
IACSIT International Journal of Engineering and Technology, Vol.2, No.2, April 2010
ISSN: 1793-8236

136

Abstract—A Sensor Network is composed of a large number

of sensor nodes that are densely deployed either inside the
phenomenon of very close to it. The wireless communication
employed by sensor network facilitates eavesdropping and
packet injection by an adversary. Therefore security must be
provided for sensor network to ensure secrecy of sensitive data.
To achieve security, keys must be agreed upon by
communication nodes.

The main task is to safely distribute the shared keys to the
sensor nodes. The solution to key distribution is such that, a
pool of symmetric keys is chosen and a subset of the pool (key
chain) is distributed to each sensor node. Two nodes that want
to communicate search their key chain to determine whether
they share a common key; if they don’t share key in common
then there may be a path, called key path, among these two
nodes where each pair of neighboring nodes on this path have a
key in common. This paper deals with hybrid design of key
distribution which combines combinatorial approach and
probabilistic approaches to select a key pool and key chain from
the pool

Index Terms— Security in Wireless Sensor Network, Hybrid
key distribution, combinatorial design theory, key
management.

I. INTRODUCTION
 A wireless sensor network (WSN) is composed of large
number of sensor nodes with limited power, computation,
storage and communication capabilities. Environments,
where sensor nodes are deployed, can be controlled or
uncontrolled. If the environment is known and under control,
deployment may be achieved manually to establish an
infrastructure. However, manual deployments become
infeasible or even impossible as the number of the nodes
increases. If the environment is uncontrolled or the WSN is
very large, deployment has to be performed by randomly
scattering the sensor nodes to target area. It may be possible
to provide denser sensor deployment at certain spots, but
exact positions of the sensor nodes can not be controlled.
Thus, network topology can not be known precisely prior to
deployment.

Since the network topology is unknown prior to
deployment, a key pre-distribution scheme is required where
keys are stored into ROMs of sensors before the deployment.
The keys stored must be carefully selected so to increase the

Manuscript received July 20, 2009
T. Kavitha, Research Scholar, Department of Electronics and

communication, College of Engineering Guindy, Anna University.
(email:haikavi18@yahoo.co.in).

Dr.D.Sridharan, Assistant Professor, Department of Electronics and
communication, College of Engineering Guindy, Anna University.
(email:sridhar@annauniv.edu)

probability that two neighboring sensor nodes, which are
within each other’s wireless communication range, have at
least one key in common. Nodes which do not share a key
may communicate through a path on which each pair of
neighboring nodes share a key. The length of this path is
called key-path length. Average key-path length is an
important performance metric and design consideration.
 Common approach is to assign each sensor node multiple
keys, randomly drawn from a key-pool, to construct a
key-chain to ensure that either two neighboring nodes have a
key in common in their key-chains, or there is a key-path.
Thus, challenge is to decide on size of the key-chain and
key-pool so that every pair of nodes can establish a session
key directly or through a path. Key-chain size is limited by
storage capacity of sensor nodes. Moreover, very small
key-pool increases probability of key share between any pair
of sensor nodes by decreasing security in that number of keys
to be discovered by an adversary decreases. Similarly, very
large key-pool decreases probability of key share by
increasing the security.
 This article is structured as follows. In the next section
some related works are given. Section III deals about
deterministic approach. Section IV emphasizes design of
hybrid key distribution. Lastly, section V and VI covers
analysis and conclusion respectively.

II. RELATED WORKS

A. Random Key Pre-Distribution Scheme
 In key setup phase [1], a large key-pool of KP keys and
their identities are generated. For each sensor, k keys are
randomly drawn from the key-pool KP without replacement.
These k keys and their identities form the key-chain for a
sensor node. In shared-key discovery phase, two neighbor
nodes exchange and compare list of identities of keys in their
key-chains. Basically, each sensor node broadcasts one
message, and receives one message from each node within its
radio range where messages carry key ID list of size k.
 Cluster key grouping [2], scheme proposes to divide key
chains into C clusters where each cluster has a start key ID.
Remaining key IDs within the cluster are implicitly known
from the start key ID. Thus, only key IDs for clusters are
broadcasted during shared-key discovery phase which means
messages carry key ID list of size c instead of k.
 After shared-key discovery phase, some node pairs may
not be able to find a key in common. These pairs apply
path-key establishment phase to communicate securely
through other nodes. Scalability and resilience of the
solutions can be improved by using larger key pools. But,
larger key-pool means smaller probability of key share

Hybrid Design of Scalable Key Distribution for
Wireless Sensor Networks

T. Kavitha, Dr.D.Sridharan

IACSIT International Journal of Engineering and Technology, Vol.2, No.2, April 2010
ISSN: 1793-8236

137

because key-chain size may not increase due to storage
limitations. Probability that a link is compromised, when a
sensor node is captured, is k/KP which is very high for small
key-pools, and produces low resilience.

