∈

=
knnDj

CiDjyDjXSimCiwtCiXScore),(*),(*)(),((4)

Here let the k neighbours among the training documents be
contained in k* categories: C1, C2, ..., Ck* . Then weight of a
class Ci is given as [5],

4) Decision Rule of Yang’s Variant[6]

 (5)

D. Improved knn using top k-buffer
This algorithm [7] reduces the number of cosine similarity

operations to be carried out using a buffer of size k, called the
top-k buffer. All term frequencies are normalized and cosine
similarity value between two documents is only calculated
between terms that are common to both documents
(keywords). Using the top-K buffer, a set of the k closest
documents at a certain point of time is always maintained.

IACSIT International Journal of Engineering and Technology, Vol.3, No.4, August 2011

405

While considering a new document, if its sum of term
frequencies is less than the value of minimum cosine
similarity in the buffer, we need not compute its cosine
similarity. This prevents a lot of unnecessary cosine
similarity computations.

In this paper, we make use of the results of the variants of
kNN given above to design a new algorithm that performs
document classification.

E. Approaches to Document Summarization
In the past, many approaches for query based extractive

summarization have been adopted. These approaches dealt
with different important aspects to be considered for the
purpose of summarization.

1) Hypergraph based semi-supervised sentence ranking for

query oriented summarization [8]: In this algorithm, the
document is represented as a hypergraph, in which the
sentences (along with the query) are represented as
nodes and the similarity between them is represented by
the edge weights between the nodes. Also the sentences
are divided into clusters using the DBSCAN algorithm
and a hyperedge is added for each cluster. Then the
Hypersum algorithm is run to calculate the significance
of the sentences and the ones with the highest
significance and which are non-redundant are included
in the final summary.

2) Sentence Feature Fusion [9]: This paper considered the
following different features for ranking the sentences of
the document: Term Frequency-Inverse Sentence
Frequency, keyword feature, part of speech of the term,
and length of the sentence containing the term.

3) Sentence clustering and extraction [10]: This paper
adopted the clustering technique to determine the topic
sentences from the given document. It also presented a
strategy to determine the optimal value of k for the k
clustering algorithm.

In this paper we present two different algorithms for
document summarization. The first one tries to improvise on
the Hypergraph technique described in [8] by using k
clustering algorithm to form the clusters where the initial k
centroids are chosen according to their relevance with the
query. Also, the similarity measure between two sentences
not only depends on the frequency of terms appearing in
them but also on the other important features mentioned in
[9]. The second algorithm tries to combine the two important
aspects presented in [9] and [10] for obtaining a query-based
multi document summary.

III. PROPOSED METHOD
This section outlines the algorithms used in our

Classification & Summarization Tool, CAST.

A. CAST Algorithm for Classification
Based on the results of the 4 previous variants of kNN, we

designed the CAST Algorithm for Classification which uses
the results of the 4 variants. Each variant outputs a list of
classes in decreasing order of likelihood that the test

document belongs to that class. A weighted rank system is
used to score each class based on its position in the list of
classes output by each of the 4 variants.

The CAST algorithm for Classification is as follows:

Input: D = {D1, D2,..,Dn}is the set of training documents in
the training set (TS)
 C = {C1, C2,...,Cm} is the list of categories (classes)
 Test Document X {w1, w2,... wh}, where h is the length
of the feature space
 k, α, exponent
Output: Category(X)
Begin
resultAdaptive AdaptiveKNN(k, α)
resultNW NeighbourWeightedKNN(k, exponent)
resultYang YangVariantKNN(k)
resultImprovedKNN ImprovedKNN(k)
for each result do

if class Ci is given rank r then
 CastScore(Ci) += maximum no. of classes - r;

Category(X) class with maximum CastScore
End

B. Preprocessing for Summarization
The given document undergoes following stages of

pre-processing:
1) Conversion from PDF format to text format
2) Tokenization & Part of Speech Tagging using Stanford

POS Tagger
3) Stopword filtering
4) Stemming using Porter stemmer
5) Calculating tf-isf of the terms
6) Assigning weights to the terms considering tf-isf, tag

assigned to the terms & their similarity to the query
keywords

7) Assigning weights to sentences by summing all the term
weights

C. Improved HyperSum Algorithm for Summarization
The basic algorithm is same as that described in [8]. But

instead of the DBSCAN algorithm, the clustering is done
using k clustering algorithm. Also in the k clustering
algorithm, instead of choosing the initial k centroids
randomly, we choose the first k sentences with highest
weights as the initial k centroids. Since the weight of the
terms and hence the weights of the sentences depend partly
on the query relevance, we choose those sentences which are
most relevant to the query as the centroids. Also, in the
original implementation, for calculating the cosine similarity
between sentences, the sentences were expressed as vectors
where the elements of the vectors consisted of only the term
frequencies. In our version of the HyperSum algorithm, the
elements of the vector consist of the weights of the terms.
Hence the similarity measure includes many factors and not
just term frequency.

