
IACSIT International Journal of Engineering and Technology, Vol.2, No.4, August 2010
ISSN: 1793-8236

361

Abstract—Text is one of the most important data that is

transmitted on today’s communication networks, in the form
of html WebPages, commands to access devices remotely using
ssh or telnet, email etc. Confidentiality is one of the
fundamental requirements for secure communication on an
untrusted channel and compression is also required to
conserve the bandwidth of the channel. In this study,
steganography is used in a completely novel way that is
different from the traditional use of steganography.
Confidentiality and compression of large text using
steganography is presented. In our approach text i.e. message
is encoded using a grayscale bitmap image. The image acts as a
steganographic carrier for the text, the carrier is never
transmitted across the untrusted channel. Only the
compressed index array that contains the indices for our data
hidden in the image is transmitted. The image also acts as a
shared key between sender and receiver, which is used for
confidentiality and also to extract the desired text from the
image. Encoding text into the image not only makes it secure
but we achieve good amount of compression of the message
that is to be sent across the channel. Results for different
images and texts are compared and for every image, the length
of the text is found to be directly proportional to the amount of
compression.

Index Terms—Steganography, Confidentiality, Compression,

Index Array, Shared image as a key

I. INTRODUCTION
From the very beginning in communication, text has been

the most important form of information exchanged across
the ends. Even after the introduction of audio and vivid
media across internet including picture and video, textual
information has still its importance in data communication.
Due to the unsecure nature of Internet, information can be
easily eavesdropped. To avoid such problems, various
security methods are used in which the most popular one is
the encryption of the information to make it unintelligible
for the eavesdropper. Steganography [1] is a method in
which information is hidden in an image and the image
itself is transmitted across the channel. In contrast to
common encryption methods, steganography is better
because eavesdropper doesn’t know if there is any
confidential data, and also if he knows in advance he
doesn’t know where to look for the message because the
image appears to be common information rather an
encrypted message to attract the attention of the
eavesdropper. In this paper, instead of using traditional
steganographic approach, a new method is devised in which
steganography is used in a novel and non-traditional manner
and it is used to convert the text data into indices of an
image and then this converted index array is sent over the

channel. The text is encoded in the image but the image is
never sent across the channel and is used by both the parties
as a key. The text is mapped to the image for corresponding
values of the pixels shared between both the image and the
text and the indices of the image containing the characters
are saved in an index array. The index array, above certain
threshold of text data size, exhibits compression with
respect to the original text size. Larger the text size better is
the compression. The index array is further compressed
through a 3rd party compressor [8]. Also, because of the
change of pixels is expected in the image after encoding text
in it, this pixel information must be sent to the intended
receiver so that the key i.e. the picture can be modified at
the location where pixel change was observed after
encoding. The array is decompressed and decoded at the
receiver end and the key i.e. image is modified using
information from pixel change and then the message is
extracted back from the image.

The basic aim of this study is to use Steganography not
only for confidentiality but also for text compression. This
paper also analyses the behaviour of compression with
respect to the text file size and other factors including
encoding density, compression ratio, best possible
compression and the impact of using a 3rd party compressor
on index array for further compression.

Section II presents some related work, Section III details
the proposed approach, Section IV includes the simulation
of the model in MATLAB, Section V shows and explains
the results of the proposed approach, Section VI explains
possible future work on this research, Section VII concludes
the study and Section VIII presents the image set used.

II. RELATED WORK
A lot of research is being done in the field of

steganography and compression. KB Raja et. al proposed a
high capacity wavelet steganography(HCWS) algorithm[2].
The cover image in this model is transformed to wavelet
domain and the payload is encrypted using a random
technique to increase its security. Tuomas Aura et. al
proposed that using gray scale images for cover is the best
approach [3]. He proposed a new method for pseudorandom
hiding bit selection in random access covers. Juneja et. al
proposed a robust image steganography technique based on
Least Significant Bit insertion and RSA encryption
technique[4]. They used the method of ranking a set of
images in a library based on their suitability to be used as a
cover or carrier. Weifeng Sun Nan Zhang et. al proposed
StarNT, a dictionary-based fast and lossless text transform
algorithm[5]. Bernhard Balkenhol Stefan Kurtz et. al
provided an analysis of BWT(burrows-wheeler
transformation) from the aspect of information theory[6].