B. Q-Composite Random Key Pre-Distribution Scheme
 Q-composite random key pre-distribution scheme [3]
requires q common keys to establish a link key. Link key KA,B
between a pair of sensor nodes SA and SB is set as hash of all
common keys KA,B = Hash(K1||K2||K3|| . . . ||Kq). The
scheme improves resilience because probability that a link is
compromised, when a sensor node is captured, decreases
from k/KP. But, probability of key sharing also decreases
because a pair of nodes has to share q keys instead of one.

C. Polynomial Based Key Pre-Distribution Scheme
 Polynomial based key pre-distribution scheme [4]
distributes a polynomial share (a partially evaluated
polynomial) to each sensor node by using which every pair of
nodes can generate a link key. Symmetric polynomial P(x, y)
(P(x, y) = P(y, x)) of degree k is used. The coefficients of the
polynomial come from GF (q) for sufficiently large prime q.
Each sensor node stores a polynomial with k + 1 coefficients
which come from GF (q). Every pair of sensor nodes can
establish a key. The solution is k-secure, meaning that
coalition of less than k+1 sensor nodes knows nothing about
pair-wise keys of others.
 Polynomial pool-based key pre-distribution scheme[5]
considers the fact that not all pairs of sensor nodes have to
establish a key. It combines Polynomial based key
pre-distribution scheme with the key pool idea to improve
resilience and scalability. For key setup phase, a set F of k
degree polynomials over finite field GF (q) is generated.
Each sensor node Si receives a subset Fi of the polynomial set
F (Fi (subset of) F).

D. Key Matrix Based Dynamic Key Generation
 All possible link keys in a network of size N can be
represented as an N × N key matrix. It is possible to store
small amount of information to each sensor node, so that
every pair of nodes can calculate corresponding field of the
matrix, and uses it as the link key. This scheme[B] uses a
public (Y + 1) × N matrix G and a private N × (Y+ 1) matrix
D which is generated over GF(q) and where N is size of the
network. Solution is Y-secure, meaning that keys are secure
if no more than Y nodes are compromised. Matrix G must
have (Y + 1) linearly independent columns to provide
Y-secure property. Key matrix is a symmetric matrix K =
(D.G)T .G. Sensor node Si stores columni of size Y+1 from
matrix G as public information, and rowi of size Y+1 from
matrix (D.G)T as private information. A pair of sensor nodes
(Si, Sj), first exchange their public information columni and
columnj. The link key is then generated as Kij = rowi ×
columnj and Kji = rowj × columni respectively. The scheme
requires costly multiplication of two vectors of size Y + 1
where the elements are as large as the corresponding
cryptographic key size.

E. Multiple Space Key Pre-Distribution Scheme
 Multiple space key pre-distribution scheme[6] improves
the resilience of previous scheme. It uses a public matrix G
and a set of W private matrices D. These matrices form W
spaces (Di, G) for i = 1. . . W. For each sensor node, a set of T
spaces are randomly selected among these W spaces.

Required keying materials for each selected space are stored
to the sensor node as in previous scheme; therefore, each
sensor node stores T +1 vectors of size Y+1. In shared key
discovery phase, a pair of nodes first agrees on a common
space for which nodes has to exchange an extra message
which includes T space IDs. It is possible that a pair of nodes
does not share a common space, in that case they have to
apply path-key establishment phase to establish a key
through intermediate nodes.
 Scalability of key matrix based dynamic key generation
scheme is improved in multiple space Blom’s scheme (MBS).
The scheme divides nodes into two sets U and V to form
bipartite key connectivity graph. That means, not every pair
of nodes has to share a key. Another difference from key
matrix based dynamic key generation scheme is that private
matrix D is not necessarily symmetric. Secret information
columnT uD is assigned to each node. Nodes can exchange
their public information to calculate secret key. Larger
networks are supported by Deterministic multiple space
Blom’s scheme (DMBS). DMBS increases scalability with
the cost of decreased resilience because capture of one sensor
node compromises credentials of T- 1 other nodes.

