
  

  
Abstract—With an excess of information in recent times, 

sound information retrieval is the need of the hour. Document 
Classification, where a document is classified as being under 
one of a number of predefined categories, is the foundation of 
an efficient and effective Information Retrieval system. Once 
information has been retrieved, the next step is unearthing the 
relevant and essential information. Query-based Multi- 
Document Summarization will do just that. In this paper, we 
analyze the different variants of the k Nearest Neighbors (kNN) 
Classification Algorithm and from them design the CAST 
Algorithm for Classification, which, as precision and recall 
results will show, performs better in most cases. For document 
summarization, we analyze and improvise on a Hypergraph 
based algorithm. Further, we design and describe the CAST 
Algorithm for Summarization and show that it performs well 
for Query-based Multi-Document Summarization. 

 
Index Terms—Document Classification, Multi-Document 

Summarization, Query-based summary. 
 

I. INTRODUCTION 
The 20th century and beyond, with the advent of the 

personal computer and the internet, has rightly been called 
the Information Age. The amount of information available is 
vast and is only growing exponentially. It has now become 
critical to search through this huge amount of information 
with speed and accuracy and finally find the required 
information. Document Classification is categorizing a 
document as being under one of a number of predefined 
classes. Categorizing helps, because it is now easier to find 
information and this has been put to a number of uses like 
spam filtering, topic filtering, language guessing, organizing 
documents, etc. 

There are broadly two approaches to classification- the 
supervised approach where predefined category labels are 
given to documents based on the likelihood suggested by a 
training set of labeled documents [1] and the unsupervised 
approach where no training set or human intervention is 
required at any point of the process. The unsupervised 
approach includes k-means clustering and other clustering 
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algorithms which simply try to organize data into clusters 
such that similarity within a cluster is maximized and 
similarity between clusters is minimized. Such an approach is 
well suited for systems like the World Wide Web where 
classes are dynamic and cannot be defined beforehand. In 
other scenarios the supervised approach has been found to be 
adequate. 

Among the supervised approaches are Support Vector 
Machines (SVM), k Nearest Neighbors (kNN), Naive Bayes 
Classifier, Neural Networks (NN) and Decision Trees. 
Among these, kNN is one of the most popular and extensive 
[2], but it still has many defects, such as great calculation 
complexity and bias towards classes which have more 
training documents. In this paper, we mention methods to 
reduce the bias of kNN and design an algorithm using these 
methods. 

While searching for information on a particular topic, it is 
often the case that we cannot decide whether an article is 
relevant or not without having read it entirely. Instead of 
having to read the entire article, if we could simply specify 
our search area of interest and have a system summarize the 
contents of the document that matched that interest we could 
then conclude whether the article was relevant. Thus, much 
time and effort could be saved. Document Summarization is 
converting a large text into a brief explanation that conveys 
all the important information present in the text, but omits 
trivial or redundant data.  

Summarization approaches can be divided into two types – 
Extractive summarization and Abstractive summarization. 
Extractive summarization deals with identifying the most 
relevant sentences or passages in one or more documents and 
combining them together to form a non-redundant summary 
that is shorter than the original set of documents with as little 
information loss as possible. Abstractive summarization, on 
the other hand, involves parsing the original text in a deep 
linguistic way, interpreting it semantically and converting it 
into a formal representation, finding new more concise 
concepts to describe the text and then generating a new 
shorter text- an abstract, with the same basic informative 
content. While there has been quite a bit of work in using 
extractive summarization, there has been limited study in 
abstractive summarization as this is much harder to achieve. 
The algorithm presented in this paper makes use of the 
extractive summarization technique. 

Query-based Text Summarization goes a step further as it 
summarizes data of a document based on a query entered by a 
user.  Query-based Multi-Document Text Summarization 
takes a query, summarizes the content of a number of 
documents with respect to the query and returns a single 
consolidated summary. While there are now a number of 
tools that provide summaries of documents, work on 
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query-based text summarization is still in progress, and it is 
this type of summary that we attempt to produce through the 
methods that we will describe in this paper. 

 

II. RELATED WORK 

A. Classification: Problem Description 
Zhou [3] described the process of text classification as 

follows: given a document collection {D1, D2,..., Dn }, a 
category Ci from the predefined category collection {C1, 
C2,...,Cm }  has to be assigned to a test document Dj. Thus we 
aim to estimate a mapping function f: D x C -> {0, 1} (that 
describes how documents ought to be classified). The 
mapping function between collection D and collection C is : 
D x C {djci | j = 1,2,.. ,n , i = 1,2, ,m} and the value of element  
djci is 1 means that we classify document  dj under category ci, 
otherwise, the value of element  djci is 0 means we do not 
classify document di  under category ci . 

