
IACSIT International Journal of Engineering and Technology, Vol.2, No.5, October 2010
ISSN: 1793-8236

408

Abstract— Search is a challenging concept in algorithms. It is

challenging because striking the balance between performance
and optimality is tough. Various numeric search techniques
have been proposed, but achieving low time and space
complexity is the main problem. A data structure and an
algorithm should be thought of as a unit, neither one making
sense without the other [7]. In this approach, a new data
structure Binary Cube (BC) and an algorithm named Crux
have been proposed for achieving the balance as stated. The
proposed algorithm has a constant time complexity of one. The
space complexity is minimal when compared to traditional
approaches. The best, worst and average time complexity of the
proposed search is O (1) for all the three. This performance is
achieved using the proposed data structure, BC, which has been
created specifically to render this high level of efficiency.

Index Terms— Space complexity, Time complexity.

I. INTRODUCTION
Search is a computing concept, used in every walk of life.

The heart of simple ATM transaction or a Biometric security
system inevitably is search. Optimal numeric search
algorithms are certain tough challenges in the field of
computing. Many search techniques have been proposed and
are still being proposed. But achieving minimal space and
time complexity is a tough constraint. Even if those
constraints are met, new constrains creep into the problem.
The proposed search aims at overcoming this constraint of
striking the balance between minimal space and time
complexity.

For instance, Binary search in arrays based storage reduces
the number of comparisons in the search process. It has a best
case time complexity of O(1), average case time complexity
of O(log n) and worst case time complexity of O(log n) as in
[1]. Despite all these benefits, it has a pre-condition that has
to be satisfied. That is the sample set has to be pre-ordered.
This means that apart from the time take for search,
additional clock cycles are needed to render ease of search.
Hence achieving this good a time complexity set is done by
doing this single pre-condition taxing more time than the
search itself, which is the actual aim. Hence the pre-condition
that the input to the algorithm has to be sorted is a short
coming of binary search.

The binary search trees, on the other hand, could be used to
render search to get a time complexity of O (log n). However
their time complexity depends on the sequence in which the

Manuscript received August 2010. Shrivatsan Rajagopalan is with the

SSN SASE, Chennai 603110, India.(Phone: +91-09789545260; e-mail:
nshrivatsan@ gmail.com). Dr.F.Sagayaraj Francis, is currently an Associate
Professor with the Department of Computer Science, Pondicherry
Engineering College, Pondicherry, 605014, India (e-mail:
fsfrancis@pec.edu).

data is feed to the tree. There are certain threaded traversal
searches as in [2]. Many improvisations such as Morris
search [2] have been proposed. Yet the increase in efficiency
is just 5 – 10%. Thus binary trees are also in the same scale as
that of simple binary search. Hence Binary search trees do
not meet the constraints stated.

In tree traversal algorithms like depth first search, the time
complexity is represented as T (v) = O (1 + dv), where dv is
the depth of the vertex v, which is the search element [3].
Here the time complexity is dependent on the level in which
the search element is present. Thus it is rather unconventional
to use this search technique in search over large volumes of
data since it has a polynomial time complexity. The other tree
traversal search techniques like Pre order traversal and Euler
Tour traversal also have their time complexity as O (n).
Hence binary search is a better substitute to these algorithms
and they don’t overcome the constraints mentioned.

In Grover’s algorithm the time complexity is O (N1/2) as in
[4]. But the proposed algorithm has a time complexity of O
(1). Although Grover’s algorithm may render high degree
efficiency in search, it can be implemented only in quantum
computers which are yet to be commercialized, hence making
the proposed one more preferable.

Hence is there a need to create one unique search that
renders optimality without any pre-condition, taxing virtually
small amount of space or and in minimal amount of time. The
proposed search technique has a unique behavior of constant
time complexity irrespective of sample set.

II. SCOPE OF THE WORK
A search technique is now defined that renders a search

mechanism that is relatively fast. This search when
implemented in web can enhance the speed of searching.
That is if a client searches for an item, which is not in the
entire server farm, the proposed algorithm can
instantaneously tell the client that an item of this sort doesn’t
exist in the Servers. This could be done without executing
even a single query in any of the servers. Thus the proposed
algorithm can directly reduce the CPU clock cycles and the
energy needed to run the requests. Hence the scope of the
proposed algorithm is relatively huge in the area of web
search.

In distributed systems, the proposed algorithm can prove
to be very effective in security. This is because the data
structure can map a billion distinct entities in just five
hundred and odd mega bytes of memory. The act of searching
this huge a data set is done at just one check. Thus the
proposed search technique can render breach-free security
systems.

Parallel and highly massive computing systems need
search mechanisms. The proposed algorithm shall prove to

Crux Search
Shrivatsan Rajagopalan and F.Sagayaraj Francis

IACSIT International Journal of Engineering and Technology, Vol.2, No.5, October 2010
ISSN: 1793-8236

409

be all the more valuable in terms of minimal latency in
searching through the distributed system.

