
 

Abstract—In this paper a universal demodulator based on 

probabilistic neural network is presented. It is a kind of 

modulation (schemes) free demodulator, i.e. it can be trained 

for different schemes of digital modulation in order to detect 

incoming data bits without changing or replacing receiver 

hardware so it can be easily used in software defined radio 

structure and military communication. Furthermore it has 

some advantages over the other types of neural network 

demodulators such as fast training and fast data processing 

ability to detect data bits since there is no feedback layer in its 

structure. There is also no need to design special kind of filters 

except for those which are used to limit the input noise power. 

 
Index Terms—Demodulator, Probabilistic Neural Network, 

Simulation.  

I. INTRODUCTION 

Nowadays due to various advantages of digital systems, 

digital modulations are used to transmit data. In these kinds 

of modulations data symbols are mapped into the amplitude, 

phase or frequency of carrier signal which are called 

ASK,PSK and FSK respectively. Each of them has their own 

advantages and disadvantages. Generally digital 

demodulators are divided into two main categories: coherent 

and non-coherent that each of them requires its own hardware. 

if it is possible to design an efficient demodulator for almost 

every type of digital modulation schemes, a typical 

transmitter can send data with its desired modulation type 

regardless of receiver architecture, in this case there is no 

need to design a special receiver for particular transmitter 

because a universal demodulator has been achieved. Such a 

receiver would be widely used in software radios.  

Recently neural network based demodulators have been 

proposed. They utilize dynamic network architectures to 

detect incoming symbols. These networks such as ELMAN 

and DTDNN2 are so time-consuming to get trained since 

feedback layer or time-delay lines are used in their own 

layers[1]–[2]. They also suffer from computational 

complexity therefore they are not suitable for real-time 

processing applications. Furthermore their performance is 

not good enough to detect data from different kinds of 

modulation schemes. Some of them are only suitable to get 

trained and detect data for special kind of modulation. In this 

paper an ANN3 demodulator based on probabilistic neural 

network and TDL4 placed in just first layer is presented to act 

as a universal demodulator. There is no complicated training 
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process for this kind of demodulator except for setting input 

layer weights and defining different output classes, hence it 

can be trained quickly and can process data as soon as 

possible. In section II basic digital modulations are briefly 

introduced. In section III a brief overview about neural 

network and PNN5 are mentioned and applying PNN and 

defining output classes for the proposed method is discussed. 

In section IV two other neural networks are compared to the 

proposed method and in section V simulation and results are 

shown and finally in section VI some conclusions are given. 

 

II. BASIC DIGITAL MODULATION SCHEMES 

In this section, FSK demodulators is discussed and PSK 

and ASK demodulators will be left to reader. Normally, FSK 

signal is expressed by 

))(cos()(   dDtAtz t

dc          (1) 

where )(D  is a random binary pulse sequence with 

amplitude of +1 or -1 for binary bits 1 and 0 respectively in 

which each data bit is mapped into a special frequency related 

to its value. Pulse shaping filter might be used in modulator 

[3]. Usually, the demodulation method for FSK signal can be 

divided into two types: coherent demodulation (or so called 

matched filter) and non-coherent demodulation. They are 

illustrated in Fig.1.  
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Fig. 1. Coherent and non-coherent FSK demodulator. 
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A coherent demodulator consists of two parallel paths that 

each of them computes the correlation of the received signal 

with symbols set produced by the transmitter. Non-coherent 

demodulator is also consists of two paths that each has an 

envelope detector and a band pass filter tuned to transmitter 

frequencies. PSK and ASK signals are also presented in the 

form of below: 

)cos()(  kcPSK btAtz                (2) 

)cos()( tbtz ckASK                        (3) 

where kb represents the random binary data bit with the 

value of 0 and 1 for corresponding 0 and 1 data bits. 

Traditional demodulators of ASK and PSK are also classified 

to coherent and non-coherent [3]. They are not mentioned 

here. 

III. NEURAL NETWORK REVIEW 

A. Simple Neuron 

A neuron with a single scalar input and no bias appears on 

the left side of Fig.2.  

 

Fig.2 Neuron model 

The scalar input p is transmitted through a connection that 

multiplies its strength by the scalar weight w to form the 

product wp, again a scalar. Here the weighted input wp is the 

only argument of the transfer function f, which produces the 

scalar output a. The neuron on the right has a scalar bias, b. 