III. DETERMINISTIC APPROACH
 In this approach, the keys in the key chain can be
determined. (i.e.) they are not selected randomly.
Combinatorial design is a deterministic approach for key
distribution.
 Combinatorial design based pair-wise key pre distribution
scheme is based on block design techniques in combinatorial
design theory. It employs symmetric and generalized
quadrangles design techniques.

A. Symmetric Design
 Balanced Incomplete Block Design (BIBD is an
arrangement of v distinct objects into b blocks such that each
block contains exactly k distinct objects, each object occurs
in exactly r different blocks, and every pair of distinct objects
occurs together in exactly y blocks. The design can be
expressed as (v, k, λ), or equivalently (v, b, r, k, λ), where:
λ(v-1)=r(k-1) and bk=vr. A BIBD is called Symmetric BIBD
or Symmetric Design when b=v [10].
 A Finite Projective Plane consists of a finite set P of points
and a set of subsets of P, called lines. For an integer q where
q>=2, Finite Projective Plane of order q has four properties:
1) every line contains exactly q+1 points; 2) every point
occurs on exactly q+1 lines; 3) there are exactly q2+q+1
points; and 4) there are exactly q2+q+1 lines. If we consider
lines as blocks and points as objects, then a Finite Projective
Plane of order q is a Symmetric Design with parameters
(q2+q+1, q+1,1).
 For a network of size N, q is selected such that q2+q+1 is
greater than N. Then the parameters in finite projective plane
are mapped to key distribution. Symmetric Design has a very
nice property that any pair of blocks shares exactly one object.
The probability of key share between any pair of nodes is
Psym=1, so that Average Key-Path Length is 1. Resilience is
an important security metric, but it contradicts with
probability of key share because as more keys are shared
between blocks more blocks are affected by compromise of a
block. Thus, our symmetric algorithm provides better

IACSIT International Journal of Engineering and Technology, Vol.2, No.2, April 2010
ISSN: 1793-8236

138

probability of key share than probabilistic algorithms by
sacrificing the resilience.
 We first look at the amount of blocks to be captured to
compromise the object set. There are two ways to capture
nodes: selectively or randomly. In the case of selective
capture, we may simply assume that the attacker has ability to
monitor whole network and selects the nodes wisely. Since
key-chain size is q+1 for a Symmetric Design with q2+q+1
nodes and keys, an attacker needs at least q+1 key-chain to be
able to recover the key-pool. A wise attacker may select to
capture the nodes which have the same specific key in their
key-chains. From the properties of Symmetric Design, we
know that there are such key-chains. Since every pair of keys
can occur in exactly one key-chain then every q2+q keys
must be pairing with the specific key in these q+1 key-chains.
But, an unlucky attacker who selects the nodes randomly
might be capturing q2 key-chains which do not include the
specific key. Therefore, an unlucky attacker may need to
capture q2 +1 key-chain to be able to recover the key-pool.

B. Generalized Quadrangle
 A Finite Generalized Quadrangle GQ(s,t) is an incidence
structure S=(P, B, I) where P and B are disjoint and nonempty
sets of points and lines, respectively, and is a symmetric
point-line incidence relation satisfying the following axioms:
1) Each point is incident with t+1 lines (t>=1) and two
distinct points are incident with at most one line.
2) Each line is incident with s+1 points (s>=1) and two
distinct lines are incident with at most one point.
3) If x is a point and L is a line not incident (I) with x, then
there is a unique pair (y, M) € PXB for which x | M | y | L
Here also first q is selected and based on that and based on the
generalized quadrangle chosen, the generalized quadrangle is
constructed and then is mapped to the key distribution.
 In a GQ(s,t), there are b=(t+1)(st+1)lines, and a line
intersects with t(s+1) other lines. Thus, in a design generated
from a GQ, a block shares an object with t(s+1) other blocks.
An unlucky attacker may need to capture st(t+1) nodes before
reaching a node which includes a specific key. Therefore, an
unlucky attacker needs to capture st2+st+1 nodes to recover
the key-pool. GQ(s,t) provides better resilience than
symmetric Design.

