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 Abstract —Multiple processors are employed to improve the 

performance of database systems and the parallelism can be 
exploited at three levels in query processing: intra-operation, 
inter-operation, and inter-query parallelism. Intra-operation 
and inter-operation parallelism are also called intra-query 
parallelism which has been studied extensively recently. In 
contrast, inter-query parallelism has received little attention 
particularly for multiple dependent queries. As the cost of a 
given query execution plan is function of many parameters 
including database structures , the estimated cost of all 
possible execution plans will be evaluated and also average 
association degree coefficient between  plans will be calculated.  
 

Index Terms—Query optimizer, inter query parallelism, 
plan, gene, chromosome, degree coefficient, fitness value. 
 

I. INTRODUCTION 
Modern database systems use a query optimizer to 

identify the most efficient strategy, called “plan”, to execute 
declarative SQL queries. Optimization is a mandatory 
exercise since the difference between the cost of the best 
plan and a random choice could be in orders of magnitude. 
The role of query optimizers is especially critical for the 
decision-support queries featured in data warehousing and 
data mining applications. Query optimization using this 
cost-based approach is computationally expensive with 
respect to  the time and resources that need to be expended 
to find the best plan. Therefore, understanding and 
characterizing query optimizers with the ultimate objective 
of improving their performance is a fundamentally 
important issue in the database research literature. 

The cost of a given query execution plan is a function of 
many parameters, including the database structure and 
contents, the engine settings, the system configuration, etc. 
For a query on a given database and system configuration, 
the optimizer’s plan choice is primarily a function of the 
selectivities of the base relations participating in the query 
that is, the estimated number of rows of each relation 
relevant to producing the final result. Varying the 
selectivities of one or more of the base relations produces 
the selectivity space with respect to these relations. 

The key constituents of the query evaluation component 
of an SQL database system are the query optimizer and the 
query execution engine. The query optimizer is responsible 
for generating the input for the execution engine. It takes a 
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parsed representation of an SQL query as input and is 
responsible for generating an efficient execution plan for the 
given SQL query from the space of possible execution plans. 
One aspect of optimization is where the system attempts to 
find an expression equivalent to the given expression, but 
more efficient to execute. 

Another aspect is selecting a detailed strategy for 
processing the query. The task of an optimizer is 
computationally challenging since, for a given SQL query, 
there can be a large number of possible execution plans. 

Query optimization is a difficult problem due to the large 
number of possible ways to execute a given query using 
different access methods, join orders, join operators, etc. 
while industrial strength query optimizers each have their 
own proprietary methods to identify the best plan. 

In a multi-user environment, it is common for a system 
receiving multiple queries at the same time. As a result, 
several queries are running on different processors in 
parallel. Multiple queries execution can be classified into 
two categories based on query dependency, multiple 
dependent and independent queries. Currently, an active 
database research area is data mining, by which the 
extraction of information from large amounts of data 
accumulated and used for other purposes. 

II. REVIEW OF LITERATURE 
Stefan Berchtold et.al [1]have discussed in their paper 

that  the problem of retrieving all objects satisfying a query 
which involves multiple attributes is a standard query 
processing problem prevalent in any database system. The 
problem especially occurs in the context of feature based 
retrieval in multi databases.  

S.Babu et.al[4] have elaborated in their paper that   multi 
database systems use a query optimizer to identify the most 
efficient strategy called plan to execute declarative queries. 
For a query on a given database and system configuration, 
the optimizer’s plan choice is primarily a function of the 
selectivities of the base relations participating in the query. 
Query optimizers often make poor decisions because their 
compile time cost models use inaccurate estimates of 
various parameters. 

Falout C.Barber et.al [7] have evaluated the cost function 
in task allocation which is the sum of inter processor 
communication and processing cost and found that they are 
actually different in measurement unit.  

Hong Chen et.al [5] have elaborated in their paper that 
the multi query processing takes several queries as input, 
optimizes them as a whole and generates a multi query 
execution strategy.  

Cristina Lopez et.al [9] have defined in their paper that   
population of individuals known as chromosomes, represent 
the possible solutions to the problem. These are randomly 
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generated, although if there is some knowledge available 
concerning the said problem, it can be used to create part of 
the initial set of potential solutions. 

Ahmed A.A. Radwan et.al [11] have suggested in their 
paper that in genetic algorithm ,the search space is 
composed of candidate solutions to the problem , each 
represented by a string is termed as a chromosome. Each 
chromosome has an objective function value, called fitness. 
A set of chromosomes together with their associated fitness 
is called the population.  

III. PROBLEM ANALYSIS 
Multiple queries execution can be classified into two 

categories based on query dependency, multiple dependent 
and independent queries. Currently, an active database 
research area is data mining, by which the extraction of 
information from large amounts of data accumulated and 
used for other purposes. 

A good example is the airline reservation system 
analysing the travellers pattern to keep planes fully booked. 
During the analysis, it is found that the result of one query is 
required by other queries; here is a situation where there are 
multiple dependent queries. 

