


Abstract—In this paper a universal demodulator based on

probabilistic neural network is presented. It is a kind of

modulation (schemes) free demodulator, i.e. it can be trained

for different schemes of digital modulation in order to detect

incoming data bits without changing or replacing receiver

hardware so it can be easily used in software defined radio

structure and military communication. Furthermore it has

some advantages over the other types of neural network

demodulators such as fast training and fast data processing

ability to detect data bits since there is no feedback layer in its

structure. There is also no need to design special kind of filters

except for those which are used to limit the input noise power.

Index Terms—Demodulator, Probabilistic Neural Network,

Simulation.

I. INTRODUCTION

Nowadays due to various advantages of digital systems,

digital modulations are used to transmit data. In these kinds

of modulations data symbols are mapped into the amplitude,

phase or frequency of carrier signal which are called

ASK,PSK and FSK respectively. Each of them has their own

advantages and disadvantages. Generally digital

demodulators are divided into two main categories: coherent

and non-coherent that each of them requires its own hardware.

if it is possible to design an efficient demodulator for almost

every type of digital modulation schemes, a typical

transmitter can send data with its desired modulation type

regardless of receiver architecture, in this case there is no

need to design a special receiver for particular transmitter

because a universal demodulator has been achieved. Such a

receiver would be widely used in software radios.

Recently neural network based demodulators have been

proposed. They utilize dynamic network architectures to

detect incoming symbols. These networks such as ELMAN

and DTDNN2 are so time-consuming to get trained since

feedback layer or time-delay lines are used in their own

layers[1]–[2]. They also suffer from computational

complexity therefore they are not suitable for real-time

processing applications. Furthermore their performance is

not good enough to detect data from different kinds of

modulation schemes. Some of them are only suitable to get

trained and detect data for special kind of modulation. In this

paper an ANN3 demodulator based on probabilistic neural

network and TDL4 placed in just first layer is presented to act

as a universal demodulator. There is no complicated training

Manuscript received October 9, 2010; revised March 24, 2011.
1 Distributed Time Delay Neural Network
2 Distributed Time Delay Neural Network
3 Artificial Neural Network
4 Time-delay Line
5 Probabilistic Neural Network

process for this kind of demodulator except for setting input

layer weights and defining different output classes, hence it

can be trained quickly and can process data as soon as

possible. In section II basic digital modulations are briefly

introduced. In section III a brief overview about neural

network and PNN5 are mentioned and applying PNN and

defining output classes for the proposed method is discussed.

In section IV two other neural networks are compared to the

proposed method and in section V simulation and results are

shown and finally in section VI some conclusions are given.

II. BASIC DIGITAL MODULATION SCHEMES

In this section, FSK demodulators is discussed and PSK

and ASK demodulators will be left to reader. Normally, FSK

signal is expressed by

))(cos()(  dDtAtz t

dc (1)

where)(D is a random binary pulse sequence with

amplitude of +1 or -1 for binary bits 1 and 0 respectively in

which each data bit is mapped into a special frequency related

to its value. Pulse shaping filter might be used in modulator

[3]. Usually, the demodulation method for FSK signal can be

divided into two types: coherent demodulation (or so called

matched filter) and non-coherent demodulation. They are

illustrated in Fig.1.

sampler
Comparator

with threshold d

 d

))((0 tCOS d 

))((0 tCOS d 

Coherent

BPF

W=w0-wd

BPF

W=w0+wd

Envelope

detector
Comparator

And

DecideEnvelope

detector

Non-coherent

Fig. 1. Coherent and non-coherent FSK demodulator.

