

 Abstract—The Multi-Container Web server allows the

division of a single web request into independent portions to be
executed in parallel over different communication channels. To
achieve this, the underlying communication infrastructure of
traditional web environments is changed from the state-full
TCP to the stateless UDP communication protocol. Such an
architectural change provided an environment suitable for
parallelization and distribution and enhanced some other
already existing characteristics of the current web
environments such as fault tolerance and web caching. In this
paper, performance is further enhanced as part of the
framework upon which web applications will run by
introducing a number of changes. The configuration Manager
(CM) is the subsystem that is responsible for reading
configuration files provided by administrator. The CM is split
into two parts, which are the Container CM and the HPA CM.
After the CM reads the necessary configuration files and
validates its content, it makes it easy for the administrators to
be able to change environment setting such as container port
ranges, types of nodes, services names, services location,
number of instances each service should be loaded, and more.
The CM also have the capability to reconstruct some types of
configuration files from its data structure buffers, as such
buffers may change through other subsystems and such
changes may need to be permanent.

Index Terms—Multi-Channel, Clustering, High Availability,
Service State Migration, High Performance Computing, High
Performance Agent, Skeleton Caching, Containers, Hybrid
Scripting

I. INTRODUCTION
In previous papers we proposed a web application server

[1][2][3] that is an application deployment server to load
application component instances in the form of services, as
well as provide the resources required for them to execute
and function. The web Container supports a UDP based
communication layer through which all communication
between any Container and its clients are over a state-full
communication protocol built on top of UDP. Since a
Container will not be able to communicate except through a
proprietary protocol based on UDP, and since normal web
clients communicate with web servers using HTTP over
TCP, an intermediate translator is necessary to narrow the
gap and enable the web client to transparently send its
requests to the container. Thus, the High Performance Agent
component is introduced which will be referred to

Manuscript received April 29, 2010; revised February 8, 2011.
Kareim M. Sobhe is with the Department of Computer Science, Ahmed

Sameh Department of Computer Science.
The American University in Cairo, Prince Sultan University Cairo,

11511, Egypt, Riyadh, 66833, Saudi Arabia Sameh.aucegypt.edu@
gmail.com.

throughout this paper as HPA. Acting as a reverse proxy,
the HPA is located physically on the machine which the
web client initiates its web requests from. Unlike any
normal proxy, the HPA provides proxy operations between
a web client and a Container over different communication
protocols, so the HPA will be communicating with the web
client through normal HTTP over TCP and will translate
those client requests to the container through an extended
HTTP protocol over UDP. The HPA is designed to be a
reverse proxy because unlike normal proxies, a reverse
proxy serves a specific destination or a number of
destinations. In a realistic situation, the HPA is not
considered an overhead, as it is located on the client
machine, very tightly coupled with the web client and serves
only the normal load of a single user's web transactions.
Figure 1 shows the proposed new architecture. The
Container is a normal web application server deployment
container with all the subsystems needed to carry out the
basic functionalities of a normal web application server
deployment container which are loading application
business logic components in the form of loadable services
components, and providing them with the necessary
resources to be able to operate and function. The Container
has a class hierarchy that any service needs to extend to be
able to be deployed in the Container. Services should be
developed and implemented in the development technology
that a container supports; in this case, the proposed
environment will support hybrid development and runtime
technology types of containers which will all be replicas in
architecture and provide the same communication interface,
so there will be C++ Containers and Java Containers.
Maybe in the future there will be PERL containers, PHP
Containers, Python Containers, ...etc., where the
responsibility of each container type is to host services that
are developed with its supported technology in mind, for
example, the C++ container will host services developed in
C++. As will be seen in the next sections, a web request
could be broken down to portions that may run on different
development technology container nodes, and those hybrid
services can exchange messages.

A container node has a multi-thread communication layer
with pre-allocated communication sockets to communicate
concurrently with different clients. A service factory is
required to load service instances in ready-to-execute
threads to assign to service requests coming from the clients.
The service factory loads services that are defined in the
container configuration files, thus a configuration manager
subsystem is needed to parse and load configuration files
which define the settings that the container should have
such as the communication port range that the container
should acquire, maximum number of communication
threads, services names that the container should load,

Configuration Management in Multi-Channel Multi-
Container Web Application Servers

Kareim M. Sobhe and Ahmed Sameh

IACSIT International Journal of Engineering and Technology, Vol.3, No.3, June 2011

220

number of instances to be instantiated from each service
type, location of multi-channel server side scripts called
skeletons, ...etc.