B. Preprocessing for Text Classification 
For every document, Stopword filtering (where frequently 

occurring words of little importance are filtered out from the 
document) and Stemming (where different morphological 
variants of a word are reduced to a common root called a stem} 
are applied on each of the training data text files. The final set 
of words forms the vocabulary of the training set.  

The documents are represented in the Vector Space Model. 
The core idea is to make the document become a numeral 
vector in multi-dimension space. Every dimension represents 
a word and the corresponding numerical value represents the 
term frequency, term frequency- inverse sentence frequency 
(tf-isf) or term frequency-inverse document frequency 
(tf-idf). 

C. k Nearest Neighbors(kNN) Algorithm 
kNN is a supervised learning classification algorithm 

where the classification is performed using the samples in the 
training set without any additional data. kNN classification 
algorithm predicts the test sample’s category based on the k 
training samples which are found to be the nearest neighbors 
to the test sample, assigns scores to the different categories 
using a decision rule and finally classifies it under the 
category which has the largest score. 

The kNN algorithm for classifying a document X is:  
 
Suppose there are a number of categories {C1,C2,..Cm} and 

the total number of training documents is n. After 
pre-processing each document, they all become j-dimension 
feature vectors. 
1) Represent document X in the same text feature vector 

form (X1, X2, …, Xj ) as the training samples. 
2) Calculate the similarities between all training samples 

and document X using Cosine Similarity, refer to (1).  
Consider a training document Dl {dl1, dl2, .., dlj }.  

                                                            (1)                

3) Let knn be the k documents which have the highest 
similarity with X. These documents form the set of k 
nearest neighbours. 

4) Use a decision rule to decide the scores of each class of 
X using knn. 

5) Select the class with the highest score to be the category 
of X.  

 
A number of decision rules exist to give scores to classes. 
 
1)    Decision rule of Classical kNN 
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where y(Dj, Ci ) = 1 if document Dj belongs to category Ci; = 0 
otherwise. 
 
2) Decision rule of Adaptive kNN 
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where N(Ci) is the size of class Ci,  max[ N(Cg)] is the 
maximum size of any class, & α is a non-negative integer [4]. 

 
3)  Decision Rule of Neighbour Weighted kNN 
 

∑
∈

=
knnDj

CiDjyDjXSimCiwtCiXScore ),(*),(*)(),(   (4) 

Here let the k neighbours among the training documents be 
contained in k* categories: C1, C2, ..., Ck* . Then weight of a 
class Ci is given as [5], 

 

 
 
4)  Decision Rule of Yang’s Variant[6] 

                       (5) 
 

D. Improved knn using top k-buffer 
This algorithm [7] reduces the number of cosine similarity 

operations to be carried out using a buffer of size k, called the 
top-k buffer. All term frequencies are normalized and cosine 
similarity value between two documents is only calculated 
between terms that are common to both documents 
(keywords). Using the top-K buffer, a set of the k closest 
documents at a certain point of time is always maintained. 
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While considering a new document, if its sum of term 
frequencies is less than the value of minimum cosine 
similarity in the buffer, we need not compute its cosine 
similarity. This prevents a lot of unnecessary cosine 
similarity computations.   

In this paper, we make use of the results of the variants of 
kNN given above to design a new algorithm that performs 
document classification. 

E. Approaches to Document Summarization 
In the past, many approaches for query based extractive 

summarization have been adopted. These approaches dealt 
with different important aspects to be considered for the 
purpose of summarization. 

 
1) Hypergraph based semi-supervised sentence ranking for 

query oriented summarization [8]:  In this algorithm, the 
document is represented as a hypergraph, in which the 
sentences (along with the query) are represented as 
nodes and the similarity between them is represented by 
the edge weights between the nodes. Also the sentences 
are divided into clusters using the DBSCAN algorithm 
and a hyperedge is added for each cluster. Then the 
Hypersum algorithm is run to calculate the significance 
of the sentences and the ones with the highest 
significance and which are non-redundant are included 
in the final summary.  

2) Sentence Feature Fusion [9]: This paper considered the 
following different features for ranking the sentences of 
the document: Term Frequency-Inverse Sentence 
Frequency, keyword feature, part of speech of the term, 
and length of the sentence containing the term. 