Novel Use of Steganography for Both
Confidentiality and Compression

Fahad Ullah, Muhammd Naveed, Mohammad Inayatullah Babar and Faisal Iqbal

IACSIT International Journal of Engineering and Technology, Vol.2, No.4, August 2010
ISSN: 1793-8236

362

Gutman P.C et. al proposed a hybrid approach to text
compression using both symbol wise method for its good
compression results and dictionary method for its high
speed[7]. A lot of work is done on lossless compression
algorithms including Context Tree Weighting method
(CTW) [10], LZ77 [11], LZW [12].

III. PROPOSED APPROACH

A. Steganography for Confidentiality
Steganography, just like cryptography is a method [1] for

ensuring confidentiality of a message or information to be
sent across an untrusted channel and it is, unlike
cryptography, more effective art because it doesn’t attract
the attention of the attacker or eavesdropper. In this paper,
steganography is not used for its intended purpose rather it
is only used to secure the text in the image and the image is
used as a shared key between the sender and receiver rather
actually transmitted across the channel as shown in Fig. 1.
Using image as a key has many plus points. Due to no limit
on the size of image, it is actually a key of indefinite size.
Larger the image size, powerful is the key. Also the text has
a lot of redundant characters. A single character, wherever it
lies in the text, is mapped to a single pixel value where it
actually lies in the image in its integer form. For most cases,
the image is modified very little by the text after mapping
and the average pixel change in both original image and
modified image is in range of 2-5 pixels per total number of
pixels in the image.

Fig. 1 Encoding and Decoding Process.

The encoding density (d) is given by;

100 x
pixels ofnumber Total
pixels altered ofNumber =d

For 512x512 grayscale image, the encoding density is in
range of 7.6x10-4 which shows that the modified image is
almost the same as the original one. This little amount of
pixel change has two advantages.

1. The overhead generated due to the requirement of
sending pixel change information to the receiver is
quite less, hardly 100 bytes, because of the small
encoding density. This helps in compression which
is discussed in next section.

2. If the key was to send across some other channel to
some other receiver, the pixel change is small
enough to make it almost impossible for an
eavesdropper to consider the image suspicious

even if the key is some known image, for instance
an image from standard test images.

As pixel change and index array(after compression) are
the only information required to recover the message back
from the key ,that is the image, so these two quantities are
sent to the receiver. Across the channel, even if an
eavesdropper can grab these values, it’s not possible to
reconstruct the message from the index array and the pixel
change information because the shared image is still
unknown to the eavesdropper and it is impossible to draw
the image from the available information acquired by the
eavesdropper.

B. Steganography for Compression
In this paper, steganography is also used for the purpose

of compression. A text file, due to high redundant data, can
be compressed to smaller size using many lossless
compression algorithms including Context Tree Weighting
method (CTW) [10], LZ77[11], LZW[12] etc. Our approach
is to use steganography for text compression. After
encoding text in the image, an index array is obtained which
contains the image pixel locations where the text is mapped.
For some initial values of the text file size, it is observed
that the index array size exceeds the original text but after a
certain threshold, the text file size surpasses the index array
size and hence compression is achieved in the index array in
contrast to the original text. The compression ratio keeps
improving until reaching some saturation level where the
change in it is almost indiscernible. The amount of
compression appears to have a direct relationship with the
text size after the threshold point until the saturation is
achieved.

IV. SIMULATION
MATLAB is used for the simulation purpose. Encoding

is done at the sender end using Encoding module and the
information is sent to the receiver, on the basis of which the
receiver uses Decoding Module to retrieve the original
message from the Key.

A. Encoding Module
The encoding process is explained in the flow chart

shown in Fig. 2. As clear from the chart, the algorithm is
simple. Every character in text, converted to their
respective 8 bit integer values, is searched in the image. If
found than the resulted index (only first one found in the
image) is stored in an index array. If not found, then
Approx() function is used to approximate the current
character value to the image pixel values, the image is
searched for a value at some location nearest to the
character value and the index where it lies in the image is
returned. Now the image can be altered at that location for
the current character in the loop. The index array, after
normalization, is sent to dzip() [8] function for compression.
Pixels altered in the modified image are found and the
values along with their indices are saved in another variable.
Now the information including altered pixels and
compressed index array are sent to the receiver.