D. CAST Algorithm for Summarization
Initially, the sentences are represented as sentence vectors,

where the elements are the term weights of the words
calculated by considering the query relevance, tf-isf and part
of speech tagging. The sentence weights are calculated as the

IACSIT International Journal of Engineering and Technology, Vol.3, No.4, August 2011

406

sum of all the term weights in the sentence. The sentences are
then sorted in descending order of their sentence weights.

Now the sentences are clustered using k- cluster algorithm.
The value of k is derived from a formula as specified in the
algorithm. Instead of assigning k random sentences to the k
clusters initially, we choose the k sentences with the highest
sentence weights and assign them to the k clusters. Then the k
clusters are formed using the k cluster algorithm.

For generating the summary, we choose the sentence from
each cluster with the highest cosine similarity with the
centroid. This process is repeated till the summary length is
reached. In case the summary length is less than the number
of clusters k, then the sentences are selected from those
clusters having more relevance to the document.

For generating the multi document summary, the CAST
algorithm is run on the consolidated summaries of the
individual documents.

The CAST Algorithm for Summarization is as follows:

Input: Document Set D = {D1, D2, D3,.... Dn}
 Query = Q
 Summarization factor = sf
Output: Summary S
Begin
A. foreach document Di in set D

1. foreach term t in Di
 1.1 Calculate tf_isf of t
 1.1.1 tf = frequency(t)/ total # terms in Di
 1.1.2 isf= log(total # sentences/ # sentences
containing term t)
 1.1.3 tf_isf(t) = tf * isf
 1.2 Calculate wt of t
 1.2.1 According to tf_isf , wt(t)= tf_isf(t)
 1.2.2 According to Q & synonyms of Q
 if(t is query word) then

wt(t) += max(wt(t))*
QUERY_WORD_MULTIPLIER

else if(t is synonym of query word)
 wt(t) += max(wt(t)) *
QUERY_WORD_SYN_MULTIPLIER

1.2.3 According to tag of word
 if(t is proper noun) then wt(t) += max(wt(t)) *

PROPER_NOUN_MULTIPLIER
if(t is common noun) then wt(t) += max(wt(t)) *

COMMON_NOUN_MULTIPLIER
if(t is verb) then wt(t) +=max(wt(t)) *

VERB_MULTIPLIER
if(t is adjective) then wt(t) += max(wt(t)) *

ADJ_MULTIPLIER

 2. foreach sentence s in Di
 wt(s) = summation of weights of all terms (t) in s

3. Sort the sentences S of Di in descending order
according to wt(s)

4. Calculate the no. of clusters (K)

where |Di| is the number of terms in document Di, |Si| is the
number of terms in the sentence Si, n is the number of
sentences in document Di.
5. Assign the first K sentences from the sorted list obtained
by step 4 as the central sentences of the clusters.
6. Form the K clusters using K-Clustering algorithm
 6.1 Assign each sentence s from the set of sentences S
to the cluster that has the closest central sentence using
the cosine similarity between the sentence s and the central
sentence of the cluster c

6.2 When all sentences have been assigned to a cluster,
recalculate the central sentence of each cluster. The central
sentence is the one with the highest accumulative similarity

6.3 Repeat steps 6.1 and 6.2 until central sentence no
longer moves. This produces a separation of the sentences
into K clusters
7. Calculate the cosine similarity between each cluster c and
the document Di
8. Sort the clusters in descending order of their similarity
with document. Let this sorted list be C.
9. No. of sentences of Summary = Total No. of sentences*
Summarization factor
10. Generate the summary of document Di
 10.1 Summarized Text ST = { }
 10.2 while size of ST < # sentences of Summary
 foreach cluster c in C

Choose the sentence s from c such that s is not
in ST & has the highest similarity with the
centroid of c; ST = ST U s

B. Let DS be the document created by merging all the
summaries of set D

C. Run the algorithm in A on the document DS and obtain
the resultant summary S

IV. EXPERIMENTAL EVALUATION AND RESULTS

A. Classification Results
The Training Data text files are all converted into the

Attribute Relation File Format (.arff). Even the test document
is converted into the .arff format. Within each file, every
instance is represented as a list of terms and their frequency
within the file. We normalize each term frequency by
dividing it with the total number of words in the document.
This method has been found to remove the bias towards
longer documents.

Similarity of documents is measured using the Cosine
Similarity function, refer to (1). We tested our algorithm with
the standard dataset Reuters-21578 Mod Apte split, out of
which we considered 4431 training documents categorized

IACSIT International Journal of Engineering and Technology, Vol.3, No.4, August 2011

407

under 25 classes with strengths ranging from 25 to 400. The
value of k is set to be the square root of the training set size.
Therefore, in our evaluations, k was set to 65. The values of
the algorithm parameters were set as α = 3 and exponent =
1.5.

