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Abstract—Robust clustering methods reduce the impact of 

outliers on cluster centroids. Definition of outlier depends on 

the data structure and applied detection methods. Noise 

Clustering (NC) is a robust technique, which defines outlier in 

terms of a distance, called noise distance. NC identifies outliers 

during clustering process and modifies various parameters, 

required for creating clusters, thus effecting clustering output. 

Its main motive is to reduce the influence of outliers on cluster 

centroids rather than identifying it hence could not result into 

original clusters.  However, in many applications, identification 

of outliers is important, as they may contain important 

information. Density Oriented Fuzzy C - Means (DOFCM) is a 

robust technique, which identifies outlier before clustering, on 

the basis of density of data-set. According to DOFCM, outliers 

are defined as the points that are not in the dense part of the 

data-set.  In this paper, we have compared both the techniques 

for outlier identification and clustering. The results obtained 

through comparison, by implementing various tests, concluded 

that DOFCM based upon density approach identifies outliers 

very well and gives efficient clustering results than NC 

technique which identify outliers based upon distance. 

 
Index Terms—Data mining, Density-Oriented approach, 

Fuzzy clustering, Outlier identification, Robust clustering.  

 

I.    INTRODUCTION 

Data Mining comprises of dependency detection, class 

identification, class description, and outlier/exception 

identification, the last focuses on a very small percentage of 

data points, which are often ignored as noise.  Some 

algorithms in machine learning and data mining have 

considered outliers, but only to the extent of tolerating those 

in whatever the algorithms are supposed to do. The exact 

definition of an outlier often depends on hidden assumptions 

regarding the data structure and the applied detection method 

[1]-[5]. Cluster analysis has been a fundamental research area 

in data analysis and pattern recognition. Clustering helps in 

finding natural boundaries in the data and fuzzy clustering is 

used to handle the problem of vague boundaries of clusters. 

In fuzzy clustering, the requirement of crisp partition of the 

data is replaced by a weaker requirement of fuzzy partition, 

where the association among data is represented by fuzzy 
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relations. Outlier identification and clustering are interrelated 

processes. The fuzzy clustering identifies groups of similar 

data, whereas the outlier identification extracts noise from the 

data which does not belong to any cluster. Hawkins [1] 

defines outlier as an observation that deviates so much from 

other observations as to arouse suspicion that it was 

generated by a different mechanism. Barnett & Lewis [2] 

indicate that an outlying observation or outlier is one that 

appears to deviate markedly from other members of the 

sample in which it occurs. Outlier identification is referred to 

as outlier mining, which has a lot of practical applications in 

many different areas. Outlier mining actually consists of two 

sub-problems: first, what data is deemed to be exceptional in 

a given data-set and second, find an efficient algorithm to 

obtain such data [4]. In Noise clustering (NC) [12],[13], Dave 

gave a concept of noise cluster. Data points whose distances 

to all cluster centroids exceed a certain threshold are 

considered as noise and they belong to noise cluster, and the 

distance is called noise distance. Calculation of noise 

distance is crucial point in NC. Moreover, it identifies 

outliers during the clustering process. Proposed technique 

identifies outliers before creating clusters, on the basis of 

density of data-set. After comparing both the techniques, it is 

proposed that DOFCM, a density-oriented approach to 

identify outlier is better than NC which is a distance-oriented 

technique.  

The organization of the paper is as follows: Section II, 

briefly review Fuzzy C-Means (FCM) [6] and Noise 

Clustering (NC) algorithms. The properties of robust 

clustering techniques are defined in Section III. Section IV 

described the proposed algorithm, DOFCM. Both the 

techniques are compared and the results are shown in Section 

V, followed by concluding remarks in Section VI. 

II.     FUZZY CLUSTERING TECHNIQUES 

This section briefly discusses the Fuzzy C-Means (FCM) 

and Noise Clustering (NC). In this paper, the data-set is 

denoted by „X‟, where X={x1, x2, x3, …… xn} specifying „n‟ 

points in M-dimensional space. Centroids of clusters „k‟ are 

denoted by vk, dik is the distance between xi and vk, and „c‟ is 

the number of clusters present in the data-set. 