You can view the bias as simply being added to the product 

wp as shown by the summing junction or as shifting the 

function f to the left by an amount b. The bias is much like a 

weight, except that it has a constant input of 1. The transfer 

function net input n, again a scalar, is the sum of the weighted 

input wp and the bias b. This sum is the argument of the 

transfer function f. (Radial Basis Networks, discusses a 

different way to form the net input n.) Here f is a transfer 

function, typically a step function or a sigmoid function, that 

takes the argument n and produces the output a. Examples of 

various transfer functions are in Transfer Functions. Note 

that w and b are both adjustable scalar parameters of the 

neuron. The central idea of neural networks is that such 

parameters can be adjusted so that the network exhibits some 

desired or interesting behavior. Thus, you can train the 

network to do a particular job by adjusting the weight or bias 

parameters, or perhaps the network itself will adjust these 

parameters to achieve some desired end.[4]–[5]–[6]. 

B. Extended Neuron  

A typical neuron can have multiple input called vector 

input. A network of neurons can consists of multiple layers in 

which there are multiple neurons as shown in Fig.3. 

[4]–[5]–[6] 

 

Fig.3. Typical network architecture 

C. Probabilistic neural network 

Probabilistic neural networks can be used for classification 

problems. When an input is presented, the first layer 

computes distances from the input vector to the training input 

vectors and produces a vector whose elements indicate how 

close the input is to a training input. The second layer sums 

these contributions for each class of inputs to produce as its 

net output a vector of probabilities. Finally, a compete 

transfer function on the output of the second layer picks the 

maximum of these probabilities, and produces a 1 for that 

class and a 0 for the other classes. The architecture for this 

system is shown in Fig.4 [4]–[5]. It is assumed that there are 

Q input vector/target vector pairs. Each target vector has K 

elements. One of these elements is 1 and the rest are 0. Thus, 

each input vector is associated with one of K classes. Notice 

that the expression for the net input of a radbas neuron is 

different from that of other neurons. Here the net input to the 

radbas transfer function is the vector distance between its 

weight vector w and the input vector p, multiplied by the bias 

b. (The || dist || box in this figure accepts the input vector p 

and the single row input weight matrix, and produces the dot 

product of the two)[5]. 

The transfer function for a radial basis neuron is: 
2

)( nenradbas                           (4) 

The radial basis function has a maximum of 1 when its 

input is 0. As the distance between w and p decreases, the 

output increases. Thus, a radial basis neuron acts as a detector 

that produces 1 whenever the input p is identical to its weight 

vector w. The bias b allows the sensitivity of the radbas 

neuron to be adjusted. For example, if a neuron had a bias of 

0.1 it would output 0.5 for any input vector p at vector 

distance of 8.326 (0.8326/b) from its weight vector w. here is 

how ANN works: the first-layer input weights, IW1,1, are set 

to the transpose of the matrix formed from the Q training 

pairs, P'. When an input is presented, the || dist || box produces 

a vector whose elements indicate how close the input is to the 

vectors of the training set. These elements are multiplied, 

element by element, by the bias and sent to the radbas transfer 

function. An input vector close to a training vector is 

represented by a number close to 1 in the output vector a1. If 

an input is close to several training vectors of a single class, it 

is represented by several elements of a1 that are close to 1. 

The second-layer weights, LW1,2, are set to the matrix T of 

target vectors. Each vector has a 1 only in the row associated 
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with that particular class of input, and 0's elsewhere. The 

multiplication Ta1 sums the elements of a1 due to each of the 

K input classes. Finally, the second-layer transfer function, 

compete, produces a 1 corresponding to the largest element 

of n2, and 0's elsewhere. Thus, the network classifies the 

input vector into a specific K class because that class has the 

maximum probability of being correct [4]–[5]. 

D. Setting input weights and defining output classes 

As it can be inferred from previous section, proper 

defining output classes and setting weights make network to 

serve as a demodulator. To detect data bits efficiently with no 

error in noiseless environment, PNN 6  demodulator must 

firstly distinguish between different modulation schemes and 

secondly for each modulation type, it must recognize binary 

or M-ary symbols from each other ( e.g. bit 0 and bit 1). Thus 

there are P=M*K different symbols that demodulator has to 

recognize (M is the number of symbols for each modulation 

schemes and K is the number of modulation schemes, e.g. for 

binary transmission there are P=2*K symbols), hence 

P=M*K output classes should be defined for PNN 

demodulator and input weights vector should be also set for 

each output class. To distinguish between incoming symbols, 

there should be enough samples of each symbol in a bit 

duration time, then these samples should store in a shift 

register and should pass to the network as an input vector. To 

illustrate it, suppose there are N samples of incoming signal 

in a bit duration available at the receiver. Fig.5 shows how 

these signal samples are stored and fed into the network. 