In networks, if the mechanism of identifying nodes in a
subnet is flooding, the proposed search technique can reduce
latency. If all the IP addresses of the nodes connected to the
device are loaded on to the proposed data structure embedded
to it, the proposed search can determine if a packet’s
destination exists in the device’s network. This is done
without sending even a single unnecessary packet.

Thus the proposed search technique has wide scope and
variety of applications.

III. BC DATA STRUCTURE AND ITS SPACE COMPLEXITY

The data structure which has been proposed is a
multi-dimensional cube bit array, hence the name. To store a
number the proposed data structure uses only one bit. Be it
one or nine crore ninety nine lakhs ninety nine thousand nine
hundred and ninety nine, the memory used to store any of
these numbers is just one bit. The data structure that has been
proposed is named BC meaning Binary Cube, with each array
representing a power of 10, say ‘n’, possessing each power of
ten till n-1, which are nested internally. The following
expression clearly explains the relation between the
dimensions in xTh power of ten.

No. of dimensions in BC_10x level = (x+1), where x is the
no. of digits in the element. E.g. If x = 2, this is the 100’s
block and it possesses 2+1 =3 dimensions in BC.

To store each number in the data structure, the BC
allocates a unique bit, with which a number’s presence is
denoted. An array of such cells constitutes a “block”. The
following expression explains the number of cells present in
each block of the data structure.

No. of cells in BC_10x block = 9 x 10(x-1)
The following diagram explains how the sample set {1, 3, 7,
9} are stored in the proposed BC data structure.

Fig 2.2 BC for storing all one digit numbers

Each of the ten squares cells represent the bits in the

BC_10x the block. Here the value of x = 0. Hence the block is
that of the “ones” block and each of the cells is used to
represent all the ten one-digit numbers present, totaling to 9 x
100= 9 x 1 = 9 cells. This particular block of BC alone
contains an extra element for representing zero and hence
contains 9+1 = 10 bits to represent all one digit integers. All
the numbers are stored using one bit each. Any traditional
language like C, to store the number “1” it would consume 2
bytes that is sixteen bits. But the BC consumes only one bit
per number. To store the same elements, int data type would
consume 64 bits where-in, BC consumes only 4 bits.

If x = 2, this is the 10’s block and it possesses 9 x 101 = 90
cells for BC of two digit numbers. This is explained by the
following diagram.

Fig 2.2 BC for storing all two digit numbers

This is the diagrammatic representation of BC for storing

three digit numbers. Starting from 100 to 999, the BC stores
all the 900 three digit numbers. The BC can represent all
these 900 using 9 x 102 = 900 cells.

Fig 2.3 BC for storing all three digit numbers

To store 900 such cells, BC would consume only 900 bits

which is nearly 113 bytes. Whereas int would need sixteen
bits to store the same content just a one digit number “1”.
Hence to store 900 such entries C would consume 900 x 16
bits = 14400, which is 1800 bytes. Taking a ratio BC uses just
6.277 % of the space used by int. Thus ratio of space
complexity of int in C to the proposed data structure is 16:1.
That means the proposed data structure consumes just 6.27 %
of space to store the same sample set as used by any
traditional data structure. From one digit numbers to n digit
numbers the percentage is the same. Thus the proposed
algorithm has a unique space complexity and is near optimal
compared to other data structure till date. The space occupied
by a traditional data structures like int in C with the proposed
data structure have been tabulated to elicit the proposed
work’s benefits.

TABLE 2.1. SPACE COMPLEXITY ANALYSIS.

NO. OF
DIGITS
IN
SAMPLE

TOTAL
NUMBER
OF
ELEMENT
S

BITS USED BY
INT

BITS
USED BY
BC

MEMORY
SAVED BY
BC

1 10 160 10 150

2 90 1440 90 1350

3 900 14400 900 13500

4 9000 144000 9000 135000

5 90000 1440000 90000 1350000

6 900000 14400000 900000 13500000

7 9000000 144000000 9000000 135000000

8 90000000 1440000000 90000000 1340000000

The following graph and table elicit the benefits of BC’s
use in terms of memory utilization.

This cell represents
the number 103 since
is 4th layer of the 0th
column of the 100th
column

1 1 1 1

6 7 8 0 3 2 94 51

This BC cell represents the
number 93 since it is the 4th block
of the 9th column in the BC for
two digit numbers

This BC cell represents the
number 17 since it is the 8th
block of the 1st column in the
BC for two digit numbers

This BC cell represents the
number 90 since it is the 0th block
of the 9th column in the BC for two
digit numbers

IACSIT International Journal of Engineering and Technology, Vol.2, No.5, October 2010
ISSN: 1793-8236

410

Fig. 2.1 Graphical comparison of memory used by BC and traditional

languages

Thus from this table and the graph, it is evident that, for

really large test spaces, the proposed BC can provide huge
benefits in memory utilization. Hence the proposed data
structure’s space consumption for non sporadic test spaces is
minimal.