Fig 1. The Proposed Multi-Channel Web Environment based on UDP

The container node has a dispatcher which dispatches
incoming web transactions to the correct services to handle
the request, and also a communication buffer manager to
assign and manage communication buffers allocated for
dispatched services. As can be seen, many resources are
allocated by a container node such as communication
threads, communication buffers, memory and thread
resources for instantiated services instances, therefore a
garbage collector is needed for environment housekeeping
for expired resources to enable them to be reinitialized and
reused for following requests. Each component will have its
own garbage collection module. For example the factory
will be able to clean and reacquire terminated service
instances after they finish execution. The communication
layer will be able to clean up finished communication
channels and reinitialize them for further reuse. The
communication buffer manager will be able to de-allocate
expired unused communication buffers. Figure 2 shows the
internal architecture of a container node irrespective of its
supported development and runtime technology.

So far, the architecture presented serves single container
functionality, so a cluster management subsystem will be
added to enable message exchange between different
container nodes which will help in the proposed
multichannel mechanisms and through which service state
migration, which is discussed later, will provide a better
infrastructure for fault tolerance. To deploy services easily,
a deployment manager subsystem will work closely with the
cluster management subsystem to enable the clustered
deployment of services which will include service images
replication on container clustered nodes. In fact, the
deployment manager will use the cluster management
subsystem's APIs and interfaces to carry out cross cluster
deployment operations Each Container type has an
embedded class hierarchy all of which follow the same
design and functionality as much as possible. For a service
to be deployed in a specific container it should extend an
Ancestor Class which is provided by all container types.
The Ancestor class basically has two sets of methods; the
first set is those methods which are basic virtual methods for
services to extend and overload such as the main method
which is called by the service factory when a service is
dispatched to serve a web request.

Fig 2. Container Node Architecture

The other set of methods has the role of encapsulating
functionalities that are carried out by the container on behalf
of services such as reading and parsing the HTTP Request
header and posted data as well as composing the HTTP
Reply header. It is very important that the service developer
be aware of the container class hierarchy and its interfaces
to be able to utilize the container functionalities and its
internal infrastructure.

The container can serve two types of services which are
designed to enable the developer of application components
to develop applications in a decomposable way that will
enable the concurrent execution of services, and the delivery
of their results over multiple communication channels: 1-
Single Channel Services: The first type of services is the
Single Channel Service, which we define as the smallest
executable entity that can run independently. A Single
Channel Service is considered the indivisible building block
of an application component which can be used to build up
more complex services, providing re-usability and extend-
ability. As the name indicates, the most important
architectural feature of a Single Channel Service is that it
communicates over a single communication channel which
is basically based on UDP communication. The direct client
of a Single Channel Service is the HPA which will act as an
interface agent between the service and the web client. A
Single Channel Service can be visualized as a Java Servlet
which runs in the application server environment and
delivers web results to the client. 2- Skeleton Services:
Since the Single Channel Service does not differ in concept
from a normal web application component, a way is needed
to group those independent basic components, the Single
Channel Services, to build more complex functionality
services able to run those components in parallel to improve
performance. A Skeleton Service is basically a server side
in-line script which follows the normal structure of regular
web server side in-line scripts such as PHP or ASP. Some
features are added to the Skeleton to achieve multichannel
and parallel execution such as adding parallelization
constructs to each in-line code section in the skeleton as
well as the type construct defining the development
environment of each in-line code section.

The developer will write the skeleton source file which is
a hybrid of static content as well as in-line code sections
defining the dynamic parts. Then the deployment manager
will take as an input the source of the Skeleton to generate
the skeleton map and add independent single channel
services for each concurrent in-line script section. The

IACSIT International Journal of Engineering and Technology, Vol.3, No.3, June 2011

221

Skeleton map is a map that will be used by the HPA to
identify each concurrent service that needs to be requested
from the container in parallel. The communication layer of
the Container is based on a special state-full protocol built
on top of UDP sufficient to serve the web application
communication needs of a single request-reply
communication sequence. The communication layer
consists of multi-threaded components that allow the
container to handle multiple communication channels
simultaneously and service multiple requests concurrently.
The container does not perceive the relation between
different channels, rather from the container perspective
each communication channel is assigned to a service which
either serves a normal service or transfers a skeleton map to
the HPA, both of which require a single channel. The HPA
is the one which initiates multiple communication channels
to different containers to serve a complex service defined by
a skeleton map. When a request arrives from the HPA the
container starts by validating the client. On successful
validation the communication layer passes the HTTP
request to the service dispatcher which will then evaluate
the HTTP request and with the help of the service factory a
communication channel will be assigned to a service to
serve the requested web transaction. After the transaction
finishes, the communication layer subsystem is responsible
for cleaning up the communication channel and re-
initializing it to serve future requests. When the HPA
initially tries to communicate with a container node, it will
do so on a default administrative port through which it will
be assigned a range of service ports over which it can
request services from the container. The HPA will be able to
communicate with any container node in the cluster over the
same range of communication ports. The communication
layer, with the help of the cluster management subsystem,
will assign the HPA to a free range of ports and replicate
this assignment to all container nodes in the cluster.