Afterward network compares these samples with the ones 

which are set as weight vectors to determine which symbol 

are the most similar to input samples. There should be P 

weight vectors (one vector for each output class) and the 

symbol samples are stored to each vector as an input weight. 

 

Figure 4. Probabilistic Network Architecture. 

 
Fig.5. Feeding the ANN Demodulator 

Note that the frequency of clk1 signal should be N times 

more than the frequency of clk2 signal. 

 
6 Probabilistic neural network 

IV. COMPARING TWO OTHER TYPES OF ANN 

In this section two common types of ANN (ELMAN and 

TDNN Network) are introduced and compared to the 

proposed ANN. Elman network commonly is a two-layer 

network with feedback from the first-layer output to the 

first-layer input. This recurrent connection allows the Elman 

network to both detect and generate time-varying patterns. A 

two-layer Elman network is shown in Fig. 6 [1]–[7]–[8].The 

Elman network has tansig neurons in its hidden (recurrent) 

layer, and purelin neurons in its output layer. This 

combination is special so that two-layer networks with these 

transfer functions can approximate any function (with a finite 

number of discontinuities) with arbitrary accuracy. The only 

requirement is that the hidden layer must have enough 

neurons.  

 

Fig. 6. Elman Network Architecture 

More hidden neurons are needed as the function being 

fitted increases in complexity. Elman networks are not as 

reliable as some other kinds of networks, because both 

training and adaptation use an approximation of the error 

gradient. For an Elman to have the best chance at learning a 

problem, it needs more hidden neurons in its hidden layer 

than are actually required for a solution by another method. 

While a solution might be available with fewer neurons, the 

Elman network is less able to find the most appropriate 

weights for hidden neurons because the error gradient is 

approximated. Therefore, having a fair number of neurons to 

begin with makes it more likely that the hidden neurons will 

start out dividing up the input space in useful ways, so in real 

time applications and adaptive trainings it is not suitable to use 

it, at least because of training time and memory limitations 

and also training algorithm convergence (hardware resources) 

as indicated in [1]–[5]–[7]. A simple way to store data 

samples and use them to demodulate a symbol is to apply a 

tapped-delay line or time-delayed line (TDL) at the beginning 

of each layer. This is called the Distributed Time-Delay 

Neural Network (TDNN). The original architecture was very 

specialized for the particular problem. Fig. 7 shows a general 

two-layer distributed TDNN. This network is well suited to 

time-series prediction in which 
if  is the activation (transfer) 

function of layer i, IW and LW are the input weights and layer 

weights vector respectively and bi is the ith layer bias 

vector[1]–[5]–[8]–[9]. None of these introduced neural 

networks can be trained properly as a universal demodulator 

while they may be trained somewhere as a single-aimed 

demodulator ( but not universal ). To make sure in this section 

it is tried to train and test them to compare with the PNN type. 

The SIMULINK toolbox of MATLAB is used to build the 
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corresponding models of ANN demodulators, whose transfer 

function of the hidden layer is tansig and transfer function of 

the output layer is purelin with 8 neurons in the hidden layer. 

A back propagation algorithm is presented to train the ANN 

demodulator. For a TDNN network to simulate, time-delay 

lines with 4 and 3 elements are considered in hidden and 

output layer respectively. Table I and II show the structural 

specifications of the two mentioned ANN (ELMAN and 

TDNN) in MATLAB simulation. As it can be seen from the 

figure 8and 9, for both TDNN and ELMAN there is no 

hopeful learning curve which can show a good performance 

(here sum squared error is chosen for the performance 

function) and it means that these two networks cannot get 

trained satisfactorily  

 
Fig. 7. TDNN Network Architecture 

hence the two ANN outputs would not be as it is expected, i.e. 

the two ANN cannot demodulated the incoming signal 

perfectly. Figure 10 shows the outputs of TDNN and ELMAN 

along with the ideal output. It can be easily figured out that in 

some circumstances the two ANN demodulators detect data 

bits with error (most of these errors is for the PSK modulated 

signals because both of demodulators have some problems 

training of PSK modulated signals. 

TABLE I. ELMAN NETWORK PARAMETERS. 