Universal Neural Network Demodulator for Software

Defined Radio

Mohammad Reza Amini, Einollah Balarastaghi, and Boroujerd Branch

IACSIT International Journal of Engineering and Technology, Vol.3, No.3, June 2011

263

A coherent demodulator consists of two parallel paths that

each of them computes the correlation of the received signal

with symbols set produced by the transmitter. Non-coherent

demodulator is also consists of two paths that each has an

envelope detector and a band pass filter tuned to transmitter

frequencies. PSK and ASK signals are also presented in the

form of below:

)cos()( kcPSK btAtz  (2)

)cos()(tbtz ckASK  (3)

where kb represents the random binary data bit with the

value of 0 and 1 for corresponding 0 and 1 data bits.

Traditional demodulators of ASK and PSK are also classified

to coherent and non-coherent [3]. They are not mentioned

here.

III. NEURAL NETWORK REVIEW

A. Simple Neuron

A neuron with a single scalar input and no bias appears on

the left side of Fig.2.

Fig.2 Neuron model

The scalar input p is transmitted through a connection that

multiplies its strength by the scalar weight w to form the

product wp, again a scalar. Here the weighted input wp is the

only argument of the transfer function f, which produces the

scalar output a. The neuron on the right has a scalar bias, b.

You can view the bias as simply being added to the product

wp as shown by the summing junction or as shifting the

function f to the left by an amount b. The bias is much like a

weight, except that it has a constant input of 1. The transfer

function net input n, again a scalar, is the sum of the weighted

input wp and the bias b. This sum is the argument of the

transfer function f. (Radial Basis Networks, discusses a

different way to form the net input n.) Here f is a transfer

function, typically a step function or a sigmoid function, that

takes the argument n and produces the output a. Examples of

various transfer functions are in Transfer Functions. Note

that w and b are both adjustable scalar parameters of the

neuron. The central idea of neural networks is that such

parameters can be adjusted so that the network exhibits some

desired or interesting behavior. Thus, you can train the

network to do a particular job by adjusting the weight or bias

parameters, or perhaps the network itself will adjust these

parameters to achieve some desired end.[4]–[5]–[6].

B. Extended Neuron

A typical neuron can have multiple input called vector

input. A network of neurons can consists of multiple layers in

which there are multiple neurons as shown in Fig.3.

[4]–[5]–[6]

Fig.3. Typical network architecture

C. Probabilistic neural network

Probabilistic neural networks can be used for classification

problems. When an input is presented, the first layer

computes distances from the input vector to the training input

vectors and produces a vector whose elements indicate how

close the input is to a training input. The second layer sums

these contributions for each class of inputs to produce as its

net output a vector of probabilities. Finally, a compete

transfer function on the output of the second layer picks the

maximum of these probabilities, and produces a 1 for that

class and a 0 for the other classes. The architecture for this

system is shown in Fig.4 [4]–[5]. It is assumed that there are

Q input vector/target vector pairs. Each target vector has K

elements. One of these elements is 1 and the rest are 0. Thus,

each input vector is associated with one of K classes. Notice

that the expression for the net input of a radbas neuron is

different from that of other neurons. Here the net input to the

radbas transfer function is the vector distance between its

weight vector w and the input vector p, multiplied by the bias

b. (The || dist || box in this figure accepts the input vector p

and the single row input weight matrix, and produces the dot

product of the two)[5].

The transfer function for a radial basis neuron is:
2

)(nenradbas  (4)

The radial basis function has a maximum of 1 when its

input is 0. As the distance between w and p decreases, the

output increases. Thus, a radial basis neuron acts as a detector

that produces 1 whenever the input p is identical to its weight

vector w. The bias b allows the sensitivity of the radbas

neuron to be adjusted. For example, if a neuron had a bias of

0.1 it would output 0.5 for any input vector p at vector

distance of 8.326 (0.8326/b) from its weight vector w. here is

how ANN works: the first-layer input weights, IW1,1, are set

to the transpose of the matrix formed from the Q training

pairs, P'. When an input is presented, the || dist || box produces

a vector whose elements indicate how close the input is to the

vectors of the training set. These elements are multiplied,

element by element, by the bias and sent to the radbas transfer

function. An input vector close to a training vector is

represented by a number close to 1 in the output vector a1. If

an input is close to several training vectors of a single class, it

is represented by several elements of a1 that are close to 1.