A.   The Fuzzy C-Means Algorithm 
 

FCM [6] is the most popular fuzzy clustering algorithm. It 

assumes that number of clusters „c‟ is known in priori and 

minimizes the objective function (JFCM) as: 
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 where ikki vxd  , and uki is the membership of xi in 

cluster „k‟,  which satisfies the following relationship: 
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Here m>1 is known as the fuzzifier (or fuzziness index) 

and any norm 


 can be used for calculating dki (we used 

Euclidean norm.). Minimization of JFCM is performed by a 

fixed point iteration scheme known as the alternating 

optimization technique. The conditions for local extreme for 

“(1)” and “(2)” are derived using Lanrangian multipliers: 
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Outliers are the points in the data-set ‟X‟ which are so 

distant from the rest of the points that it would be 

unreasonable to assign high membership values to the 

outliers in any of the „c‟ clusters. FCM assigns memberships 

to „xi‟ in the „c‟ clusters inversely proportional to the relative 

distance of „xi‟ to the {vk} centroid. Let c=2, if „xi‟ is 

equidistant from two centroids, the membership of „xi‟ to 

these clusters will have the same value (0.5),  irrespective of 

the absolute value of the distance of this point from other 

points in each of the  clusters. Hence the problem with FCM 

is that it gives equal membership to the noisy points /outliers 

far from the central structure of the two clusters. It is unable 

to detect outliers and its centroid attraction is somewhat 

towards outliers rather than at the center of the cluster. 

B. Noise Clustering (NC) 

Noise clustering has been introduced by Dave [13], [14] to 

overcome the major deficiency of the FCM algorithm i.e. its 

noise sensitivity. He gave the concept of “noise prototype”, 

which is a universal entity such that it is always at the same 

distance from every point in the data-set. Let „vk‟ be the noise 

prototype and „xi‟ be any point in the data-set such that vk, xi Є 

Rp. Then noise prototype is the distance dki given by:  

                         id ki  ,     

The NC algorithm considers noise as a separate class. The 

membership u*i of xi in a noise cluster is defined as: 

 
NC reformulates FCM objective function: 
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where „c+1‟ consists of „c‟ good clusters and one noise 

cluster and for k = n = c+1. Where  

 
 

                      (6) 

and membership equation is  

 
Noise clustering is a better approach than FCM, PCM, and 

PFCM. Although, it identifies outliers in separate clusters but 

could not result into efficient cluster shapes because it fails to 

identify those outliers which are located in between the 

centroids (refer Section V). Its main emphasis is to reduce the 

influence of outliers on the clusters rather than exactly 

identifying it. Real-life data-sets usually contain cluster 

structures that differ from our assumption of hyper-spherical 

clusters. The cluster structures must be approximated by 

several centroids. If the number of clusters is increased for 

the same data-set, NC does not detect outliers, because in that 

scenario the average distance between points and regular 

clusters decreases and the noise distance remains almost 

constant [11]. NC assigns only those points to noise cluster 

whose distance from regular clusters is more than the noise 

distance. 

III. PROPERTIES OF NOISELESS CLUSTERING TECHNIQUE 

Property P1: RCT must assign lower memberships to all the 

outliers for all the clusters [15]. 

Property P2: Centroids generated by RCT on a noisy 

data-set should not deviate significantly from those generated 

for the  corresponding noiseless set, obtained by removing 

the outliers [15]. 

Property P3: RCT must be independent of any number of 

clusters i.e. able to identify outliers by changing the number 

of clusters for the same data-set [11]. 

Property P4: RCT should be independent of any amount of 

outliers i.e. Centroids generated by Clustering Technique 

should not deviate by increasing the number of outliers (refer 

section V).  

Property P5: RCT should be independent of the location of 

outliers in the data-sets i.e. it should be able to find out 

outliers whether they are within the data-set or away from it 

(refer Section V).  

IV. THE PROPOSED TECHNIQUE, DOFCM 

We attempt to decrease the noise sensitivity in fuzzy 

clustering by identifying outliers before the clustering 

process. Like NC technique DOFCM results in „n+1‟ clusters 

with „n‟ good clusters and one invalid cluster of outliers. 