Fig 3. Service Factory

Fig 4. Communication flow between web client and container with HPA in
the middle

After a specific idle time from a specific client the port
range assignment is cleared and the HPA client will need to
reclaim a port range again. The Service Manager subsystem
is composed mainly of the Service Manager and the Service
Dispatcher which are concerned with the service status in all
stages of operations. First a service is loaded by the service
factory when it is in the stage of being ready to serve
requests. When a request arrives and the service dispatcher
decides on the type of service that should serve a specific
request, it asks the service factory to avail a service instance
for this request, which is the point where the service is
assigned by the dispatcher to the communication channel as
well as a communication buffer and its status is changed to
being operational and dispatched, where it will reside in the
active service pool. When the service finishes serving the
request, the garbage is collected by the service factory,
returned to the status of being ready to use and transferred
to the ready to execute service pool. Figure 3 gives an
abstract view of the Service Manager and how the Service
Dispatcher interacts with the Service Factory. This
subsystem is responsible for reading configuration
information from configuration sources, which are all based
on XML format and require XML parsing, and storing it in
internal structures ready for use by different subsystems.
For example, the range of ports to be used by the
communication layer, the number of instances for a specific
service type, . etc. With the help of the Cluster Management
System, the Configuration Manager is capable of
distributing configuration structures over different container
nodes in the web cluster. The Administration Manager is an
interface layer between the human administrator of the
container web cluster and the container nodes. It enables the
administrator to pass administration commands to the
container node with the help of the Cluster Management
System, the commands issued by the administrator can run
transparently on multiple container nodes providing a single
system image SSI for the whole container web cluster. The
Deployment Manager is responsible for deploying the
services provided by the application developers and
replicating the deployment over different cluster container
nodes with the help of the Cluster Management System.

Fig 5. Multi-channel Scenario Work Flow

The deployment manager can deploy single channel
services as back-end components as well as multichannel
services represented in server side in-line scripts. The
developer will provide the multichannel in-line scripts. The

IACSIT International Journal of Engineering and Technology, Vol.3, No.3, June 2011

222

deployment manager will then parse the script and extract
each piece of code defined as a separate thread and generate
the single channel service source code for it. The
deployment manager will then compile the services,
generate whatever error or warning messages apply and
send them to the deployment administrator. The deployment
manager will choose the correct compiler for each code
section according to its type, meaning that sections written
in C++ will be compiled with GCC for example, and
sections written in JAVA will be compiled with an
appropriate JAVA compiler. On successful compilation of
the services constructed from the in-line script definitions,
the deployment agent will deploy those services across the
container cluster nodes according to their types. C++ single
channel services will be replicated over C++ containers, and
JAVA services will be replicated over JAVA containers. It
is important to state that some replication constructs and
rules can be applied for the service replications. The default
replication may be equal distribution of the services, but
there might be another deployment scheme which takes into
consideration the amount of memory and the speed of the
CPU of each container node. After the single channel
services are compiled and deployed successfully, the
deployment manager will generate a skeleton map for the
in-line script and replicate it over cluster nodes. The
skeleton map will contain pointers to the target single
channel services indicating their primary and secondary
locations in case of failures. The service pointer is compose
of an HTTP-like header of the request for the single channel
service with a little room for adding extra information about
the service such as alternative service locations. The Cluster
Management System is the subsystem that is responsible for
the exchange of information between different containers.
The cluster management system enables the deployment
manager to distribute newly deployed services as well as
modified ones. The Cluster Management System is also
responsible for transparently executing administration
commands issued by the environment administration over
all the nodes of the cluster which eases the administration of
the web cluster and makes it appear as a single system to the
administrator. Moreover, the Cluster Management
Subsystem is responsible for all the communication
necessary to carry out the service state migration. The High
Performance Agent is the agent that the whole system
depends on. The HPA acts as a multi-protocol reverse proxy
between the Container and the web client. The HPA acts as
a web server for the web client and as the agent which
understands the constructs sent by the container to split the
communication stream into multiple channels, which will
enable the parallelization of delays from which should come
the enhanced performance. How the gears will work can be
seen in the work flow section. The communication layer of
the HPA is a multi-protocol double edged communication
layer. It can be viewed as two separate communication
layers that communicate with each other. The first
communication layer is a standard multi-threaded TCP
communication layer that can handle multiple web
transactions concurrently. The second, UDP based,
communication layer is responsible for communicating with
the back end containers. A request is initiated by a web
client through an HTTP over TCP connection. When the