3) Sentence clustering and extraction [10]: This paper 
adopted the clustering technique to determine the topic 
sentences from the given document. It also presented a 
strategy to determine the optimal value of k for the k 
clustering algorithm. 
 

In this paper we present two different algorithms for 
document summarization. The first one tries to improvise on 
the Hypergraph technique described in [8] by using k 
clustering algorithm to form the clusters where the initial k 
centroids are chosen according to their relevance with the 
query. Also, the similarity measure between two sentences 
not only depends on the frequency of terms appearing in 
them but also on the other important features mentioned in 
[9]. The second algorithm tries to combine the two important 
aspects presented in [9] and [10] for obtaining a query-based 
multi document summary.  
 

III. PROPOSED METHOD 
This section outlines the algorithms used in our 

Classification & Summarization Tool, CAST. 

A. CAST Algorithm for Classification 
Based on the results of the 4 previous variants of kNN, we 

designed the CAST Algorithm for Classification which uses 
the results of the 4 variants. Each variant outputs a list of 
classes in decreasing order of likelihood that the test 

document belongs to that class. A weighted rank system is 
used to score each class based on its position in the list of 
classes output by each of the 4 variants. 

 
The CAST algorithm for Classification is as follows: 
 
Input: D = {D1, D2,..,Dn}is the set of training documents in 
the training set (TS) 
           C = {C1, C2,...,Cm}  is the list of categories (classes) 
          Test Document X {w1, w2,... wh}, where h is the length 
of the feature space 
           k, α, exponent 
Output: Category(X) 
Begin 
resultAdaptive  AdaptiveKNN(k, α) 
resultNW  NeighbourWeightedKNN(k, exponent) 
resultYang  YangVariantKNN(k) 
resultImprovedKNN ImprovedKNN(k) 
for each result do 

if class Ci is given rank r then 
      CastScore(Ci) += maximum no. of classes - r; 

Category(X) class with maximum CastScore 
End 

B. Preprocessing for Summarization 
The given document undergoes following stages of 

pre-processing:  
1) Conversion from PDF format to text format 
2) Tokenization & Part of Speech Tagging using Stanford 

POS Tagger 
3) Stopword filtering 
4) Stemming using Porter stemmer 
5) Calculating tf-isf of the terms 
6) Assigning weights to the terms considering tf-isf, tag 

assigned to the terms & their similarity to the query 
keywords 

7) Assigning weights to sentences by summing all the term 
weights 

C. Improved HyperSum Algorithm for Summarization 
The basic algorithm is same as that described in [8]. But 

instead of the DBSCAN algorithm, the clustering is done 
using k clustering algorithm. Also in the k clustering 
algorithm, instead of choosing the initial k centroids 
randomly, we choose the first k sentences with highest 
weights as the initial k centroids. Since the weight of the 
terms and hence the weights of the sentences depend partly 
on the query relevance, we choose those sentences which are 
most relevant to the query as the centroids. Also, in the 
original implementation, for calculating the cosine similarity 
between sentences, the sentences were expressed as vectors 
where the elements of the vectors consisted of only the term 
frequencies. In our version of the HyperSum algorithm, the 
elements of the vector consist of the weights of the terms. 
Hence the similarity measure includes many factors and not 
just term frequency. 

D. CAST Algorithm for Summarization 
Initially, the sentences are represented as sentence vectors, 

where the elements are the term weights of the words 
calculated by considering the query relevance, tf-isf and part 
of speech tagging. The sentence weights are calculated as the 
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sum of all the term weights in the sentence. The sentences are 
then sorted in descending order of their sentence weights. 

Now the sentences are clustered using k- cluster algorithm. 
The value of k is derived from a formula as specified in the 
algorithm. Instead of assigning k random sentences to the k 
clusters initially, we choose the k sentences with the highest 
sentence weights and assign them to the k clusters. Then the k 
clusters are formed using the k cluster algorithm.  

For generating the summary, we choose the sentence from 
each cluster with the highest cosine similarity with the 
centroid. This process is repeated till the summary length is 
reached.  In case the summary length is less than the number 
of clusters k, then the sentences are selected from those 
clusters having more relevance to the document.  

For generating the multi document summary, the CAST 
algorithm is run on the consolidated summaries of the 
individual documents. 