Proposed algorithm identifies outliers on the basis of density 

of data-set. It has used FCM technique (by modifying 

membership) to create clusters. It identifies outliers on the 

basis of the number of other points in its neighborhood. 

DOFCM defines density factor, called neighborhood 

membership, which measures density of an object in relation 

to its neighborhood. As per the technique, the neighborhood 

of a given radius of each point in a data-set has to contain at 

least a minimum number of other points to become a good 

point(non-outlier). Shape of the neighborhood is determined 

by the choice of a distance function for two points x1 and x2 , 

denoted by dist(x1,x2) e.g. when using Manhattan distance in 

the 2D space, the neighborhood shape is rectangle and by 
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using Euclidean distance it is spherical . The proposed 

scheme uses Euclidean distance. 

Neighborhood membership of a point „i’ in the data-set „X‟ 

is defined as: 

 
max

 i

odneighborhoi

odneighborho XM                       (7) 

where 
i

odneighborho  = Number of points in the  neighborhood 

of point i    

 max = Maximum number of points in the neighborhood of 

any point in the data-set 

Let „q’ is in the neighborhood of point „i’, so „q‟ will 

satisfy: 

  
odneighborhorqidistXq  ,|                     (8) 

where rneighborhood   is the radius of neighborhood. dist (i,q) is 

the distance between point „i‟ and „q‟. 

rneighborhood is calculated as [10]. 

Neighborhood membership of each point in the data-set 

„X‟ is calculated as per “(7)” and from the complete range of 

neighborhood membership values, depending on the density 

of data-set the threshold value „α‟ is selected by the user. The 

point will be considered as an outlier if its neighborhood 

membership is less than „α‟. So, as per the analysis, Outlier 

could now be defined as a point in the data-set ‘X’ whose 

neighborhood membership is less than the threshold value 

‘α’. Let ‘i’ be a point in the data-set ‘X’, then if:  


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„α‟  can be selected from the range of  odneighborhoM  values 

after observing the density of data-set and should be close to 

zero. 

Selection of the Threshold value ‘α’: 

Ideally, a point will be outlier only if no other point is 

present in its neighborhood i.e. when neighborhood 

membership is zero or threshold value „α‟ = 0 However, in 

the proposed scheme, a point is considered as an outlier when 

its neighborhood membership  is less than  „α‟, where „α‟ is a 

critical input parameter to identify outlier. Its value will vary 

for different data-sets on the basis of their densities. This 

concept can be best realized through example. Let x1 and x2 

are two points in the data-set as shown in Fig.1.  

 

Fig. 1a The neighborhood range of x1 and x2 

x1 has two points in its neighborhood (k1 and k2) and x2 has 

three points (p1, p2, and p3). As x1 and x2 are far from the other 

dense part of the data-set, therefore, it is obvious that these 

points should be outliers. But, if we consider the ideal 

situation i.e. a point will only be considered as an outlier if no 

other point is present in its neighborhood, then these are not 

outliers, which are not expected in real life situations. To 

tackle this problem, in the proposed algorithm, a threshold 

variable „α‟ is used which is selected according to the 

maximum number of other points in the neighborhood of any 

point in the data-set „X‟ i.e. according to the density of the 

data-set. 

  
„o‟: outliers, „*‟: centroid , and the clusters are separated with the symbols ‟.‟ 

& „+‟ 

Fig. 2a Effect on data-set due to variations in Threshold value „α‟ 

 
„o‟: outliers, „*‟: centroid , and the clusters are separated with the symbols ‟.‟ 

& „+‟ 

Fig. 2b Effect on data-set due to variations in Threshold value „α‟ 

With the proposed condition, x1 and x2 will be outliers if the 

number of points in their neighborhood is less than four. So 

user can select the threshold value accordingly. Let us 

observe it with synthetic data-sets, D45 (Data-set with 45 

points) - as given in [12] and D300 (data-set with 300 points). 

Fig (2a) and (2b) show identification of outliers by changing 

the threshold value „α‟ with data-set D45 and D300 respectively. 