request arrives to the HPA, the HPA will use one of the
already established UDP connections with the container
environment and a discovery request will be initiated to
identify the node that this request will be served from. A
cache for discovery results in the HPA will be updated to
eliminate unnecessary communication. Finally, the request
will be served from the container to the HPA over UDP and
the data stream will be transferred to the web client
consequently over TCP, which will take place transparently
to the web client. Both communication threads, TCP and
UDP, will run in two different threads to avoid dependent
communication blocking, hence a buffering mechanism will
be needed between the two threads to enable data storage
which will help to postpone mutual communication
blocking between the two communication threads. Of
course when the communication buffer is fully occupied,
the UDP receiver will wait until the TCP sender starts
spooling data from the buffer and vise versa. Figure 4 gives
an overall view of the communication mechanism between
the web client and the container with the intermediate agent
HPA in the middle. Obviously a server side in-line script
will contain some static content, and every time a server
side script is requested by the client, the skeleton map for
that script will have to be fetched from the container for the
HPA to continue and establish the required single channel
requests to fulfill serving the server side script request. The
connection required to fetch the skeleton map is an
overhead, hence adding a cache module to the HPA to keep
unmodified versions of skeleton maps will achieve two
things: 1) eliminate an extra connection that is needed for
the skeleton fetching, 2) cache some of the static content
that is embedded in the dynamic content generated by back
end services. All the scripted sections will be cached by the
HPA, and the impact of that will depend on the size of the
cachable areas. Of course in current modern scripting
environment such caching is not possible as the client has
no clue which parts of the UI, e.g. HTML, is static and
which part is generated by a backend business logic engine,
yet the client, HPA, in our case has no access to the business
logic source code. The Discovery client is the module that is
responsible for advising the HPA of the locations of
services through communication with the Container
discovery service. Caching will be applied to eliminate
unneeded communication as much as possible.

II. SYSTEM OPERATION
The work flow of main types of requests and mechanisms

is discussed through a file spooler that is used as an
example to clarify the three scenarios presented; the Single
Channel scenario, the Multi-Channel scenario, and the
Service State Migration Scenario [4][5]. Work flow figures
provide visualization of each scenario. The Single Channel
Scenario is the basic building block upon which the
multichannel scenario is built. A special case one container
of Figure 5 illustrates the work flow of the single channel
scenario. The scenario starts with a web client using the
HPA installed on the same machine and operating on the
loopback address, to initiate a single channel request to a
container node. The request is in normal URI structure
which contains the name of the container node that the
requested service resides on, and the name of the service to

IACSIT International Journal of Engineering and Technology, Vol.3, No.3, June 2011

223

be executed. The request is sent to the HPA over TCP. The
HPA evaluates the request and identifies it as a single
channel request. The HPA then opens a UDP connection to
the container node specified in the URI, and passes the
request to it. The container then dispatches the request to the
correct service instance to serve the request. The stream
returned by the service to the HPA over UDP is sent to the
client over UDP. As can be seen from the figure, the UDP
communication is carried out in parallel with the TCP
communication which allows the pipelining communication
mechanism that eliminates overhead and increases the speed.
The multichannel scenario is based on the single channel
scenario, as a web transaction is broken down into a number
of single channel services that are distributed and executed
concurrently and serve their content over parallel
communication channels. Figure 5 illustrates the work flow
of the multichannel scenario.

The request reaches the HPA over TCP as usual, exactly
as in the previous scenario. The HPA evaluates the request
and identifies it as a multichannel request by the service
name extension .skel. The HPA then makes necessary
updates to its skeleton cache. Then it fetches the skeleton
data structure from its cache, and identifies the different
single channel requests needed. The HPA then spawns a
thread for each single channel request to different container
nodes according to the information in the skeleton map of
the multichannel service. The HPA returns the replies of the
channels to the web client over TCP as they arrive
according to their chronological order which entails some
buffering and blocking techniques. For example, if the
second channel finishes before the first channel, the second
channel content must be buffered on the HPA side until the
first channel finishes, during which the communication
channel will be blocked.