The second-layer weights, LW1,2, are set to the matrix T of

target vectors. Each vector has a 1 only in the row associated

IACSIT International Journal of Engineering and Technology, Vol.3, No.3, June 2011

264

with that particular class of input, and 0's elsewhere. The

multiplication Ta1 sums the elements of a1 due to each of the

K input classes. Finally, the second-layer transfer function,

compete, produces a 1 corresponding to the largest element

of n2, and 0's elsewhere. Thus, the network classifies the

input vector into a specific K class because that class has the

maximum probability of being correct [4]–[5].

D. Setting input weights and defining output classes

As it can be inferred from previous section, proper

defining output classes and setting weights make network to

serve as a demodulator. To detect data bits efficiently with no

error in noiseless environment, PNN 6 demodulator must

firstly distinguish between different modulation schemes and

secondly for each modulation type, it must recognize binary

or M-ary symbols from each other (e.g. bit 0 and bit 1). Thus

there are P=M*K different symbols that demodulator has to

recognize (M is the number of symbols for each modulation

schemes and K is the number of modulation schemes, e.g. for

binary transmission there are P=2*K symbols), hence

P=M*K output classes should be defined for PNN

demodulator and input weights vector should be also set for

each output class. To distinguish between incoming symbols,

there should be enough samples of each symbol in a bit

duration time, then these samples should store in a shift

register and should pass to the network as an input vector. To

illustrate it, suppose there are N samples of incoming signal

in a bit duration available at the receiver. Fig.5 shows how

these signal samples are stored and fed into the network.

Afterward network compares these samples with the ones

which are set as weight vectors to determine which symbol

are the most similar to input samples. There should be P

weight vectors (one vector for each output class) and the

symbol samples are stored to each vector as an input weight.

Figure 4. Probabilistic Network Architecture.

Fig.5. Feeding the ANN Demodulator

Note that the frequency of clk1 signal should be N times

more than the frequency of clk2 signal.

6 Probabilistic neural network

IV. COMPARING TWO OTHER TYPES OF ANN

In this section two common types of ANN (ELMAN and

TDNN Network) are introduced and compared to the

proposed ANN. Elman network commonly is a two-layer

network with feedback from the first-layer output to the

first-layer input. This recurrent connection allows the Elman

network to both detect and generate time-varying patterns. A

two-layer Elman network is shown in Fig. 6 [1]–[7]–[8].The

Elman network has tansig neurons in its hidden (recurrent)

layer, and purelin neurons in its output layer. This

combination is special so that two-layer networks with these

transfer functions can approximate any function (with a finite

number of discontinuities) with arbitrary accuracy. The only

requirement is that the hidden layer must have enough

neurons.

Fig. 6. Elman Network Architecture

More hidden neurons are needed as the function being

fitted increases in complexity. Elman networks are not as

reliable as some other kinds of networks, because both

training and adaptation use an approximation of the error

gradient. For an Elman to have the best chance at learning a

problem, it needs more hidden neurons in its hidden layer

than are actually required for a solution by another method.

While a solution might be available with fewer neurons, the

Elman network is less able to find the most appropriate

weights for hidden neurons because the error gradient is

approximated. Therefore, having a fair number of neurons to

begin with makes it more likely that the hidden neurons will

start out dividing up the input space in useful ways, so in real

time applications and adaptive trainings it is not suitable to use

it, at least because of training time and memory limitations

and also training algorithm convergence (hardware resources)

as indicated in [1]–[5]–[7]. A simple way to store data

samples and use them to demodulate a symbol is to apply a

tapped-delay line or time-delayed line (TDL) at the beginning

of each layer. This is called the Distributed Time-Delay

Neural Network (TDNN). The original architecture was very

specialized for the particular problem. Fig. 7 shows a general

two-layer distributed TDNN. This network is well suited to

time-series prediction in which
if is the activation (transfer)

function of layer i, IW and LW are the input weights and layer

weights vector respectively and bi is the ith layer bias

vector[1]–[5]–[8]–[9]. None of these introduced neural

networks can be trained properly as a universal demodulator

while they may be trained somewhere as a single-aimed

demodulator (but not universal). To make sure in this section

it is tried to train and test them to compare with the PNN type.