IACSIT International Journal of Engineering and Technology, Vol.2, No.4, August 2010
ISSN: 1793-8236

363

Read Carrier i.e an image

Start

Read the payload i.e a text file

Typecast char payload to uint8

Increment
char_num by 1

If char_num < No. of
elements in payload

Is current
payload element

present in the
image array?

Call Approx() function to
approximate current

character to nearest value in
image

False

Assign approximated image
value returned from
Approx() to current

character value

Save index of approximated
image value in index array

True

Initialize char_num to 1

True

False

Normalize index array
w.r.t its mean and append

mean to the end of the
index array

Compress this array using
dzip()* function

Find the indices in image
where pixels are modified

by approximation

Save the indices and their
corresponding pixel

values in an array name
“info”

Save the compressed
index array and “info” and

send it

End

Fig. 2 Encoding Module

The Approx() function, as clear from its explanation,
takes two inputs that is the image and the current character
in the loop and return index of the approximated value.

1) Approx() function
• It takes 2 inputs, the Carrier and the Current

Character and returns the Index where the character
can be approximated in the carrier.

• In this function, an array is generated which contains
the absolute difference between every element of
Carrier and the Current Character.

• Minimum of the difference array is found and as this
array shares the same indexing and size with carrier,
so the location where minimum is found is actually
the index required; where the character value can
replace the pixel value.

• A check is performed to avoid the mapping of the
current character to an index already altered by some
previous character.

• If this happens then the character is approximated
with a value second closest to it in the image in order
to avoid loss of previous character mapping info in
the image.

B. Decoding Module
The decoding process is explained in the flowchart

shown in Fig. 3.

Fig. 3 Decoding Module

In this process, the image i.e. the key is read and is saved
in a variable. The received variables containing the changed
pixel values and the compressed index array information are
also read into variables. Now the index array is
decompressed using dunzip() [8] function. Pixel values at
the corresponding locations are changed on the basis of
changed pixel information. After that, the message is read
from the key using the index array, which contains the
corresponding indices for each character of the message in
the key, and decoding process completes.

1) Lossless compression and decompression (dzip ()
and dunzip() functions).

dzip() and dunzip() [8] are user-made MATLAB
functions which uses ZLIB Deflate algorithm[13] for
lossless data compression and decompression of most of
MATLAB variables. Index array, though already exhibiting
compression is further compressed using dzip() function
and sent to the receiver which uses dunzip() to recover the
array.

V. RESULTS
For simulation, the following sources were used.

A. Image or Key:

IACSIT International Journal of Engineering and Technology, Vol.2, No.4, August 2010
ISSN: 1793-8236

364

Fig. 6 displays the set of images used in the simulation.
The first four images are taken from standard test images
while the last one, bitArray.bmp is 16x16 matrix whose
values ranges from 0 to 255 and every value is distinct.
bitArray.bmp is used to achieve maximum compression but
using this array has its limitations which will be discussed
later in this section.

TABLE I
RESULTS OF DIFFERENT IMAGES

Key
or

Imag
e

Imag
e

Resol
ution

in
pixel

s

Paylo
ad

Size
(byte

s)

Receiv
er Info
Size

withou
t using
dzip

(bytes)

Receiv
er Info
Size
using
dzip(b
ytes)