III. CONFIGURATION MANAGER (CM)
The CM is basically an XML parser that parses XML

configuration files, and an extended data structure that is
designed to store all possible configuration constructs stored
in configuration files provided by the system administrator.
The CM is part of both the Container and the HPA as they
both need some initial configuration to be able to start.
In the case of the Container, identical copies of all the
configuration files should be present on all Container nodes
of the cluster. As we have developed Container nodes
running on UNIX environments, the location where such
configuration files should be located is "/etc/container/".
Three main configuration files should exist for the container
node to be able to initialize, start up, and services requests,
which are: main.xml, node.xml, service.xml

The main.xml configuration file is an xml file that is
responsible for holding all the main configuration necessary
for all container nodes to be able to start up. Also it contains
some needed configuration that is used by deployment
managers that can run from any container node. The
main.xml, unlike the other 2 configuration files used by the
container, contains only one XML record, as the
configuration parameters defined in it are not repetitive. A
main.xml file would look like the one below.

As we can see, each container type have different values

for some attributes, such as the "StartPort" and the
"JStartPort", which allow different container types to be
hosted physically on the same hardware node. Of course, if
we have more Container types, this configuration files will
need to be extended to accommodate that, and consequently
the CM will need to be altered to allow for the new
attributes to take effect.

The node.xml configuration file is a multi-record XML
configuration file. Each XML record in this file represent
one node in the cluster and set some of the needed attributes
for each node that is necessary for other nodes to be able to
communicate with. So a Container node will not need its
record in this file as it will not communicate with itself,
rather it will need to read all the other records to be able to
know how to communicate with other nodes in the cluster.
Also, it is important for all nodes in the cluster to know the
managed nodes in the cluster to be able to communicate
with for cluster specific functionalities. A node.xml file
would look like the one below. The XML records in this file
is sent to an HPA during the reservation process as a reply
for its discovery request to know the needed information
about the cluster

The service.xml configuration file is a multi-record XML

configuration file. Each XML record in this file represents a
service that the container should load at startup time. Each
service have a type which indicates which container type
should load. If extra services are loaded by the container as
a result of a deployment process, the CM can then update
this XML file with its internal buffers with the updates to
make these changes permanent, and this will make the
container load such services on the next startup. The reason
that such configuration file contains services with different
types is that more than one container type can be running
physically on the same hardware node [6][7][8]. A
service.xml file would look like the one below.

IACSIT International Journal of Engineering and Technology, Vol.3, No.3, June 2011

224

The HPA has only one configuration file that direct it to

the Managment Node of the cluster from which it will
receive extra data about the cluster. The configuration file is
called also nodes.xml and it contains multiple XML records;
each record represents the necessary details of a
management node together with its rank or importance. An
HPA node.xml file would look like the one below.

IV. EXPERIMENTS
We firstly show snapshots of the container and the HPA

while they are starting up, and how the configuration stored
in the configuration files and loaded by the CM reacts on
the messages printed on the console of each. The following
snapshot shows a C++ container startup console.

As can be seen the container performs the following steps

during its startup:
1. The container starts by loading the services defined in the
service.xml
2. The container then starts its management service on the
port defined in main.xml
3. The container then starts management client senders to all
nodes in the cluster.
4. The container then starts the HPA management service on
the port defined in main.xml, if it is a management node as
defined in node.xml

5. The container then starts the deployment service on the
port defined in main.xml
6. The container then starts its channels on the range of
ports defined in main.xml depending on its type.
7. Finally, the container starts the reserve service in the port
defined in main.xml depending on its type.

The same sequence of steps are performed by a Java
Container as shown by the following diagram

The HPA is performing the following steps during its

startup:
1. The HPA gets the management node address and port
from its configuration
2. The HPA then sends a discovery request to the
management node to get addresses and reservation ports of
available nodes in the cluster.
3. The HPA starts the channel reservation process iteratively
with each node in the discovery list returned.
4. Finally the HPA starts the HPA Client Management
service and connects to all management nodes in the cluster.

Fig 6: 1 Server Node (Multi-Mailbox Email Web Console)

Fig 7: 2 Server Nodes (Multi-Mailbox Email Web Console)

Fig 8: 3 Server Nodes (Multi-Mailbox Email Web Console)

IACSIT International Journal of Engineering and Technology, Vol.3, No.3, June 2011

225

Fig 9: 4 Server Nodes (Multi-Mailbox Email Web Console)

Fig 10: Performance Comparison with respect to Number of Nodes (Multi-

Mailbox Email Web Console)