IV. DESIGN
 Hybrid key distribution is the scheme that combines both
probabilistic and deterministic approaches in order to utilize
the advantages of both these methods. Here we use
Symmetric design and combine it with the random approach.
The design of this approach is carried out by first designing
the Symmetric design and then Complementary of this design
is found. Later these two are combined using random
approach to provide better flexibility and scalability. There
exist several methods for Symmetric design construction.
Here we are using the Mutually Orthogonal Latin Squares
(MOLS) to construct projective plane which is a subset of the
Symmetric design.

A. Symmetric BIBD Design
 Symmetric BIBD can be represented using three
parameters (v, k, λ), where v is the number of distinct objects,
k is the number of distinct objects in a single block and λ is
the number of blocks in which every pair of distinct objects

occurs. Here we are going to design only a finite projective
plane which is a subset of Symmetric BIBD where the
parameters are (q2+q+1, q+1, 1) where q is a prime
power[10]. Following are the steps involved in designing a
finite projective plane.

1) Selection of q
The prime power q should be selected in such a way that

q2+q+1 is greater than N, where N is the number of sensor
nodes. For example the value of q can be taken as 3 for a
network size of 10 nodes. (3*3 + 3 + 1 > 10).

2) Construction of Mutually Orthogonal Latin Squares
(MOLS)

A Latin square on q symbols is a q x q array such that each
of the q symbols occurs exactly once in each row and in each
column. The number q is called the order of square.
For example a Latin square of order 3 is 1 2 3
 3 1 2
 2 3 1
Let A = (aij) and B = (bij) are any two q x q arrays, the join of
A and B is a q x q array whose (i,j)th element is the pair
(aij,bij). For example let L1 and L2 be two Latin squares of
order 3.
 L1 = 1 2 3 L2 = 2 3 1
 2 3 1 1 2 3
 3 1 2 3 1 2
Then the join operation would result in
 (1, 2) (2, 3) (3, 1)
 (2, 1) (3, 2) (1, 3)
 (3, 3) (1, 1) (2, 2)
 Latin squares A and B of order q are orthogonal if all
entries of A join B are distinct. Latin squares L1, L2…… are
MOLS if they are orthogonal in pairs. For example the above
two Latin squares L1 and L2 are MOLS. Totally there will be
q-1 MOLS for order q.
 In our implementation we are going to construct MOLS
directly. The implementation procedure is given below.
First label the rows and then the columns of a q x q square
with the numbers 0, 1… q-1. It is convenient to assume that
the numbers are listed in the same order for both rows and
columns.
 Next we use the linear polynomial f(x, y) =ax+y, where x
and y represents the rows and columns respectively and ‘a’ is
any value between 1 and q-1. The q-1 matrices are
constructed by taking the value of ‘a’ to be 1, 2…q-1. These
q-1 matrices represent the q-1 MOLS.
 The arithmetic used here is Finite Field arithmetic. The
field arithmetic for prime numbers (say q) is nothing more
than addition and multiplication modulo the prime q.

3) Construction of Affine Plane
 Affine plane can be represented using the parameters (q2, q,
1). It can be constructed from the MOLS generated. Let the
q-1 MOLS be represented as L1… LQ-1.The blocks of affine
plane are constructed as follows.
Here x and k are variables…
For 1 <= x <= q-1, 1 <= k <=q, define
 Ax,k = { (i , j): Lx (i , j) = k }
For 1 <= k <=q, define
 Aq,k = { (k , j) : 1 <= j <= q }
And for 1 <=k <=q, define
 Aq+1, k = { (i , k) : 1 <= i <= q }
Finally, let

IACSIT International Journal of Engineering and Technology, Vol.2, No.2, April 2010
ISSN: 1793-8236

139

A = {Ax, k: 1 <= x <= q+1, 1 <= k <= q}, A is the Affine
plane.
E.g. Orthogonal LS of order 3.
 L1 = 1 3 2 L2 = 1 3 2
 2 1 3 3 2 1
 3 2 1 2 1 3
Blocks of Affine Plane
A11 = { (1,1) , (2,2) , (3,3) } A21 = { (1,1) , (2,3) , (3,2) }
A12 = { (1,3) , (2,1) , (3,2) } A22 = { (1,3) , (2,2) , (3,1) }
A13 = { (1,2) , (2,3) , (3,1) } A23 = { (1,2) , (2,1) , (3,3) }
A31 = { (1,1) , (1,2) , (1,3) } A41 = { (1,1) , (2,1) , (3,1) }
A32 = { (2,1) , (2,2) , (2,3) } A42 = { (1,2) , (2,2) , (3,2) }
A33 = { (3,1) , (3,2) , (3,3) } A43 = { (1,3) , (2,3) , (3,3) }