Efficiency of the classification algorithms was measured
by precision and recall. Precision for a class C is the number
of correctly identified documents of C divided by the total
number of documents classified under class C. Recall is the
proportion of documents of class C that get correctly
classified under C. It is desirable to have high values of both
these parameters. Tables I and II list the precision and recall
values of different algorithms for different classes (C:
Classical kNN Algorithm, A: Adaptive kNN Algorithm, N:
Neighbour Weighted kNN Algorithm, Y: Yang’s Variant
kNN Algorithm, CAST: CAST kNN Algorithm).

TABLE I: CLASSIFICATION PRECISION VALUES

Class Size C A N Y I CAST
Acq 400 .69 .71 .70 .35 .63 .71

Carcass 50 .22 .33 .28 .11 .17 .33
Copper 47 .50 .72 .56 .67 .11 .61

Cpi 69 .57 .54 .57 .11 .50 .57
Crude 389 .87 .79 .83 .46 .77 .81

Ipi 41 .50 .58 .50 .75 .42 .58
Iron-steel 40 .21 .57 .43 .64 .07 .50

Jobs 46 .24 .33 .33 .38 .29 .38
Livestock 75 .17 .33 .25 .33 .17 .25
Money-fx 400 .56 .51 .61 .28 .73 .60
M-supply 138 .62 .76 .65 .62 .71 .79

Ship 197 .43 .63 .61 .56 .37 .63
Trade 369 .83 .80 .83 .41 .88 .85
Wheat 212 .30 .24 .28 .32 .65 .59

TABLE II: CLASSIFICATION RECALL VALUES

Thus, CAST algorithm is found to perform as well as, and

in some cases, better than the other variants of kNN
algorithm.

B. Summarization Results
According to our experiments, the following values of the

constants defined in the CAST algorithm gave satisfactory
results:

QUERY_WORD_MULTIPLIER = 10

QUERY_WORD_SYN_MULTIPLIER = 20/3

PROPER_NOUN_MULTIPLIER = 1
COMMON_NOUN_MULTIPLIER = 0.9

VERB_MULTIPLIER= 0.7

ADJECTIVE_MULTIPLIER = 0.4

The summaries obtained using the two algorithms
presented in the paper were compared with human
summaries. The performances of the two algorithms were
evaluated using ROUGE [11] and the results are as follows:

TABLE III: SUMMARIZATION PRECISION & RECALL VALUES

 Algorithms HyperSum CAST
Methods Precision Recall Precision Recall

ROUGE-N 0.71 0.77 0.68 0.61
ROUGE-L 0.71 0.76 0.66 0.60
ROUGE-W 0.38 0.21 0.35 0.17

 ROUGE-S 0.51 0.59 0.46 0.39

The results of evaluation (see Table III) using ROUGE

show that the CAST algorithm performs as well as
HyperSum. However, CAST deals only with clustering and
uses sentence features whereas the HyperSum algorithm
requires two processing-intensive operations -clustering and
complex matrix calculations. Therefore, in applications
where a summary is to be generated while being economical
with resources, CAST algorithm would be a better option.

V. CONCLUSION
In this paper, we set out to develop an improved version of

the kNN Algorithm. After analyzing the strengths of the
existing kNN algorithms, we arrived at the CAST algorithm
of Classification which uses the weighted result of Adaptive
kNN, Neighbor Weighted kNN, Yang’s Variant of kNN and
Improved kNN using a top-k buffer to output the class of a
test document. After comparing results of Classical kNN, the
four variants, and CAST, we are confident that CAST
performs well even when classes in the training set are of
different strengths. A comparison of CAST with other
supervised classification approaches like SVM would be the
next step.

 Also, in this paper we proposed to improvise on
HyperSum and adapt it for Multi-document summarization
by using k clustering algorithm to cluster the sentences
instead of the DBSCAN algorithm and considering the query
relevance while assigning the initial k centroids of the
clusters. We use the same improvisation for our CAST
algorithm. In addition to this, in CAST algorithm, in case the
summary length is less than the number of clusters k, then the
sentences are selected from those clusters having more
relevance with respect to the document. The evaluation
results of Query Based Multi-Document Summarization
suggest that this is a promising area for research to be
continued.