V. CASE STUDIES: MULTI ACCOUNT EMAIL WEB
CONSOLE AND RSS AGGREGATOR

Nowadays, access to email is very important for everyone,
and not all private email environments have web email
interfaces, so POP email services are available on the web
to pop a users email through the POP protocol and make the
user's mailbox accessible from the web browser, which
increases the accessibility of the email from any location
eliminating the need for an email client software such as
Thunderbird or Evolution. Moreover, a user may have
multiple email boxes at physically different email servers
that he/she might want to access through a single console.
Such cases would benefit very much from the multichannel
environment which would allow fetching emails from
different mailboxes in parallel, while on the contrary, a
traditional web application will pop the users email from his
mail boxes one after the other. This kind of application is
very interesting, although as in the first case study, some
delay and processing will be needed to fetch the email, yet
what differs from the first case study is that the back-end
application will use and share a single INTERNET link to
access the mail box which will act as a bottleneck when the
link is fully utilized; hence the gain in performance will be
limited due to the wait time that the concurrent threads will
be subject to as a result of smaller shared connection slices.

The runs of the experiments were carried out on both
environments, the traditional and the multichannel. Two
variables were changed throughout the experiment runs,
which were the number of concurrent requests, and the
number of nodes in the serving cluster. The same
experiments and steps were followed as in the previous
application. Figures 6-10 illustrate the results of the
experiments.

Form the above results, the following are the most
important observations:
1. The multichannel environment did not provided a high
performance gain as in the previous case study. The average
percentage of performance gain was around 19%.
2. The gain in performance was directly proportional to the
increase in the number of nodes in the cluster, and

depreciated slightly as the number of concurrent
connections increased.
3. The execution duration of the request was shorter with
respect to the web usage statistics case study.
4. The clustering and adding new nodes in this case study
did not have a strong impact on the performance gain,
which was very clear from the last graph.
5. It was noticed during the experiments that the processing
usage during the multichannel experiments was slightly
higher than the processing usage during the traditional
environment experiments.

The second case study is the Web based RSS Aggregator.
An RSS collector is basically a web front-end that
consolidate more than one RSS feed from different sources.
The application is basically an on-line web-based RSS
aggregator that initiates curl-like calls to different RSS
sources identified from the profile of a specific user. The
application is fairly simple, and requires less processing
power than web usage statistics gathering or email
aggregation, yet some minor delays at the back-end is often
observed due to communication with the different RSS
servers. The runs of the experiments were carried out on
environments, the traditional and the multichannel. Two
variables were varied throughout the experiment runs, the
number of concurrent requests, and the number of nodes in
the serving cluster.

Fig 11: 1 Server Node (Web-based RSS Aggregator)

Fig 12: 2 Server Nodes (Web-based RSS Aggregator)

Fig 13: 3 Server Nodes (Web-based RSS Aggregator)

Fig 14: 4 Server Nodes (Web-based RSS Aggregator)

IACSIT International Journal of Engineering and Technology, Vol.3, No.3, June 2011

226

Fig 15: Performance Comparison with respect to number of nodes (Web-

based RSS Aggregator)

The same experiments and steps were followed as for the
previous applications. Figures 11-15 illustrate the results.
The following are the observations

1. In this case study the improvement in performance due
to the multichannel environment was minimal, and the
average percentage of performance gain is around 7%.

2. The execution duration of the request was very short
compared to the two previous case studies.

3. The clustering and adding of new nodes had minimal
effect on the performance gain at the beginning and as the
number of nodes increased as well as the number of
concurrent requests. The clustering had zero effect on the
performance.

4. It was noticed during the experiments that processing
usage during the multichannel experiments was almost the
same as the processing usage during the traditional
environment experiments.

Our analysis for the above three case studies targets two
main issues: why the performance gain degraded from the
first case study to the third one, and what are the best
characteristics of the applications that will most benefit
from multichannel environments. Tackling the first point, it
is very obvious that the Web Usage Statistics application
made maximum benefit from the multi-channel environment.
A deeper look into the characteristics of such applications
reveals that this was due to two main reasons:

1. The duration of the back-end execution of the service
required to generate the web usage statistics is relatively
long, and requires much processing on the back-end, which
provides many process delay parallelization chances that the
multichannel environment can utilize unlike the traditional
web application environment. In the other two case studies,
the Multi Account Email Web Console and the Web based

RSS Aggregator, the request fulfillment duration is
relatively small and is based on data transfer rather than
processing leaving few opportunities for improvements in
processing speed to improve performance, and leading to a
degradation in the rate of gain in performance.