Alternative plans of a query, and other queries in the 
query set may contain the same task. Therefore in solving 
the multiple query execution with query dependency, the 
aim is to determine a set of tasks with minimal cost that 
contains all tasks of at least one plan of each query with the 
minimal cost. 

IV. PROBLEM FORMULATION 
Individual plan is represented as chromosome and 

individual task in a plan is represented as gene. Since a gene 
in a chromosome represents the plan selected for the query 
corresponding to the gene position, in the mutation 
operation the plan number is only replaced with randomly 
selected valid plan’s number for that query. Therefore a 
mutation operation always generates valid solutions. 
Different crossover operations can be applied to 
chromosomes. In our representation scheme, one point and 
multipoint crossover techniques produce valid solutions for 
the multiple query processing problems. If two 
chromosomes are representing two valid solutions of the 
same multiple query processing problem, then any crossover 
operation on these two chromosomes produces new 
chromosomes representing valid solutions for the same 
multiple query processing problem. Since all chromosome 
segments that are going to be exchanged to produce a new 
chromosome represent valid plans for their corresponding 
queries , the new chromosome obtained by appending these 
segments represent a valid solution of the multiple query 
processing problem. 

V. EXPERIMENTAL RESULTS AND ANALYSIS 
Maximum generations=20 
Number of relations=20 
Number of queries=20 
Planquery( Size of Chromosome )=7 
Population=round( rand(number of queries, planquery)) 
Pc ( Probability for crossover operation)=0.07 

Pm ( Probability for mutation operation)=0.001 
Cp(crossover point)=round(1+rand*(planquery-1)) 
The genetic algorithm’s chromosomes have a length of 07, 

which is the number of different terms with nonzero values. 
Hence the chromosomes that represent each plan and the 
query will be the following. 

Chromosome C1= 1010110 
Chromosome C2= 0001100 
Chromosome C3= 1111111 
Chromosome C4= 0001100 
Chromosome C5= 1011001 
With the method described, although the number of genes 

of the chromosomes are kept for the whole population, it 
will vary according to the query that is being processed and 
the plans supplied in the feedback. 

Population: Genetic algorithm receives an initial 
population consisting of the chromosomes corresponding to 
the relevant plans, and to the query. 

Selection: The genetic algorithm uses simple random 
sampling as a selection mechanism. This is implemented by 
assigning to each individual a selection probability equal to 
its fitness value divided by the sum of the fitness values of 
all the individuals. 

If after generating the population, the best chromosome 
of the previous population is no  longer present, the worst 
individual of the new population is withdrawn, and the 
missing best individual is put back.  

VI. ALGORITHM  
summ=0; 
summ1=0; 
summ2=0; 
 for pop=1:tempsz 
        temp=0; 
for i=1:planqry 
temp=temp+2^(i-1)*temppop(pop,i);             
         end 
          x(pop)=temp; 
         
planselect(pop)=x(pop)/(noqry*planqry); 
         
real_cost(pop)=planselect(pop)/noqry 
+t2 ; 
         
est_cost(pop)=real_cost(pop)/noqry; 
          
weight(pop)=(x(pop)*noqry)/(noqry-
x(pop)); 
        
fitness(pop)=1+((noqry*weight(pop))/((we
ight(pop)^2)+noqry^2)); 
                 
summ2=summ2+real_cost(pop); 
         min_est_cost=min(est_cost); 
         %selection 
         summ1=summ1+fitness(pop); 
         s(pop)=fitness(pop)/summ1; 
 

 average association degree coefficient between  
plans= summ / ( norelartions*noqry) 
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x(i) represents number of chromosomes. 
Crossover point, cp=2 
Size of chromosomes=7 

 

TABLE-I 

Sl.No. x(plan) est_cost Fitness s(pop) 
1    53 0.01892 0.5513 1 

2    24 0.00857 0.8378 0.6031 

3    127 0.04535 0.5072 0.2674 

4    24 0.00857 0.8378 0.3064 

5    77 0.0275 0.5217 0.1602 

6    93 0.03321 0.5143 0.1364 

7    100 0.03571 0.5122 0.1196 

 8    98 0.035 0.5127 0.1069 
9    49 0.0175 0.5616 0.1048 
10    56 0.02 0.5451 0.0923 
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Figure-I 
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Figure-II 

(Plan VS fitness value) 
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Figure-III 

( Plan VS estimated cost) 
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VII. COMPARATIVE STUDY 
T.Sellis et.al [1] have implemented a heuristic algorithm 

which performs a search over some state space defined over 
access plans. The search space is constructed by defining 
over state for each possible combination of plans among the 
queries. 

On the given state S=<p1k1,p2k2,----pnkn>, 
heuristic function h(S)=∑ est_cost(pik1) + ∑ min 

ji( est_cost(pij)- Scost(S) 
where p1,p2-----pn are possible plans , and 1<=i<=n , 

1<=j<=n. 
The estimated cost of tasks t is defined as  est_cost(t)= 

cost(t) / nq 
where nq is the number of queries and cost(t) represents the 
cost of task t. 