4) Construction of Projective Plane from Affine Plane
 Finally the finite projective plane can be constructed from
the Affine Plane that has been generated. The Affine plane
can be converted into a projective plane by including a new
block. Let A be the affine plane of order q, then introduce a
new block B such that B = {∞1, ∞2… ∞q+1}. Where ∞1, ∞
2… ∞q+1 are elements that are not available in the affine
plane blocks. And then the projective plane is constructed by
including one element in each of the affine plane blocks i.e.
A`=A U {∞i}.
E.G Construction of (13, 4, 1) BIBD from Affine Plane of
order 3.
The blocks of affine plane are
A11={(1,1),(2,2),(3,3)} A12={(1,3),(2,1),(3,2)}
A13={(1,2),(2,3),(3,1)} A21={(1,1),(2,3),(3,2)}
A22={(1,3),(2,2),(3,1)} A23={(1,2),(2,1),(3,3)}
A31={(1,1),(1,2),(1,3)} A32={(2,1),(2,2),(2,3)}
A33={(3,1),(3,2),(3,3)} A41={(1,1),(2,1),(3,1)}
A42={(1,2),(2,2),(3,2)} A43={(1,3),(2,3),(3,3)}
Let B be the new block
B={ (4,1) , (4,2) , (4,3) , (4,4) }
 Then the blocks of projective plane are given as
A`11={(1,1),(2,2),(3,3)}U(4,1)
A`12={(1,3),(2,1),(3,2)}U(4,1)
A`13={(1,2),(2,3),(3,1)}U(4,1)
A`21={(1,1),(2,3),(3,2)}U(4,2)
A`22={(1,3),(2,2),(3,1)}U(4,2)
A`23={(1,2),(2,1),(3,3)}U(4,2)
A`31={(1,1),(1,2),(1,3)}U(4,3)
A`32={(2,1),(2,2),(2,3)}U(4,3)
A`33={(3,1),(3,2),(3,3)}U(4,3)
A`41={(1,1),(2,1),(3,1)}U(4,4)
A`42={(1,2),(2,2),(3,2)}U(4,4)
A`43={(1,3),(2,3),(3,3)}U(4,4)
B`={ (4,1) , (4,2) , (4,3) , (4,4) }
 Totally we get 13 blocks. These blocks represent the
symmetric design blocks. We can verify by checking whether
it satisfies the properties of symmetric design. Here q=3, so
we get totally 13 blocks (q2+q+1) and each of the block
contains 4 (q+1) elements. And there exists only one element
in common between any two blocks thus satisfying the
property (q2+q+1, q+1, 1). Hence it is a symmetric design.

B. Complementary Design
 Given a block design with a set of D = (v, k, λ) with a
object set (key pool) S of |S|=v objects and blocks (key
chains) B1, B2… Bb where each block contains exactly k
objects, Complementary Design has the complement blocks

ßi = S-Bi as its blocks for 1 <= i <=b, where i is any
variable.
Ð is a block design with parameters (v, v-k, v-2k+λ). If D is a
Symmetric Design, then Ð is also a Symmetric Design.
For example,
Let S = { 1 , 2 , 3 , 4 , 5 , 6 , 7 } , v = 7
 B = {1,2,3} , {1,4,5} , {1,6,7} , {2,4,6} , {2,5,7} ,
{3,4,7} , {3,5,6}
Then the complement blocks are,
ß = {4,5,6,7} , {2,3,6,7} , {2,3,4,5} , {1,3,5,7} , {1,3,4,6} ,
{1,2,5,6} , {1,2,4,7}

C. Hybrid Design
 In Hybrid Design we just combine the symmetric design
and its complement using random approach. Let N be the
number of sensor nodes. First we need to select the value of q
(prime power) such that 2* (q2+q+1) >= N (Here we note that
in symmetric Design we selected q based on the condition
q2+q+1, and so we get a higher value of q in symmetric
design). Next for the selected q value construct q-1 Mutually
Orthogonal Latin Squares (MOLS) and then convert them
into affine plane blocks. Then projective plane is constructed
by embedding the affine planes.
 Next step is to find the complementary for all the blocks in
the projective plane. Let the number of blocks in projective
plane be R (R<N). These R blocks are assigned to R sensor
nodes and for the remaining N-R nodes we need to select the
blocks from complementary design randomly. Here the
selection of q plays a critical part. If the selected value is very
less (i.e. nearer to N) then we get a hybrid design with less
key chain size and less probability of key share. If the value
of q is very high it almost has the same characteristics of the
symmetric design.