2. The Web Usage Statistics Application is based on
external service, as are all three applications in the three
case studies. The external service in the case of the web
usage statistics is a database service, and in this case the
service can be expanded to run on different nodes with
database replication running in the background which
allows data consistency and independent processing
resources for every execution channel. The other two
applications, the INTERNET connection through which the
applications communicate with the external services they
depend on, namely the RSS web server for the RSS
Aggregator and email servers for the Multi Account Email
Web Console. The means of communication, the
INTERNET connection, that both applications depend on,

and their requests utilize in a sharing model, presents a
bottle-neck that prevented the multi-channel environment
from utilizing the inherent concurrency in the applications.
It is very obvious that all three chosen applications are
inherently parallel; the Web Usage Statistics can run usage
queries over a usage database distributed and in parallel
independently, the Multi Account Email Console can fetch
emails from different mail boxes independently and in
parallel, and the RSS Aggregator can fetch RSS feeds from
different sources in parallel as well, but the most important
issues that affected the performance were the deployment
architecture and the nature of the applications. It is very
important to highlight that both of the above two points
affected the performance results of the experiments
dramatically, which can be shown by the three charts below
that show the degradation in the rate of increase of the
performance with respect to the increase in the number of
concurrent requests. It is obvious from the above graph on
adding the new client machine the gain in performance in
the fifth returned back to the normal increase compared to
the previous runs. Figures 16-20 compare the three
applications in the three case studies with respect to their
gain in performance related to clustering and show the
domination of the Web Usage Statistics application over the
other two applications. Tackling the second target of the
analysis, web applications that will benefit most from the
multi-channel environment should posses three main
characteristics:

1. The application should be inherently parallel, meaning
that it can be broken into smaller independent threads of
execution, which is a very common characteristic in web
applications in general. Moreover, when the application
fragments are more closely equal in size (Execution
Duration) better results can be achieved.

2. The amount of execution needed by the application
should be relatively big with respect to the amount of I/O.
3. The threads of execution within a request, which are
represented by web channels, should depend, as little as
possible, on limited shared resources that waste the
parallelism, and force running threads to stand waiting in
queues which will emulate sequential processing and defeat
the whole purpose.

Fig 16: Effect of Clustering on Performance Gain (Web Usage)

Fig 17: Effect of Clustering on Performance Gain (Multi-Mailbox Email

Web Console)

IACSIT International Journal of Engineering and Technology, Vol.3, No.3, June 2011

227

Fig 18: Effect of Clustering on Performance Gain (RSS Aggregator)

Fig 19: Effect of Clustering on Performance Gain (RSS Aggregator)

Fig 20: Comparison between the three Patterns of Execution

VI. CONCLUSION AND FUTURE WORK
This research is an attempt to find an alternative web

architecture that can provide better performance for
processing intensive web applications. As the technology
advances and becomes more complex, the window for
coming up with new inventions narrows relatively, yet what
can be done is to use what already exists from technology,
standards, invention, and engineering techniques to
restructure what is available and borrow mechanisms and
ideas from different fields of computer science, and research
their validity and their beneficial impact in other domains of
computer science. The approach followed in this research is
to invite ideas, techniques, standards, architectures, and
models of processing from different domains in computer
science to the web environment. The claim was that the
technologies and architecture of current web environments
are not adequate to serve all patterns of execution,
especially processing intensive web applications. Due to the
numerous outstanding characteristics of the current web
environment such as its standards, extendibility,
expandability, and openness an architectural change is
needed to make a new generation or strain of web
environments available to serve such needs. The key
challenge in this research is that the current web

environment is a very well established environment and its
standard, especially the interfacing standards are very
widespread and depended on by all web clients, thus major
changes in the architecture should be made in a way that
achieves the needed target without changing the client
interfaces. As the target from the beginning was
performance, HPC environments and conventions were a
very appealing and diversified area from which many ideas
were borrowed. Through the restructuring of the web
environment, by changing the internal communication layer
and basing our solution on clustering, a multichannel
environment was attained that not only provides better
performance in a specific domain of applications, but the
architectural change also contributed to extending already
existing web environment characteristics and making more
use of already existing features such as the scripting model
for web programming, business logic isolation, and web
caching. Other new features were also introduced, which
were born from the architectural changes applied, such as
the service state migration and the fault tolerance takeover
mechanism. It is very important though to stress that this
paper did not target by any means the invention of new
network protocols, dispatching and load balancing
algorithms, fault tolerance solutions, or automatic
application parallelization, rather it provided an architectural
framework that will provide a base for application
developers to utilize to achieve all of the above. The targets
achieved in this research can be summarized as follows:

1. Multichannel environment provides better performance
for applications that require considerable need for
processing with respect to I/O.

2. Multichannel environment makes more use of
clustering than traditional environment, due to its ability to
fragment web server pages scripts.