It is observed from Fig. 2a, Fig. 2b, and TABLE-I that large 

value of „α‟ leads to more compact clusters with more 

number of outliers. As „α‟ -> 0, DOFCM behaves as FCM. 

Proper selection of „α‟ would provide better results. 

TABLE-I EFFECT OF CHANGING THRESHOLD VALUE 

Data 

set 
max* Threshold value „α‟ No. of 

outliers 

D45 15  0.0 6 

 0.09 9 

 0.14 10 

 0.21 12 

D300 16  0.0 12 

0.0625 12 

 0.125 29 

 0.1875 42 

*  Where max is the maximum number of points in the neighborhood of 

any point in the data-set. 

Once the outliers are identified by the algorithm, clustering 

follows:  

Let X = {x1, x2, x3,……..xn) be the data-set after 

identification of outliers. DOFCM partitions „X‟ by 

minimizing objective function as: 
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where kiki vxd   and   membership function uki is:       

    

                      

(11) 

And  

 m = Fuzziness Index 

It is seen from above equations that the fuzzy membership 

depends on local membership (Mneighborhood) and threshold 

value (α). If a point is identified as an outlier, DOFCM 

assigns zero fuzzy membership to it so that it could not affect 

the location of centroids which is a limitation with the FCM 

algorithm. Updating of centroid is the same as than in FCM. 

The constraint on fuzzy membership is now extended to:    



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10  ;i=1, 2, 3,…….n              (12) 

instead of the following in conventional FCM algorithm. 
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The FCM algorithm has a constraint that it avoids a 

situation that the membership value becomes zero. FCM 

gives meaningful results in applications where memberships 

are interpreted as probabilities or degree of sharing. The 

proposed algorithm removes the effect of outliers by 

assigning them a membership value equal to zero. 

 

V. COMPARISON BETWEEN  NOISE CLUSTERING AND DENSITY 

ORIENTED FUZZY C MEANS FOR OUTLIER IDENTIFICATION 

We compared various aspects of NC and DOFCM with 

synthetic data-sets. For all data-sets we assumed the 

following computational protocols: ε = 0.00001, Total 

number of iterations = 100. MATLAB Version 7.0 is used to 

produce the results. 

To prove the properties P1, P2, and P4, we are considering 

three data-sets: D11, DA12, and DB14 (referred from 11). D11 

is a noiseless data-set of points . DA12 is the union of 

D11 and an outlier DA12, and DB14 is the union of D11 and 3 

outliers DB12, DB13, and DB14. Fig. 2a, Fig. 2b and 

TABLE-II show clustering results of NC and DOFCM, 

identification of outliers by NC and DOFCM with =1 and 

„α‟ = 0.09, with the data-sets DA12 and DB14 respectively. „+‟ 

shows outliers identified by DOFCM and „o‟ shows outliers 

identified with NC.  

True centroids of D11 are:  , From the 

figures  and Table-2, it has been seen that both the techniques 

are able to identify outliers, However, the performance of NC 

degrades by increasing number of outliers. DOFCM satisfies 

property P2 and P4, as the centroids generated with DOFCM 

are same with both data-sets and even more accurate 

compared to NC. TABLE-III shows memberships generated 

with DOFCM and NC for the outliers. It is clear from table 

that memberships generated with DOFCM are lower than the 

NC; hence DOFCM also satisfies property P1. 

 
„‟: centroids by NC, „*‟: centroids by DOFCM „o‟: outlier identified by NC, 

„+‟: outlier identified by DOFCM 

Clusters are separated from each other using symbols „.‟ and „x‟ 

Fig. 2a Clustering Results and Outlier identification with NC and DOFCM 

 

TABLE-II: CENTROIDS PRODUCED BY NC AND DOFCM FOR DA12 

AND DB14, NO. OF CLUSTERS=2 

NC 

(m=2, λ=1) 

DOFCM 

(m=2 , α = 0.09) 

D12 

x          y 

D14 

x           y 

D12 

x           y 

D14 

x          y 

3.131 0.4 -3.048 0.93 3.167 0 3.167 0 

-3.131 0.4 3.085 0.94 -3.167 0 -3.167 0 

 