D. Random Design
 In Random key distribution, the keys for each of the key
chain are randomly distributed. We can design a Random key
distribution scheme with any key pool size and key chain size,
so first we need to decide upon the following parameter
values.

1) Length of the key pool
For our comparison purposes we can select the length to be
equal to the key pool size of hybrid design.

2) Length of the key chain
For our comparison purposes we can select the length to be
equal to the key chain size of hybrid design.
 After selecting the values of these parameters we need to
randomly select the keys for each of the key chains. Let n be
the length of key pool, then the key identities are 1, 2…, n.
Let the length of the key chain be t and number of key chains
be c, and then we need to group the key identities into c
groups of length t randomly.

E. Mapping
Mapping from Symmetric, Hybrid designs to key distribution
is given in the Table I

TABLE I. MAPPING FROM COMBINATORIAL DESIGN TO KEY DISTRIBUTION
Symmetric and Hybrid
Designs

 Key Distribution

Object Set Key-Pool (P)
Object Set Size v Key-Pool Size (|P|)
A Block A Key-Chain

IACSIT International Journal of Engineering and Technology, Vol.2, No.2, April 2010
ISSN: 1793-8236

140

Blocks b # Key-Chains
Objects in a Block # Keys in a Key-Chain

(K)
Blocks that an Object is
in

Key-Chains that a Key
is in

Two Blocks share λ
Object

Two Key-Chains share
(x) Keys

V. ANALYSIS
This project is implemented using the programming

language java. Implementation is carried out in a system with
an optimum hard disk space since the size of the database, to
hold the key chains, is very high. In the simulation generated,
the path that we have discovered is the shortest possible
distance between the source and destination.

0.71

0.88 0.91
1

0.53
0.37

0.66

0.43

0

0.2

0.4

0.6

0.8

1

1.2

23 29 31 37

Prime power (q)

Pr
ob

ab
ili

ty
 o

f k
ey

 sh
ar

e

Hybrid Random

Fig 1 Probability of key share comparison graph

The performance of the three approaches, Random,

Symmetric and Hybrid, are analyzed and compared. First we
need to construct Random approach which is nothing but
creating keys randomly for every key chain. Then the
probability of key share (the probability by which every two
nodes share a common key) is calculated for each of the three
approaches. The probability of key share is always 1 for
symmetric approach since every two nodes share a common
key. In random approach the probability of key share is
purely random and in hybrid approach it depends on the
value of q being selected which is shown in Fig 1. If the q
value is large then we get a high probability of key share.

Then the next comparison is based on the network size it
can support. The network size supported by symmetric
design is given by q2+q+1, where q is the selected prime
power. The network size supported by hybrid design is given
by 2*(q2+q+1). Hence hybrid design is more scalable and
flexible than symmetric design. Hybrid design provides
shorter average key path length. It also improves resilience of
underlying symmetric design

VI. CONCLUSION
In this work, we have presented novel approaches to the

key distribution problem in large scale sensor networks. In

contrast with prior work, our approach is combinatorial based
on Combinatorial Block Designs. We showed how to map
from two classes of combinatorial designs to deterministic
key distribution mechanisms. We remarked the scalability
issues in the deterministic constructions and proposed hybrid
mechanisms. Hybrid constructions combine a deterministic
core design with probabilistic extensions to achieve key
distributions to any network sizes. The analysis and
computational comparison to the randomized methods show
that the Hybrid approach has clear advantages: 1) it increases
the probability of a pair of sensor nodes to share a key, and 2)
decreases the average key-path length while providing
scalability.

In this project we used hybrid mechanism, to determine the
key chains, which has a probability of key share less than 1.
So we can try to increase the probability to 1 by using various
other mechanisms. Although the running time of our
construction algorithm is far less when compared to that of
other combinatorial designs it can further be reduced by
adopting different techniques for constructing mutually
orthogonal Latin squares.