IV. CRUX ALGORITHM AND TIME COMPLEXITY

Fig 3.1 Crux - the search algorithm

The number of comparisons made inorder to find a search

element is called the time complexiy of an algorithm. Various
algorithms exist that have decent time complexity but the
proposed has a minimal time complexity of “1”. Crux makes
“exactly one” check in the proposed data structure.

For instance if a search for the element “102” in the BC has
to be done, the algorithm goes to the 2nd cell of the 0th
column of the 100th block and check if it is “1”. If it is
present, it directly returns “found”. If it is set to “0” then crux
returns “not found”. Thus this search technique has the least
possible time complexity.

The unique characteristic of the proposed algorithm is that
the best average and the worst case time complexities are the
same. Hence in areas where a search has to be instantaneous
with voluminous information, the proposed algorithm is the
relatively better.

V. IMPLEMENTATION
The proposed algorithm has been implemented using java.

There are certain issues in implementing like java heap size
and frozen unused memory. This unused memory can be
avoided. This is feasible since java supports jagging of arrays.
Hence only those cells can be initialized which are currently
under use and those which are not can be left undeclared
saving space. Thus the only most obvious short coming of the
BC-crux search could be handled easily.

VI. REAL-TIME APPLICATIONS
In web searches, pages are scanned for presence of words

and are mapped correspondingly. The English language, for
instance has only 171,476 so many words as per [8]. If each
word is given a number as per dictionary’s chronological
order and each web page is compressed into a simplified BC
object, the crawler can be used to create a BC object for each
of the web pages. And if crux search is performed, not only
do we minimize space utilization but also shorten the search
time.

As stated previously, in networks, if implemented the
proposed algorithm can prevent network traffic totally,
eliminating the need for flooding. This can totally reduce the
round trip time in networks. This concept could be used in
any area involving flooding as a necessary mode of detection
of presence.

In distributed databases, if used, the proposed algorithms
can stop irrelevant queries, reducing the disc seeks by the
database.

In problems involving pattern search, a clustered crux
search can render searches with a time complexity of n where
n is the number of crux clusters. In social security
identification systems, the proposed algorithm will play a
major role in preventing imposters. This is because if a
person’s ID is already set in one location and if the same ID is
found in some other location, it can detect it instantaneously.
Thus intruders can be stopped immediately.

In Software security over internet, security can be
enhanced if the proposed algorithm is used. The working is
very similar to that of the unique ID concept. There are
various other areas were the algorithm could be implemented.

VII. CONCLUSION AND FUTURE WORK
Thus the proposed search technique has minimal space

complexity and time complexity. Currently this algorithm has
been implemented using java. This algorithm has been
modified to render string search too. Since string searches are
a bit different from numeric search, crux could be optimized
for it and this is left as a future work.

ACKNOWLEDGMENT
The authors would like to acknowledge the contributions

of various people, especially, Dr. S. Kanmani, Head of
Department of IT, Pondicherry Engineering College.

REFERENCES
[1] Elliot B. Koffman, Paul A. T. Wolfgang, Data Structures: Abstraction

and Design Using Java, January 2010, Ch. 5 Pg – 262 to 264
[2] Adam Drozdek, Data Structures and Algorithms in Java, Second

Edition - Cengage Learning.
[3] Michael T. Goodrich and I Roberto Tamassia, Algorithm Design, John

Wiley & Sons, Inc, Pg. 79
[4] Grover L.K., “ A fast quantum mechanical algorithm for database

search”, Proceedings, 28th Annual ACM Symposium on the Theory of
Computing, (May 1996) Pg. 212

[5] Octree – Data Structure, http://en.wikipedia.org/wiki/Octree
[6] Clustered Index Structures, Microsoft SQL Server R2,

http://msdn.microsoft.com/en-us/library/ms177443.aspx
[7] Ellis Horowitz and Sartaj Sahani, Fundamentals of Data Structures,

Computer Science Press.
[8] http://www.askoxford.com/asktheexperts/faq/aboutenglish/numberwo

rds.

Step 1: get k; // search element
Step 2: set n = number_of_digits(k); // no. of blocks in BC to be searched
Step 3: for i = 1: n;
 x [i] = n % 10;
 n = n / 10;
 loop
Step 4: if BC [x[n] (x[n‐1] (x[n‐2] (… x[0])))] //The only comparison
 return “found”;
else
 return “not found”;

IACSIT International Journal of Engineering and Technology, Vol.2, No.5, October 2010
ISSN: 1793-8236

411

Shrivatsan Rajagopalan completed his Bachelors in Information
Technology, course at Pondicherry Engineering College in the year 2010.
He is currently pursuing his Masters in Information Technology course,
offered by Carnegie Mellon University in collaboration with SSN – SASE,
Chennai, India. He was awarded the Best Research Student Paper award for
his presentation at CCV 2010, at Singapore, where he had presented his
paper on Cloud Computing.

Dr.F.Sagayaraj Francis, is a Doctorate in the field of Data Management. He
is currently an Associate Professor with the Department of Computer Science,
Pondicherry Engineering college.