Compression
Ratio Encodin

g
Density

(d) Witho
ut dzip

Wit
h

dzip
Airpl
ane.b
mp

512x
512

1653
6 11309 11120 0.6839 0.67

24
1.1444e

-003

Lena.
bmp

512x
512

1653
6 13753 11122 0.8317 0.67

25
1.1444e

-003
Zelda

.
bmp

512x
512

1653
6 13643 11083 0.8250 0.67

02
3.8147e

-004

Mand
rill.b
mp

512x
512

1653
6 13391 11202 0.8098 0.67

74
3.8147e

-003

bitArr
ay.bm

p

16x1
6

1653
6 10694 11022

* 0.6467 0.66
65 0

bitArr
ay.bm

p

16x1
6

1653
60

10386
8

10044
7* 0.6281 0.60

74 0

• Lena.bmp, 512x512 grayscale-Bitmap image (bit

depth=8bit).
• Airplane.bmp, 512x512 grayscale-Bitmap image

(bit depth=8bit).
• Zelda.bmp, 512x512 grayscale-Bitmap image (bit

depth=8bit).
• Mandrill.bmp, 512x512 grayscale-Bitmap image

(bit depth=8bit).
• bitArray.bmp, 16x16 grayscale-Bitmap image (bit

depth=8bit). *

B. Text or Payload:
• “Eloisa to Abelard by Alexander Pope” [9] in text

file ‘payload.txt’. Full size =16536 bytes.
Compression Ratio is given by:

Size edUncompress

Size Compressed/ =RatioC

Using a 512x512 bitmap image as a key means a very
high end confidentiality. Predicting the key or image from
the decoding information sent across the channel is very
hard or impossible. Table 1 shows different images used as
carrier for a fixed text size of 16536 bytes (except for the
last row). Among those, Airplane.bmp has better results for
both cases that are with and without dzip. Zelds.bmp results
with using dzip are good because of the very low encoding
density associated with it which means the pixel
information overhead in the decoding information is smaller.
bitArray.bmp is standard 16x16 pixel image with all 8 bit
characters it can cover. The limitations associated with it are
explained later in this section.

The graph in Fig. 4 represents text size vs. compression
ratio curve for different carriers used in the simulation

without using the index array compression by dzip()
function. In Fig. 5, the graph is similar except the
compression ratio calculations are made using dzip()
function for the compression of index array at encoding side.

The graphs have following characteristics:
• In either graphs or clearly in graph of Fig. 4, the

best compression is achieved using the
bitArray.bmp but the shortcomings are there using
it and are explained later.

• In both graphs of Fig. 4 and Fig. 5, the
compression ratio passes through some threshold,
which is 1 for the vertical axis and varies for
horizontal axis mostly less than 2000 bytes. Before
this, the index array actually expands and after it
the actual compression starts.

• The graph in Fig. 5, that is using dzip() function
for further compression, shows that the
compression curves for all images are almost the
same and hence the different curves are hard to
distinguish.

• The use of dzip function works better on larger text
and it can be seen from comparing both graphs.
For lower text size, the compression ratio is better
without using dzip function but for higher text size,
for instance over 15,000 bytes, the ratio gets
remarkably better using dzip function for most of
the images except the bitArray.bmp.

C. bitArray Characteristics
* bitArray is actually a user generated image array of size

256 bytes whose values range from 0 to 255. It is saved in a
16x16 bitmap picture. Because it covers all text characters
within 8 bit range, that is why the encoding density is 0.
Using bitArray.bmp for encoding process, the compression
is at its best. Using this bitmap as a key has its limitation
because it is easily predictable in comparison to other
images due to its small size. Also it is more suspicious if
sent across the channel. The achievable compression using
this array is also not remarkably huge when compared to all
other bitmaps used in the simulation especially
Airplane.bmp. Also due to some constraints associated with
dzip() function [8], the index array generated after using
bitArray.bmp expands as obvious from the Table 1 unless
text size reaches a proper threshold. The highlighted row in
Table 1 shows that for a larger text, dzip can actually
compress the index array generated by using bitArray.bmp.

IACSIT International Journal of Engineering and Technology, Vol.2, No.4, August 2010
ISSN: 1793-8236

365

Fig. 4 Text Size vs. Compression Ratio Without Using dzip

Fig. 5 Text Size vs. Compression Ratio Using dzip

VI. FUTURE WORK
The future work may include the processing time

optimization for the process of compression and
steganography as in this paper, the processing resources
associated with compression process aren’t considered.
Also like a 3rd party compressor is used for further
compression, that is dzip() function, some another
compression method can be devised to get better results
meaning better compression ratio. Besides, this novel
approach to steganography can be used on color images
with higher color depths e.g. 16 or 24 bpp instead of using
grayscale images as used in this research.