The SIMULINK toolbox of MATLAB is used to build the

IACSIT International Journal of Engineering and Technology, Vol.3, No.3, June 2011

265

corresponding models of ANN demodulators, whose transfer

function of the hidden layer is tansig and transfer function of

the output layer is purelin with 8 neurons in the hidden layer.

A back propagation algorithm is presented to train the ANN

demodulator. For a TDNN network to simulate, time-delay

lines with 4 and 3 elements are considered in hidden and

output layer respectively. Table I and II show the structural

specifications of the two mentioned ANN (ELMAN and

TDNN) in MATLAB simulation. As it can be seen from the

figure 8and 9, for both TDNN and ELMAN there is no

hopeful learning curve which can show a good performance

(here sum squared error is chosen for the performance

function) and it means that these two networks cannot get

trained satisfactorily

Fig. 7. TDNN Network Architecture

hence the two ANN outputs would not be as it is expected, i.e.

the two ANN cannot demodulated the incoming signal

perfectly. Figure 10 shows the outputs of TDNN and ELMAN

along with the ideal output. It can be easily figured out that in

some circumstances the two ANN demodulators detect data

bits with error (most of these errors is for the PSK modulated

signals because both of demodulators have some problems

training of PSK modulated signals.

TABLE I. ELMAN NETWORK PARAMETERS.

ELMAN_NET =

 Neural Network object:

 numInputs: 1

 numLayers: 2

 biasConnect: [1; 1]

 inputConnect: [1; 0]

 layerConnect: [1 0; 1 0]

 outputConnect: [0 1]

Delay:

 numOutputs: 1 (read-only)

 numInputDelays: 0 (read-only)

 numLayerDelays: 1 (read-only)

 functions:

 adaptFcn: 'trains'

 divideFcn: 'dividerand'

 gradientFcn: 'calcjxfp'

 initFcn: 'initlay'

 performFcn: 'mse'

 plotFcns: {'plotperform','plottrainstate'}

 trainFcn: 'traingdx'

TABLE II. TDNN network parameters.

TDNN NET =

 Neural Network object:

 numInputs: 1

 numLayers: 2

 biasConnect: [1; 1]

 inputConnect: [1; 0]

 layerConnect: [0 0; 1 0]

 outputConnect: [0 1]

Delay:

 numOutputs: 1 (read-only)

 numInputDelays: 4 (read-only)

 numLayerDelays: 3 (read-only)

 functions:

 adaptFcn: 'trains'

 divideFcn: 'dividerand'

 gradientFcn: 'calcjxfp'

 initFcn: 'initlay'

 performFcn: 'mse'

 plotFcns: {'plotperform','plottrainstate'}

 trainFcn: 'trainlm'

V. SIMULATION AND RESULTS

Simulation process includes constructing a proposed

neural network architecture (setting input weights vectors

and defining output classes), generating binary data

randomly modulated by PSK, FSK, ASK schemes, and

finally passing these modulated data into proposed universal

demodulator. Effect of AWGN channel is later added to the

simulation. Table III shows modulated signals properties.

Note that sampling frequency is at least 10 times more than

maximum carrier frequency.

Since there are 11 types of signal involved in the simulation

(for each a unique ANN output class is defined), there should

be an input weights matrix with a size of 6*N (N is the

number of signal samples in a bit duration). Figure 11 shows

the signal samples set as an input weights vector.