The CAST Algorithm for Summarization is as follows: 
 
Input: Document Set D = {D1, D2, D3,.... Dn} 
           Query = Q 
  Summarization factor = sf 
Output: Summary S 
Begin 
A. foreach document Di in set D 
  
1. foreach term t in Di 
  1.1 Calculate tf_isf of t   
   1.1.1 tf = frequency(t)/ total # terms in Di 
   1.1.2 isf= log( total # sentences/  # sentences                                                                                                        
containing term t) 
   1.1.3 tf_isf(t) = tf * isf 
  1.2 Calculate wt of t 
   1.2.1 According to tf_isf , wt(t)= tf_isf(t) 
   1.2.2 According to Q & synonyms of Q 
       if(t is query word) then 

wt(t) += max(wt(t))* 
QUERY_WORD_MULTIPLIER 

else if(t is synonym of query word) 
      wt(t) += max(wt(t)) * 
QUERY_WORD_SYN_MULTIPLIER 

1.2.3 According to tag of word 
 if(t is proper noun) then wt(t) += max(wt(t)) *   

PROPER_NOUN_MULTIPLIER 
if(t is common noun) then wt(t) += max(wt(t)) * 

COMMON_NOUN_MULTIPLIER   
if(t is verb) then wt(t) +=max(wt(t)) * 

VERB_MULTIPLIER 
if(t is adjective) then wt(t) += max(wt(t)) *   

ADJ_MULTIPLIER 
  

  2. foreach sentence s in Di 
 wt(s) = summation of weights of all terms (t) in s 

 
3. Sort the sentences S of Di in descending order   
according to wt(s) 

4. Calculate the no. of clusters (K) 

   

where |Di| is the number of terms in document Di, |Si| is the 
number of terms in the sentence Si, n is the number of 
sentences in document Di. 
5. Assign the first K sentences from the sorted list obtained 
by step 4 as the central sentences of the clusters. 
6. Form the K clusters using K-Clustering algorithm 
  6.1 Assign each sentence s from the set of sentences S    
to the cluster that has the closest central sentence using 
the cosine similarity between the sentence s and the central 
sentence of the cluster c 

6.2 When all sentences have been assigned to a cluster, 
recalculate the central sentence of each cluster. The central 
sentence is the one with the highest accumulative similarity 

6.3 Repeat steps 6.1 and 6.2 until central sentence no 
longer moves. This produces a separation of the sentences 
into K clusters 
7. Calculate the cosine similarity between each cluster c and 
the document Di 
8. Sort the clusters in descending order of their similarity 
with document. Let this sorted list be C. 
9. No. of sentences of Summary = Total No. of sentences* 
Summarization factor 
10. Generate the summary of document Di 
  10.1 Summarized Text ST = { } 
  10.2 while size of ST < # sentences of Summary 
   foreach cluster c in C 

Choose the sentence s from c such that s is not 
in ST & has the highest similarity with the 
centroid of c; ST = ST U s 
 

B. Let DS be the document created by merging all the 
summaries of set D 
 
C. Run the algorithm in A on the document DS and obtain 
the resultant summary S 

IV. EXPERIMENTAL EVALUATION AND RESULTS 

A. Classification Results 
The Training Data text files are all converted into the 

Attribute Relation File Format (.arff). Even the test document 
is converted into the .arff format. Within each file, every 
instance is represented as a list of terms and their frequency 
within the file. We normalize each term frequency by 
dividing it with the total number of words in the document. 
This method has been found to remove the bias towards 
longer documents. 

Similarity of documents is measured using the Cosine 
Similarity function, refer to (1). We tested our algorithm with 
the standard dataset Reuters-21578 Mod Apte split, out of 
which we considered 4431 training documents categorized 
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under 25 classes with strengths ranging from 25 to 400.  The 
value of k is set to be the square root of the training set size. 
Therefore, in our evaluations, k was set to 65.  The values of 
the algorithm parameters were set as α = 3 and exponent = 
1.5. 

Efficiency of the classification algorithms was measured 
by precision and recall. Precision for a class C is the number 
of correctly identified documents of C divided by the total 
number of documents classified under class C. Recall is the 
proportion of documents of class C that get correctly 
classified under C. It is desirable to have high values of both 
these parameters.  Tables I and II list the precision and recall 
values of different algorithms for different classes (C: 
Classical kNN Algorithm, A: Adaptive kNN Algorithm, N: 
Neighbour Weighted kNN Algorithm, Y: Yang’s Variant 
kNN Algorithm, CAST: CAST kNN Algorithm). 