ELMAN_NET = 

  Neural Network object: 

     numInputs: 1 

     numLayers: 2 

    biasConnect: [1; 1] 

   inputConnect: [1; 0] 

   layerConnect: [1 0; 1 0] 

   outputConnect: [0 1] 

Delay: 

  numOutputs: 1 (read-only) 

  numInputDelays: 0 (read-only) 

  numLayerDelays: 1 (read-only) 

  functions: 

     adaptFcn: 'trains' 

     divideFcn: 'dividerand' 

    gradientFcn: 'calcjxfp' 

      initFcn: 'initlay' 

    performFcn: 'mse' 

     plotFcns: {'plotperform','plottrainstate'} 

     trainFcn: 'traingdx' 

 
TABLE II. TDNN network parameters. 

TDNN NET = 

  Neural Network object: 

     numInputs: 1 

     numLayers: 2 

    biasConnect: [1; 1] 

   inputConnect: [1; 0] 

   layerConnect: [0 0; 1 0] 

   outputConnect: [0 1] 

Delay: 

  numOutputs: 1 (read-only) 

  numInputDelays: 4 (read-only) 

  numLayerDelays: 3 (read-only) 

  functions: 

     adaptFcn: 'trains' 

     divideFcn: 'dividerand' 

    gradientFcn: 'calcjxfp' 

      initFcn: 'initlay' 

    performFcn: 'mse' 

     plotFcns: {'plotperform','plottrainstate'} 

     trainFcn: 'trainlm' 

 

V. SIMULATION AND RESULTS 

Simulation process includes constructing a proposed 

neural network architecture (setting input weights vectors 

and defining output classes), generating binary data 

randomly modulated by PSK, FSK, ASK schemes, and 

finally passing these modulated data into proposed universal 

demodulator. Effect of AWGN channel is later added to the 

simulation. Table III shows modulated signals properties. 

Note that sampling frequency is at least 10 times more than 

maximum carrier frequency. 

Since there are 11 types of signal involved in the simulation 

(for each a unique ANN output class is defined), there should 

be an input weights matrix with a size of 6*N ( N is the 

number of signal samples in a bit duration). Figure 11 shows 

the signal samples set as an input weights vector. 

After setting weights vector and defining output classes of 

ANN, binary data should be generated and modulated 

randomly at the transmitter. To verify the demodulator 

performance, these modulated data should be passed through 

 
Fig.8 . Learning curve of TDNN ANN 

 
Fig. 9. Learning curve of ELMAN ANN 
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     Fig.10 .Output Elman ANN (green) DTDNN (red) compared to ideal 

output (Blue) 

the ANN demodulator and then the output should compare to 

the original data. No error occurs at the receiver after running 

a simulation. Figure 12 and 13 show the mentioned process. 

To simulate the effect of noise, white Gaussian noise is 

added to signal after modulating at the transmitter. The 

resulting noisy noisy signal is then passed through the ANN 

demodulator and the effect of noise power on bit error rate is 

shown in figure 14. 
 

TABLE III . MODULATED SIGNALS PROPERTIES 

modulation 

Type 
BFSK BPSK BASK 

Sampling 

Frequency 

(sample/sec) 

4500K 4500K 4500K 

Carrier 

Frequency 

(KHz) 

450 300 100 

Bit Rate 

(bit/sec) 
90K 90K 90K 

Corresponding 

ANN output 

class 

5  for bit 0 1   for bit 0 3   for bit 0 

6  for bit 1 2   for bit 1 4   for bit 1 

 

 

 
Fig. 11. samples set as a weights vector. 

 

12.a-binary data 

 

12.b-Corresponding ANN output class 

Fig. 12 Simulation process signals 

 
13.a- Randomly modulated signals 

 
13.b- Detected demodulator output classes 

 Fig.13 . Simulation process signals 
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Fig. 14. BER curve versus Eb/N0 

VI. CONCLUSION 

In this paper a universal demodulator based on probabilistic 

neural network was presented and its performance was shown. 

In such a demodulator input weight vectors and output classes 

should be defined for different modulation schemes in order to 

detect incoming signals without changing or replacing 

receiver hardware so it can be easily used in software defined 

radio structure. Furthermore it has some advantages over the 

other types of neural network demodulators such as fast 

training and fast data processing ability to detect data bits 

since there is no feedback layer in its structure. Finally the 

effect of noise in detecting data bits was shown. 
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