Class Size C A N Y I CAST
Acq 400 .97 .96 .97 .89 .96 .97

Carcass 50 .44 .35 .50 .08 .43 .40
Copper 47 1.0 .50 1.0 .23 1.0 1.0

Cpi 69 .47 .43 .47 .06 .47 .48
Crude 389 .66 .66 .7 .39 .72 .71

Ipi 41 .67 .58 .67 .31 .50 .58
Iron-steel 40 .43 .53 .60 .20 .50 .64

Jobs 46 1.0 .7 1.0 .22 1.0 1.0
Livestock 75 1.0 .53 1.0 .24 .80 1.0
Money-fx 400 .58 .63 .59 .27 .53 .58
M-supply 138 .42 .41 .51 .28 .39 .44

Ship 197 .69 .58 .64 .26 .70 .62
Trade 369 .54 .64 .56 .41 .47 .60
Wheat 212 .47 .45 .48 .29 .38 .43

IACSIT International Journal of Engineering and Technology, Vol.3, No.4, August 2011

408

REFERENCES
[1] Y. Ko, and J. Seo, “Automatic text categorization by unsupervised

learning,” in Proc. 18th conference on Computational linguistics, vol.
1, 2000, pp. 453-459.

[2] Y. Yang, “An evaluation of statistical approaches to text
categorization,” Inf. Retr., vol. 1, pp. 69-90, 1999.

[3] Y. Zhou, Y. Li and S. Xia, “An improved KNN text classification
algorithm based on clustering,” Journal of Computers, vol. 4,
pp.230-237, 2009.

[4] L. Baoli, L. Qin and Y. Shiwen, “An adaptive k-nearest neighbor text
categorization strategy,” ACM, pp. 215-226, 2004.

[5] S. Tan, “Neighbor-weighted K-nearest neighbor for unbalanced text
corpus,” Expert Syst. Appl, pp. 667-671, 2005

[6] Y. Yang, T. Ault, T. Pierce and C. W. Lattimer, “Improving text
categorization methods for event tracking,” in Proc. 23rd annual
international ACM SIGIR conference on Research and development in
information retrieval, ACM, 2000, pp. 65-72.

[7] M. Miah, “Improved k-NN algorithm for text classification,” in Proc.
Int. Conf. on Data Mining, 2009, pp. 434-440.

[8] W. Wang, F. Wei, W. Li, and S. Li, “HyperSum: hypergraph based
semi-supervised sentence ranking for query-oriented summarization,”
in Proc. 18th ACM conference on Information and knowledge
management, 2009, pp. 1855-1858.

[9] L. Suanmali, M. S. Binwahlan and N. Salim, “Sentence features fusion
for text summarization using fuzzy logic,” IEEE Computer Society,
Hybrid Intelligent Systems, International Conference, vol. 1, pp.
142-146, 2009.

[10] P. Zhang and C. Li, “Automatic text summarization based on sentences
clustering and extraction,” IEEE Computer Society, International
Conference on Computer Science and Information Technology, vol. 0,
pp. 167-168, 2009.

[11] C. Lin, “ROUGE: A package for automatic evaluation of summaries,”
in Proc. Workshop on Text Summarization Branches Out,
Post-Conference Workshop of ACL, 2004.

Suzanne D'Silva will be graduating with a Bachelor's Degree in
Engineering in computer science from Veermata Jijabai Technological
Institute, Mumbai (India) in 2011.

She has interned as a Software Analyst at Morgan Stanley Advantage
Services during the period May-July 2010. Her areas of interests are
Algorithms, Artificial Intelligence, Data Structures, Data Mining and
Biotechnology.

Neha Joshi holds a Diploma in Computer Engineering from Shri
Bhagubhai Mafatlal Polytechnic (2008) and will be graduating with a
Bachelor's Degree in Engineering in computer science from Veermata Jijabai
Technological Institute, Mumbai (India) in 2011.
 She has interned as a Software Developer at Nomura Services India Pvt.
Ltd. during the period May-July 2010. Her areas of interests are Databases,
Data Mining, Algorithms and Computer Networks.

Sudha Rao will be graduating with a Bachelor's Degree in Engineering in

computer science from Veermata Jijabai Technological Institute, Mumbai
(India) in 2011.

She has interned as a Software Developer at Microsoft IDC, Hyderabad
during the period May-July 2010. Her areas of interests are Algorithms,
Data structures, Operating Systems, Artificial Intelligence and Web
Application Development.

Sangeetha Venkatraman will be graduating with a Bachelor's Degree in
Engineering in computer science from Veermata Jijabai Technological
Institute, Mumbai in 2011.

She has interned as a Program Analyst at Nomura Services Pvt. Ltd.
during the period May-July 2010. Her areas of interest are Databases,
Computer Networks, Operating Systems, Data Structures, Artificial
Intelligence and Web Application Development.

Mrs. Seema Shrawne graduated with a Bachelor’s Degree in
Engineering in computer science from Government College of Engineering,
Amravati, in 1992.

She has been a lecturer in the computer technology department
at Veermata Jijabai Technological Institute, Mumbai (India) for the last 10
years. Her areas of interest are Databases, Computer Networks and
Information Retrieval.

IACSIT International Journal of Engineering and Technology, Vol.3, No.4, August 2011

409