 
TABLE I: CLASSIFICATION PRECISION VALUES 

Class Size C A N Y I CAST
Acq 400 .69 .71 .70 .35 .63 .71 

Carcass 50 .22 .33 .28 .11 .17 .33 
Copper 47 .50 .72 .56 .67 .11 .61 

Cpi 69 .57 .54 .57 .11 .50 .57 
Crude 389 .87 .79 .83 .46 .77 .81 

Ipi 41 .50 .58 .50 .75 .42 .58 
Iron-steel 40 .21 .57 .43 .64 .07 .50 

Jobs 46 .24 .33 .33 .38 .29 .38 
Livestock 75 .17 .33 .25 .33 .17 .25 
Money-fx 400 .56 .51 .61 .28 .73 .60 
M-supply 138 .62 .76 .65 .62 .71 .79 

Ship 197 .43 .63 .61 .56 .37 .63 
Trade 369 .83 .80 .83 .41 .88 .85 
Wheat 212 .30 .24 .28 .32 .65 .59 

 
 

TABLE II: CLASSIFICATION RECALL VALUES 

 
Thus, CAST algorithm is found to perform as well as, and 

in some cases, better than the other variants of kNN 
algorithm. 

B. Summarization Results 
According to our experiments, the following values of the 

constants defined in the CAST algorithm gave satisfactory 
results: 

QUERY_WORD_MULTIPLIER = 10 
 
QUERY_WORD_SYN_MULTIPLIER = 20/3 
 
PROPER_NOUN_MULTIPLIER = 1 
COMMON_NOUN_MULTIPLIER = 0.9 
 
VERB_MULTIPLIER= 0.7 
 
ADJECTIVE_MULTIPLIER = 0.4 
 

The summaries obtained using the two algorithms 
presented in the paper were compared with human 
summaries. The performances of the two algorithms were 
evaluated using ROUGE [11] and the results are as follows: 

 
TABLE III: SUMMARIZATION PRECISION & RECALL VALUES 

  Algorithms HyperSum CAST 
Methods Precision Recall Precision Recall

ROUGE-N 0.71 0.77 0.68 0.61 
ROUGE-L 0.71 0.76 0.66 0.60 
ROUGE-W 0.38 0.21 0.35 0.17 

  ROUGE-S 0.51 0.59 0.46 0.39 
 
The results of evaluation (see Table III) using ROUGE 

show that the CAST algorithm performs as well as 
HyperSum. However, CAST deals only with clustering and 
uses sentence features whereas the HyperSum algorithm 
requires two processing-intensive operations -clustering and 
complex matrix calculations. Therefore, in applications 
where a summary is to be generated while being economical 
with resources, CAST algorithm would be a better option. 

 

V. CONCLUSION 
In this paper, we set out to develop an improved version of 

the kNN Algorithm. After analyzing the strengths of the 
existing kNN algorithms, we arrived at the CAST algorithm 
of Classification which uses the weighted result of Adaptive 
kNN, Neighbor Weighted kNN, Yang’s Variant of kNN and 
Improved kNN using a top-k buffer to output the class of a 
test document. After comparing results of Classical kNN, the 
four variants, and CAST, we are confident that CAST 
performs well even when classes in the training set are of 
different strengths.  A comparison of CAST with other 
supervised classification approaches like SVM would be the 
next step. 

 Also, in this paper we proposed to improvise on 
HyperSum and adapt it for Multi-document summarization 
by using k clustering algorithm to cluster the sentences 
instead of the DBSCAN algorithm and considering the query 
relevance while assigning the initial k centroids of the 
clusters. We use the same improvisation for our CAST 
algorithm. In addition to this, in CAST algorithm, in case the 
summary length is less than the number of clusters k, then the 
sentences are selected from those clusters having more 
relevance with respect to the document. The evaluation 
results of Query Based Multi-Document Summarization 
suggest that this is a promising area for research to be 
continued. 

Class Size C A N Y I CAST
Acq 400 .97 .96 .97 .89 .96 .97 

Carcass 50 .44 .35 .50 .08 .43 .40 
Copper 47 1.0 .50 1.0 .23 1.0 1.0 

Cpi 69 .47 .43 .47 .06 .47 .48 
Crude 389 .66 .66 .7 .39 .72 .71 

Ipi 41 .67 .58 .67 .31 .50 .58 
Iron-steel 40 .43 .53 .60 .20 .50 .64 

Jobs 46 1.0 .7 1.0 .22 1.0 1.0 
Livestock 75 1.0 .53 1.0 .24 .80 1.0 
Money-fx 400 .58 .63 .59 .27 .53 .58 
M-supply 138 .42 .41 .51 .28 .39 .44 

Ship 197 .69 .58 .64 .26 .70 .62 
Trade 369 .54 .64 .56 .41 .47 .60 
Wheat 212 .47 .45 .48 .29 .38 .43 
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