REFERENCES
[1] L. Eschenauer and V. D. Gligor, “A Key-Management Scheme for

Distributed Sensor Networks,” Proc. 9th ACM Conf. Comp. and
Commun. Security, Nov. 2002, pp. 41–47.

[2] Hwang, D., Lai, B., and Verbauwhede, I. “energy-memory-security
tradeoffs in distributed sensor networks”, Proc 3rd International
Conference on Ad-Hoc Networks and Wireless (ADHOC NOW 2004)
2004.

[3] H. Chan, A. Perrig, and D. Song, “Random Key Pre-distribution
Schemes for Sensor Networks,” IEEE Symp.Security and Privacy, May
2003. pp. 197–213,

[4] C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro, and M.
Yung, “Perfectly-Secure Key Distribution for Dynamic Conferences”,
Proc. 12th Annual Int’l. Cryptology conf Advances in Cryptology -
Crypto’92, LNCS 740, 1993, pp. 471–486.

[5] D. Liu and P. Ning. “Establishing Pairwise Keys in Distributed Sensor
Networks,” Proc. 10th ACM Conf. Comp. and Commun. Securit, Oct.
2003, pp. 52–61

[6] W. Du, J. Deng, Y. S. Han, P. K. Varshney, “A Pairwise Key
Predistribution Scheme for Wireless Sensor Networks”, 10th ACM
Conference on Computer and Communications Security (CCS),
Washington DC, Oct 2003, pp. 42–51.

[7] J. Lee and D. R. Stinson, “A Combinatorial Approach to Key
Predistribution for Distributed Sensor Networks,” Proc. IEEE Wireless
Commun. and Net. Conf., 2005.

[8] J. Lee and D. Stinson, “Deterministic Key Predistribution Schemes for
Distributed Sensor Networks,” Selected Areas in Cryptography, 2004

[9] Seyit A. Çamtepe, and Bülent Yener, “Combinatorial Design of Key
Distribution Mechanisms for Wireless Sensor Networks”, IEEE/ACM
Transactions On Networking, Vol. 15, No. 2, April 2007, pp.345 – 358.

[10] I. Anderson, Combinatorial Designs: Construction Methods. Chicester,
U.K.: Ellis Horwood, 1990.

T.Kavitha received Bachelor of Engineering in Electronics and
Communication Engineering from Bharathidasan University in the year 2000
and Master of Engineering in Systems Engineering and Operations Research
from College of Engineering Guindy, Anna University Chennai in the year
2006. Presently she is a research scholar in Anna University Chennai, India.
Her area of interest includes Network security and wireless sensor networks.

Dr.D.Sridharan received B.Tech and M.E in Electronics Engineering in the
year 1991 & 1993 respectively from Madras Institute of Technology, Anna

IACSIT International Journal of Engineering and Technology, Vol.2, No.2, April 2010
ISSN: 1793-8236

141

University and Ph.D degree in the department of Faculty of Information and
Communication Engineering from Anna University in the year 2005. He was
awarded by the Young Scientist Research Fellowship by SERC of
Department of Science and Technology, Government of India.
 He is currently working as an Assistant Professor, Department of
Electronics and Communication Engineering, at College of Engineering
Guindy, Anna University – Chennai, India. His research interest includes
Internet Technology, Network Security, Distributed Computing, and VLSI
for Wireless Communication.
 He has published more than 25 papers in National/ International
conferences and journals. He has visited USA, Italy, Germany, Singapore,
Hong Hong and Dubai to participate and present research papers and he has
also attended number of workshops sponsored by UNEFCO. He is a life
member of Institute of Electronics and Telecommunication Engineers (IETE),
Indian Society for Technical Education (ISTE), and Computer Society of
India (CSI). Presently he is working on research project on Wireless Sensor
Network sponsored by Department of Atomic Energy.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CurlzMT
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FangSong_GB2312
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /FZSTK--GBK1-0
 /FZYTK--GBK1-0
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Gulim
 /GulimChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KaiTi_GB2312
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LiSu
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /MicrosoftYaHei
 /MingLiU
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /STCaiyun
 /Stencil
 /STFangsong
 /STHupo
 /STKaiti
 /STLiti
 /STSong
 /STXihei
 /STXingkai
 /STXinwei
 /STZhongsong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /YouYuan
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