After setting weights vector and defining output classes of

ANN, binary data should be generated and modulated

randomly at the transmitter. To verify the demodulator

performance, these modulated data should be passed through

Fig.8 . Learning curve of TDNN ANN

Fig. 9. Learning curve of ELMAN ANN

IACSIT International Journal of Engineering and Technology, Vol.3, No.3, June 2011

266

 Fig.10 .Output Elman ANN (green) DTDNN (red) compared to ideal

output (Blue)

the ANN demodulator and then the output should compare to

the original data. No error occurs at the receiver after running

a simulation. Figure 12 and 13 show the mentioned process.

To simulate the effect of noise, white Gaussian noise is

added to signal after modulating at the transmitter. The

resulting noisy noisy signal is then passed through the ANN

demodulator and the effect of noise power on bit error rate is

shown in figure 14.

TABLE III . MODULATED SIGNALS PROPERTIES

modulation

Type
BFSK BPSK BASK

Sampling

Frequency

(sample/sec)

4500K 4500K 4500K

Carrier

Frequency

(KHz)

450 300 100

Bit Rate

(bit/sec)
90K 90K 90K

Corresponding

ANN output

class

5 for bit 0 1 for bit 0 3 for bit 0

6 for bit 1 2 for bit 1 4 for bit 1

Fig. 11. samples set as a weights vector.

12.a-binary data

12.b-Corresponding ANN output class

Fig. 12 Simulation process signals

13.a- Randomly modulated signals

13.b- Detected demodulator output classes

 Fig.13 . Simulation process signals

IACSIT International Journal of Engineering and Technology, Vol.3, No.3, June 2011

267

Fig. 14. BER curve versus Eb/N0

VI. CONCLUSION

In this paper a universal demodulator based on probabilistic

neural network was presented and its performance was shown.

In such a demodulator input weight vectors and output classes

should be defined for different modulation schemes in order to

detect incoming signals without changing or replacing

receiver hardware so it can be easily used in software defined

radio structure. Furthermore it has some advantages over the

other types of neural network demodulators such as fast

training and fast data processing ability to detect data bits

since there is no feedback layer in its structure. Finally the

effect of noise in detecting data bits was shown.

REFERENCES

[1] Min Li HongSheng Zhong ; Min Li. “Neural Network Demodulator for

Frequency Shift Keying,” 2008 International Conference on Computer

Science and Software Engineering, 978-0-7695-3336-0/08 $25.00 ©

2008 IEEE,(DOI 10.1109/CSSE.2008.1440)

[2] Ohnishi, K.; Nakayama, K.,“A neural demodulator for quadrature

amplitude modulation signals,” Neural Networks, 1996., IEEE

International Conference on Volume 4, 3-6 June 1996

[3] Shanmugam,k.sam. “digital and analog communication systems”, John

Wiley & Sons,1979

[4] Caudill, M., Neural Networks Primer, San Francisco, CA: Miller

Freeman Publications, 1989.

[5] Matlab software documentations for neural networks Release 2009

[6] L. Fausett, Fundamentals of Neural Network: Architecture, Algorithms,

and Applications, Prentice Hall, Upper Saddle River, NJ (1994).

[7] “DARPA Neural Network Study”, Lexington, MA: M.I.T. Lincoln

Laboratory, 1988.

[8] Nakayama, K.; Imai, K.,“A neural demodulator for amplitude shift

keying signals,” Neural Networks, 1994, IEEE International

Conference on Volume 6, 27 June-2 July 1994

[9] Chesmore, E.D., “Neural network architectures for signal detection and

demodulation,” Radio Receivers and Associated Systems, 1989, Fifth

International Conference on 23-27 Jul 1990 Page(s):1-4.

Mohammad Reza Amini was born at 1981. He is an

Iranian telecommunication researcher. He is an academic

member of Islamic Azad University, Borujerd branch, Iran.

iman.amini@gmail.com.

Einollah Balarastaghi is an academic member of Islamic

Azad University, Borujerd branch.

Iran.meh_balarastaghi@yahoo.com.

IACSIT International Journal of Engineering and Technology, Vol.3, No.3, June 2011

268