 
„‟: centroids by NC, „*‟: centroids by DOFCM ‟o‟: outlier identified by NC, 

„+‟: outlier identified by DOFCM 

Clusters are separated from each other using symbols „.‟ and „x‟ 
 

Fig. 2b Clustering Results and Outlier identification with NC and 

DOFCM 

Real life data-sets usually contain data structures that 

differ from our assumed clusters. So a Robust clustering 

technique must tolerate different number of clusters for the 

same data-set. In NC, noise distance is given as: 

 
Here, noise distance depends upon distance measure, 

number of assumed clusters, and λ, which is the value of 

multiplier used to obtain , from the average of distances. 

From the equation, it is interpreted that if the numbers of 

clusters are increased,  assumes high values. As in NC, 

outliers are those data points whose distances to all cluster 

centroids exceed a certain threshold distance based upon δ. 

So, if we increase the number of clusters for the same data-set, 

it did not identify outliers, because the average distance 

between points and regular clusters decreases with the 

increase in the number of clusters and the noise distance 

remains almost constant or assumes relatively high values 

[11]. Whereas, DOFCM identifies outliers very well and it is 

independent of increasing the number of clusters in the same 

data-set, because it identifies outliers before clustering 
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process and does not involve any parameter that could affect 

clustering in any manner. Fig. 3a shows the results of NC and 

DOFCM with the data-set containing two clusters with some 

noise (refer to APPENDIX-A). NC partitioned the data-set 

into two clusters with =0.51. The centroids of the clusters 

are plotted in the figure with „‟ symbol and the outliers are 

plotted with „o‟. DOFCM partitioned it into two clusters with 

=0.14. Centroids are plotted with the symbol „*‟ and 

outliers with „+‟. If we compare the results of these two 

techniques, it is visually verified that density-oriented 

technique can identify outliers more efficiently than 

distance-oriented. 

 
„‟: centroids by NC, „*‟: centroids by DOFCM „o‟: outlier identified by NC, 

„+‟: outlier identified by DOFCM 

Clusters are separated from each other using symbols „.‟ and „x‟ 

Fig. 3a Clustering Results and Outlier identification with NC and DOFCM 

with 2 clusters 

Fig.3b shows the result, when we have increased the 

number of clusters from two to four on the same data-set. 

From the results, it has been notified that NC is not able to 

identify outliers, because the noise distance is approximately 

the same as in the case of two clusters, and also it is verified 

by visual assessment that the distance from the centroids to 

the representing data points is significantly smaller than 

partitioning with only two centroids [11]. But, DOFCM has 

identified same number of outliers, as it has identified with 

two clusters. It infers that it is independent from the number 

of clusters, which satisfies property P3.  

Fig.4 shows the data-set with 331 points, having dense 

regions, and is partitioned into 3 clusters using both the 

techniques. NC plots centroids with the symbol „‟ taking 

=1.7 and DOFCM displays centroids with the symbol „*‟ 

taking =0.0625. From the figure, we observed that NC 

could not identify outliers completely whereas DOFCM has 

completely identified outliers with  = 0.0625. Consider a 

labeled point „A‟ as shown in Fig. 4. As per NC approach, 

this point cannot be considered as an outlier as its 

membership degree to the noise cluster cannot be more than 

the distance from its regular clusters because the location of 

this point is in between the cluster centroids and this scenario 

can never be justified with NC approach. But as the local 

membership of this point is less than „‟ so DOFCM has 

detected it as an outlier. It is also visually verified that 

DOFCM has detected correct cluster shapes. Hence, it also 

satisfied property P5.  

Outliers contain important information in many 

applications and their identification is crucial. The main 

emphasis of NC is to reduce the influence of outliers on the 

clusters rather than identifying it, whereas, from the results, it 

is clear that DOFCM satisfies all the properties required for a 

robust technique and identifies outliers very well. 

 
„‟: centroids by NC, „*‟: centroids by DOFCM  „o‟: outlier identified by 

NC, „+‟: outlier identified by DOFCM 

Clusters are separated from each other using symbols „.‟ and „x‟ 

Fig. 3b Clustering Results and Outlier identification with NC and DOFCM 

with 4 clusters 

 
„‟: centroids by NC, „*‟: centroids by DOFCM.  