VII. CONCLUSION
In this paper, steganography is used in a novel way that is

not just for the sake of confidentiality, but, also for the
compression of the text message. Instead of following
traditional steganographic methods, that is sending the
carrier across the channel, the image is used only to encode
text and the index array generated after encoding is sent
along with the overhead associated with the image used,
with overall size much less than the actual text size. Hence
the image works as a key shared between the two ends that
is the sender and the receiver. Text size associated with the

message is an important factor and after a threshold of the
size value, compression is achieved between the secure
message that is the index array and the text message sizes.
Based on the simulation results, it can be concluded that for
large bulk of text, the compression achieved is better in
some limits.

VIII. IMAGE SET
The following images were used for the simulation:

(a) (b) (c)

 (d) (e)
Fig.6 (a) Zelda (b) Mandrill (c) Lena (d) bitArray (magnified) (e) Airplane

REFERENCES
[1] Artz D., “Digital steganography: hiding data within data”, Internet

Computing, IEEE, vol. 5, Issue: 3, pp. 75-80, May/Jun 2001.
[2] Raja K.B., Vikas, Venugopal K.R. and Patnaik L.M., “High capacity

lossless secure image steganography using wavelets,” Advanced
Computing and Communications, 2006, pp. 230-235, Dec. 2006.

[3] Aura T, “Practical invisibility in digital communication,” In
Information Hiding: First International Workshop. Lecture Notes in
Computer Science, Vol. 1174. Springer-Verlag, Berlin Heidelberg
New York 1996, pp. 265-278.

[4] Juneja M. and Sandhu P.S., “Designing of robust image
steganography technique based on LSB insertion and encryption,”
Advances in Recent Technologies in Communication and
Computing, 2009, pp. 302-305, Oct. 2009.

[5] Weifeng Sun, Nan Zhang and Mukherjee, A., “Dictionary-based fast
transform for text compression,” Information Technology: Coding
and Computing [Computers and Communications], 2003, pp. 176-
182, April 2003.

[6] Balkenhol B. and Kurtz, S., “Universal data compression based on
the Burrows-Wheeler transformation: theory and practice,”
Computers, IEEE Transactions on, vol. 49, Issue: 10, pp. 1043-1053,
Oct 2000.

[7] Gutmann P.C. and Bell T.C., “A hybrid approach to text
compression,” Data Compression Conference, 1994, pp. 225-233,
Mar 1994.

[8] Michael Kleder, “Rapid Lossless Data Compression” , MATLAB
Function,
http://www.mathworks.com/MATLABcentral/fileexchange/8899 .

[9] Text Source, Alexander Pope’s “Eloisa to Abelard”,
http://www.monadnock.net/poems/eloisa.html .

[10] Sadakane K., Okazaki T. and Imai H., “Implementing the context
tree weighting method for text compression,” Data Compression
Conference 2000, pp. 123-132, 2000.

[11] Chi-Hung Chi, “Study on mutli-lingual LZ77 and LZ78 text
compression,” Data Compression Conference, 1998, pp. 533,
Mar/Apr 1998.

[12] Ling Sun Tan, Sei Ping Lau, Chong Eng Tan, “Optimizing LZW
text compression algorithm via multithreading programming,”
Communications (MICC), pp. 592-596, Dec 2009.

[13] ZLIB, DEFLATE Algorithm “An Explanation of the Deflate
Algorithm”, http://www.zlib.net/feldspar.html .

IACSIT International Journal of Engineering and Technology, Vol.2, No.4, August 2010
ISSN: 1793-8236

366

Fahad Ullah was born in Karak, Pakistan in 1989. He
has completed his B.Sc degree in Electrical
Engineering from University of Engineering and
Technology (UET), Peshawar, Pakistan. He has worked
as a research internee for over a year on a project
funded by Daimler Chrysler, USA. MOL (Hungarian
Oil and Gas, PLC) has given him MOL Technical
Scholarship 2008-2010. He is a member of IEEE and
National Space Society (NSS). His research interests

include image processing and compression, video compression and radio
astronomy.
Email: ddspliting@gmail.com

Muhammad Naveed was born in Kohat, Pakistan in
1988. He has completed his B.Sc degree in Electrical
Engineering (with majors in communication) from
University of Engineering and Technology (UET),
Peshawar, Pakistan in 2010. He has several
internationally recognized certifications. He is CCNA
(Cisco Certified Network Associate) and CCNAS
(Cisco Certified Network Associate – Security) and
was a student of Cisco Networking Academy to earn

these certifications. He also has “Juniper Networks” associate and
specialist certifications: JNCIA-ER, JNCIS-ER, JNCIA-EX, JNCIA-
JUNOS, JNCIS-ES and JNCIS-SEC.