3. A complementary web environment is achieved, which
can co-exist side by side with traditional environments,
instead of being an alternative environment.

4. Borrowing ideas, mechanisms, and implementation
techniques from other fields of computer science such as
HPC proved to be very beneficial.

5. Web client interface is kept unchanged, and the
changes in architecture were made transparently.

6. Service state migration can occur between two
containers of different development technologies.

7. Fault tolerance, through service state migration,
recovers a failing request without the need to re-execute the
failing request.

8. Different services and service portions can exchange
messages through replicated shared memory segment.

9. A single server page can be written in more than one
development technology.

10. A multichannel clustered environment can be
composed of different containers with different
development technologies.

11. Deployment is less complex and does not need a lot
of configuration.

12. Smarter caching mechanisms were achieved through
skeleton map caching allowing the caching of static content
existing within dynamic scripts.

Hopefully, a web environment has been reached that
provides better performance for a specific domain of web

IACSIT International Journal of Engineering and Technology, Vol.3, No.3, June 2011

228

applications that are inherently parallel, and need a
considerable amount of processing power compared to I/O.
Through the case studies chapter we tried to show the most
important characteristics of applications which will benefit
from the multichannel environment. It is very important to
highlight that fusing ideas coming from different domains
needs a lot of prototyping and testing, as ideas that appear
matching and coherent might require a lot of workarounds
and tweaking to achieve integration in reality, thus a
considerable amount of the effort expended in this paper
was directed to detailed technical design, prototyping,
coding, and testing. Finally, this paper proposed a new
environment through some new and non-traditional
architectural changes, and researched the effect of such
architectural changes on performance as well as other
aspects of web environments.

REFERENCES
[1] Ahmed Sameh, Karim Sobh, "A Clustered Web Application Server -

Architecture", International Journal of Advanced Engineering
Sciences, Vloume 4, Issue 1, March 2011.

[2] Ahmed Sameh, Karim Sobh, "Multi-Channel Clustered Web
Application Servers - Deployment Manager", to appear in the
Proceedings of the IEEE conference on Cloud Computing &
Visualization- CCV 2011, Malysia, April 25-26, 2011.

[3] Ahmed Sameh, Karim Sobh, "Multi-Channel Clustered Web
Application Servers - Cluster Manager", Working paper.

[4] Jon Crowcroft, Iain Phillips. TCP/IP and Linux Protocol
Implementation: Systems Code for the Linux Internet. John Wiley
Sons, Dec 2001. ISBN-10: 0471408824. ISBN-13: 978-0471408826.

[5] UDP-based Data Transfer (UDT) http://udt.sourceforge.net/.
[6] Gigabit Ethernet Jumbo Frames

http://sd.wareonearth.com/phil/jumbo.html.
[7] Path MTU Discovery - RFC

1191http://www.faqs.org/rfcs/rfc1191.html.

[8] MTU Limits http://www.psc.edu/mathis/MTU/limits.html.

Ahmed Sameh, Correspondence Author
Alexandria, Egypt in 1957, Moved to Canada in
1980. He is now dual citizen. He earned his B.Sc.,
M.Sc., and Ph.D. degrees from both Alexandria
University and the University of Alberta in 1979,
1984, and 1989 respectively. All degrees are in
Computer Science and Engineering. Prof. Sameh is
currently a Professor of Computer Science at Prince
Sultan University, Riyadh, Saudi Arabia. Before that

he was with the American University in Cairo. He did hold positions at the
George Washington University, University of Kuwait, and Lewis & Clark
at various stages in his academic life. His major areas of research are in
High Performance Computing, Artificial Intelligence, Neural Networks,
Mobile Computing and Wireless Communications. He has several
publications including ten book chapters, fifty archival journal papers, and
one hundred and seventy refereed conference papers. These publications
are mainly in the areas of Cluster and Grid Computing, Mobile Computing,
and Neural Networks. Prof. Sameh is a member of the IEEE, ACM, ECS,
CIPS, and ISCA. He has received many honors and awards. He has
participated in many conference organizations, and journal/conference
refereeing.

Karim Sobh is the owner and CEO of “Code-
Corner”- Solution-Oriented IT consultant. He holds a
B.Sc. degree in Computer Science with honors from
the American University in Cairo, 1997. His
experience falls within Cluster Management, Open
Source development, System Programming, and
Internet Security. Karim holds several international
Professional certifications from Jedwards, Tivoli

Academy, and IBM. He is currently a graduate student in the department of
Computer Science and Engineering at the American University in Cairo.
He has a good record of scientific publications.

IACSIT International Journal of Engineering and Technology, Vol.3, No.3, June 2011

229