 „o‟: outlier identified by NC, „+‟: outlier identified by DOFCM 

Fig. 4 Clustering Results and Outlier identification with NC and DOFCM 

with 3 clusters 

 

VI. CONCLUSIONS 

In this paper, we compared density-oriented and 

distance-oriented approaches for outlier identification and 

clustering. Various tests are performed on two approaches 

and it has been notified from the simulation and results that 

density-oriented approach (DOFCM) is much better than 

distance-oriented approach (NC) for outlier identification. 

Main concern of DOFCM is, not only to reduce the influence 

of outliers on the location of cluster centroids, but also to 

identify them. Density-oriented approach is independent of 

the number of clusters for the data-set and does not involve 

any parameter that can affect the result of clustering. 
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TABLE-III MEMBERSHIPS GENERATED BY DOFCM AND NC FOR DA12 AND DB14  

Sr

. 

N

o. 

 

Data-set DA12 Memberships DB14 Memberships 

Featur

e1 

 

Featur

e2 

 

DOFCM (m=2,  = 0.09) NC (m=2, =1) DOFCM (m=2, =0.09) NC (m=2, =1) 

Neighborhoo

d  

Membership 

Cluste

r 

1 

 

Cluste

r 

2 

 

Cluster 

1 

 

Clust

er 

2 

 

Neighborho

od  

Membershi

p  

Cluste

r 

1 

Cluste

r 

2 

Cluster 

1 

Cluste

r 

2 

xA

12 

0 38 0.0 0.0 0.0 0.21493 0.214

93 

- - - - - 

xB

12 

0 27 - - - - - 0.0 0.0 0.0 0.2223 0.2222 

xB

13 

-7 23 - - - - - 0.0 0.0 0.0 0.2720 0.2322 

xB

14 

10 25 - - - - - 0.0 0.0 0.0 0.2035 0.2433 

APPENDIX-A 

Synthetic data–set with 115 points (2 clusters with noise) 

x y x y x y x y 

-10.44 -1.33 7.76 -8.1 4.28 1.14 34 4 

14.75 -2.09 6.36 -9.1 36.04 -1.82 35 3 

6.78 -1.03 8.1 -7.6 31.4 6.71 -1 -9 

5.25 -0.87 4 -4 38.79 5.04 0 -10 

-3.84 1.09 5 -5 26.78 1.07 1 -11 

-6.86 0.6 6 -5.5 29.72 -1.5 2 -8 

-6.34 3.25 7 -4.5 33.74 1.28 0 6 

-4.47 10.4 35 0 28.51 -0.95 0 5 

2.95 -1.7 36 1 41.17 -0.4 1 4 

6.74 1.47 37 1.5 42.47 3.5 29 -6 

-2.46 -4.25 38 2 36.18 -3.98 29 -5 

-10.89 -12.67 39 3 27.98 -4.01 30 -6 

1.19 -11.89 40 4 38.29 -0.04 31 -7 

-3.68 -1.73 30 3 22.22 -3.63 24 -3 

-8.9 -3.05 31 4 32.33 -7.45 25 -2 

2.24 -2.04 32 3 51.01 4.35 25 -1 

2.91 -7.08 33 4 37.2 -1.33 2 5 

29.25 -7.83 2 4 -3.76 -5.25 23 -3.63 

39.43 -1.97 -1 -3 -5.76 -6.25 24 -3.63 

33.58 -0.72 -2 -2 -4.76 -7.25 -1 7 

40.18 -11.67 0 -1 -4 -8.25 -3 7 

30 -18 1 0 0 -6.1 29 -3 

-20 -1 0 1 1.1 -5.1 31 -3 

15 -20 1 2 2.1 -4.1 33 -3 

25 -22 29 0 3.1 -3.1 35 -3 

-5 -25 30 1 4.5 -2.31 31 -5 

-6.7 -1.1 31 2 5.76 -2.4 33 -5 

-5.15 -1.5 32 3 32 -5 30 -4 

33 -4 -9 -1 -8 -2     
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