He was part of a research and development project titled “Pilot
Research Study on Zero Flow Power Generation System” with Directorate
of Science and Technology, Khyber Pukhtoonkhwa, Peshawar, Pakistan –
a government organization. The project was aimed to relieve energy
problems in the region. His research paper titled “Low Cost Crypto
Core” is published in Pakistan Higher Education commission recognized X
Category Science/Multidisciplinary journal – Sarhad Journal of Agriculture.
One of his papers titled “Network Intrusion Prevention by Configuring
ACLs on the Routers, based on Snort IDS alerts” is submitted for review.
His research interests include information security, cryptography,
cryptanalysis, steganography and computer networks.

Mr. Muhammad Naveed is the member of IEEE, IEEE Computer
Society, IEEE Information Theory Society, IEEE Communication Society,
Association for Computing Machinery (ACM), International Association
of Computer Science and Information Technology (IACSIT), Sun
Microsystems Open Source University Meetup (OSUM) and American
Society for Mechanical Engineers (ASME). He is also the recipient of
MOL (Hungarian Oil and Gas, PLC) Technical Scholarship 2008 – 2010.
Email: mnaveed29@gmail.com, mnaveed@ieee.org

Dr. Mohammad Inayatullah Babar received his
Master and doctorate degrees from the School of
Engineering, George Washington University,
Washington DC, USA in 2005. His primary doctoral
research was based on issues in Mobile Ad Hoc
Networking including Quality of Service and Security.
Dr. Mohammad Inayatullah Babar did his B.Sc
Electrical Engineering from NWFP UET Peshawar in

1997. Due to his excellent academic credentials as he secured first
positions in all four years of Engineering, he received Presidential award
“Aizaz E Sabqat” in Year 2000. He also received University Gold Medal
as Best Graduate and Siemens Gold Medal as Best Engineering Graduate
from NWFP in Year 1998.

During his PhD in George Washington University, he was involved in
number of research projects in the area of Mobile Ad Hoc Networks. Due
to his research contribution in the area of Mobile Networks and Bio-
Informatics, he received “Youngest Researcher Award” from MCOS
Foundation in Washington DC in 2003. He also taught Telecommunication
Engineering Courses at Graduate Level in School of Engineering, Stratford
University, Virginia USA.

Dr. Mohammad Inayatullah Babar has more than thirty six publications
in Engineering and Computing Conferences and Journals of International
Repute. He is also a member of ACM USA and IEEE USA and has the
honour to chair a conference Session in International ACM conference in
USA in Year 2004.

Currently, he is working as Associate Professor in Department of
Electrical Engineering and also as a Project Director of Information
Service Center, UET, Peshawar.
Email: babar@nwfpuet.edu.pk

Faisal Iqbal was born in Karak, Pakistan, in 1987. He
received his B.Sc in Electrical Engineering (with
majors in communication) from University of
Engineering and Technology, Peshawar (UET),
Pakistan in 2009. He is currently pursuing his M.Sc in
Electrical Engineering (with majors in communication)
from the same university. He has worked as a lecturer
in Faculty of Electrical Engineering at Sarhad

University of Science & Information Technology (SUIT), Peshawar,
Pakistan. He is currently serving as a lecturer in Department of Electrical
Engineering, University of Engineering and Technology, Peshawar,
Pakistan. His research interests are computer networks, information
security, image processing and digital electronics.
Email: faisaliqbal@nwfpuet.edu.pk

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CurlzMT
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FangSong_GB2312
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /FZSTK--GBK1-0
 /FZYTK--GBK1-0
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Gulim
 /GulimChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KaiTi_GB2312
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LiSu
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /MicrosoftYaHei
 /MingLiU
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /STCaiyun
 /Stencil
 /STFangsong
 /STHupo
 /STKaiti
 /STLiti
 /STSong
 /STXihei
 /STXingkai
 /STXinwei
 /STZhongsong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /YouYuan
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