The estimated cost for plan pij is defined as 
est_cost(pij)=∑ est_cost(t) 
where t  ε pij. 

Maximum generations=100 
Probability for crossover operation=0.06 
Probability for mutation operation=0.001 
 

TABLE –II (QUERY SET USED IN THE EXPERIMENT) 

Query 
Set 

No. of 
Plan  

Range of 
tasks 

Est_cost 
of Plan  

Qset0 3-6 3-6 0.48 
Qset1 3-6 3-5 0.38 
Qset2 3-6 3-6 0.47 
Qset3 2-6 3-5 0.35 
Qset4 2-6 3-5 0.39 
Qset5 2-6 3-5 0.38 
Qset6 2-6 2-4 0.32 
Qset7 2-6 2-4 0.32 

 
Murat Ali et.al [15] have considered n number of queries 

q1 to qn and optimized them together. Each query qi has 
number of possible solution plans , and each plan of a query 
contains a set of tasks, which when executed in a certain 
order and produce the answer for the query. Each task also 
has an associated cost, and for convenience the cost value is 
represented by a positive integer number. Alternative plans 
of a query, and other queries in the query set, may contain 
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the same task. Therefore the aim is to determine a set of 
tasks, with minimal total cost, that contains all the tasks of 
at least one plan of each query. 

Assume that mi be the number of queries among the 
remaining set of queries without an assigned plan, with an 
alternative plan containing the task ti.  

The estimated cost of task ti is defined as 
Est_cost(ti)= Real_cost(ti)/ mi . 
The estimated cost of plan pij is defined as 
Est_cost(pij)= ∑ Est_cost(ti) .  
Parameter values used in the simulation of genetic 

algorithm are defined as follows. 
Population size=100 
Number of generations=100 
Maximum number of genes to transfer=2 
Probability for mutation=0.001 
Probability for crossover operation=0.06 

 

TABLE-III 

No. of Plans Estimated Cost            Action 

P11, p12        8 In expansion list 

P12        7 Expanded 

P12, p21        7 Expanded 

P12,p22       10 Expanded  

P12,p21,p31         8 Not Solution 

P12,p21,p32         7 Solution 

P12,p23,p31         7 Solution 

To reduce the estimation error in the heuristic the plan 
cost estimation function defines and experimentally 
evaluates alternative query ordering heuristics for 
determining the best order of alternative plan assignment for 
each query in the query set.  

The initial estimated cost is determined as 3.83. Choosing 
the minimum cost plans for each query, the total estimated 
cost is 8. The upper bound might be less than the summation 
of the costs of minimum costly plans due to common tasks. 
If an expanded state that represents a partial or complete 
solution that has an estimated cost greater than 8, then 
action is not a solution. 

VIII. DISCUSSION & CONCLUSION  
Assume that a database D is given as a set of relations 

{R1,R2,--------,Rn},each relation defined on a set of 
attributes. An access plan for a query Q is a sequence of 
tasks , or basic relational operations, that produces the 
answer to Q. 

The tasks have some cost associated with them which 
reflects both the CPU and I/O cost required to process them. 
The cost of an access plan is the cost of processing its 
component tasks.   

Assume now that a set of queries Q={ Q1,Q2,--------,Qn} 
is given. 

A global access plan for Q corresponds to a plan that 
provides a way to compute the results of all n queries. 

A global access plan can be constructed by choosing one 
plan for each query and  then  merging  them  together.  The 

 
 

merging process basically amounts to the identification of 
identical tasks. Due to common tasks, the union of the 
locally optimal plans does not necessarily give the globally 
optimal plan. A global access plan can be constructed by 
choosing one plan for each query and then merging them 
together. The merging process basically amounts to the 
identification of identical tasks. Due to common tasks, the 
union of the locally optimal plans does not necessarily give 
the globally optimal plan.    

The problem of multiple query processing problems can 
be defined as follows. 

Given n sets of access plans p1,p2,--------pn with 
pi={pi1,pi2,--------pin}being the set of possible plans for 
processing Qi, 1<=i<=n . 

To prove the multiple query processing problem is an 
NP-hard problem , consider the following decision problem. 

Given n sets of access plans(p1,p2,----pn) with 
pi={pi1,pi2,-------piq} being the set of possible ans for 
processing Qi,1<=i<=n, and a constant q. 

Clearly original multi query processing problem will be 
NP-hard if the above decision problem is NP-Complete. It is 
easy to see that multiple query processing belongs to NP 
since a nondeterministic algorithm needs only guess one 
plan for each query and check whether the cost of the global 
access plan obtained by merging the guessed local access 
plans is less than or equal to combining the access plans can 
be easily done in polynomial time and therefore the 
checking steps takes only polynomial time. 
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