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Abstract—In this paper, a nonlinear optimal control law 

based on a quadratic cost function is developed, and applied on a 

half-car model for the control of active suspension systems. 

Nonlinear model of half-car is constructed using the nonlinear 

dynamics of the electro hydraulic actuator and dynamic 

characteristics of the dampings and springs. The states of half 

car model are first estimated by Extended Kalman Filter (EKF) 

and then the estimated states predicted by Taylor series 

expansion and finally a control law is introduced by minimizing 

the local differences between the predicted and desired states. 

The derived control law has an analytical form which is easy to 

apply and also it is not required online numerical computations 

in optimization. Performance of the nonlinear optimal controller 

is compared to the existing passive suspension system and the 

proportional integral sliding mode controller. The obtained 

results demonstrate that use of the proposed nonlinear optimal 

control technique improves the tradeoff between ride quality 

and suspension travel compared to the passive suspension 

system and the proportional integral sliding mode method. 

 

Index Terms—nonlinear optimal control, active suspension, 

nonlinear model, Extended Kalman Filter, proportional integral 

sliding mode. 

 

I. INTRODUCTION 

The important functionality of the vehicle suspension 

system is to support the vehicle body as well as to provide the 

riding comfort to the passengers by rejecting the unpleasant 

vibratory motion induced from the irregular road inputs. Also, 

the suspension should maintain adequate vertical load to 

provide the vehicle stability when the car turns, brakes or 

accelerates [1]. The vehicle stability and riding comfort has 

mutually adverse effects, therefore, simply the passive damper, 

which is widely used in the usual vehicle, could not satisfy the 

riding comfort as well as driving stability simultaneously. To 

overcome this problem many researchers have proposed to use 

active suspensions [2]. Unlike passive systems which can only 

store or dissipate energy, active suspensions can continuously 

change the energy flow to or from the system when required. 

Furthermore, characteristics of active suspensions can adapt 

to instantaneous changes in driving conditions detected by 

sensors. As a result active suspensions can improve both 

riding comfort and handling performance to satisfactory levels. 
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However, as the recent trends of the vehicle industry is to be 

luxurious and driver comfort is more required, the electrical 

controlled suspension system is now installed and widely 

utilized [3]. Especially, the active damper is widely adopted 

for the luxurious vehicle because it can overcome the shortage 

of the passive damper by providing the ride comfort and 

vehicle stability at the same time. In the active suspension 

system, the sprung mass can vary according to the variation of 

passenger numbers and cargo as well as fuel loading condition. 

Also the actuator itself has the strong non-linear 

characteristics and the fluctuations of the hydraulic system’s 

parameters are not small, i.e. fluid compressibility, fluid 

leakage and electrical servo components. 

Various control strategies such as optimal control [4], 

nonlinear control [5], robust control [6], adaptive control [7] 

and intelligent control [8] have been proposed in the past years 

to control the active suspension system. Most control methods 

have been used for active suspension systems are optimal 

control method [9], [10]. In these optimal control methods a 

linear model for automotive proposed and different optimal 

control approaches such as linear quadratic regulator and 

linear quadratic gaussian have been used. But real model of 

automotive is nonlinear. Therefore for a good design, it is 

necessary that an actual model for automotive used. In this 

paper, according to system requirements, an optimal nonlinear 

approach [11-13] is applied. Similar to this method has been 

used for control of yaw dynamics to improve vehicle lateral 

stability [14], [15]. The proposed controller has two 

distinguished features: firstly, it is based on continuous 

nonlinear model and can handle the model nonlinearity 

successfully. Secondly, the optimality of the control law 

provides the possibility of using lower control energy for 

achievement of the desired performance. In this paper, a new 

optimal predictive approach is utilized to design a non-linear 

controller. This method, which employs a nonlinear 

continuous-time dynamic model, leads to an analytical 

closed-form control law which is suitable to implement. The 

rest of the paper is organized as follows: 

The model of a half-car suspension system and dynamics of 

it is initially investigated in section two. Then in the section 

three, an optimization-based nonlinear control law is 

developed. The main properties of the proposed controller and 

its advantages than the other conventional control methods are 

discussed. Some comparative simulation results including a 

passive suspension and active suspension system which is 

based on proportional integral sliding mode control (PISMC) 

theory and our resulting active suspension system are 
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illustrated in section four. Section five contains the 

conclusions of the paper. 

 

II. SUSPENSION MODEL 

The well-known rigid half-car vehicle model, which is 

shown in Figure 1, is widely used for active suspension design. 

The model comprises three parts: the sprung mass and two 

unsprung masses. Let the sprung and unsprung masses be 

denoted by M , 
fm , 

rm , respectively. The half-car model is a 

four degrees-of-freedom system. The sprung mass is assumed 

to be a rigid body and has freedoms of motion in the vertical 

and pitch direction. The 
cZ  denotes the vertical displacement 

at the center of gravity and   is the pitch angle of the sprung 

mass. The front and rear displacements of the sprung and the 

unsprung masses are denoted by 
fZ , 

rZ  and 
1Z , 

2Z . In the 

model, the disturbances, 
01Z , 

02Z  are caused by road 

irregularities. The control signals,  fu t ,  ru t  are 

generated by the actuators. 

Using Newton’s second law the equations of motion can are 

given as: 
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In these equations 
1fk , 1rk  and 

2fk , 2rk  are front and rear 

nonlinear suspension stiffness and the front and rear linear tire 

stiffness, respectively. The front and rear nonlinear 

suspension dampings are denoted by 
fb , rb . The suspension 

spring forces at the front and rear and suspension damping 

forces at front and rear are denoted by 
1fkF , 

1rkF  and 
fbF , 

rbF  respectively. The nonlinear nonlinear suspension 

stiffness 1ik  (  ,i f r ) are combination of a linear 

coefficient 
1

l

ik  and a nonlinear 
1

nl

ik  and also the nonlinear 

suspension damping ib  (  ,i f r ) are made of l

ib  and nl

ib . 

 
Fig. 1  Half-car suspension vehicle model. 

  Hydraulic actuators are used for suspension systems to 

generate the pushing force between the sprung and unsprung 

masses. Let the hydraulic actuator used for suspension model 

be a four-way valve-piston system, in which the force iu  is 

 i Liu t AP                   (6) 

where A  is the area of piston and 
LiP  is the pressure drop 

across the piston with respect to the front and rear suspensions 

(  ,i f r ) [16]. The derivative of 
LiP is given by Eqs. (7) and 

(8). 

 1
4

t

Lf f tp Lf c

e

V
P Q C P A z a z


               (7) 

 2
4
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e

V
P Q C P A z b z


               (8) 

where 
tV  is the total actuator volume, 

e  is the effective bulk 

modulus of system, 
iQ  (  ,i f r ) is the hydraulic load flow, 

and 
tpC  is the total leakage coefficient of piston. 

The relationship between the spool valve displacement and the 

hydraulic load flow is given as: 

   
1

i s vi Li d vi s vi LiQ sign P sign x P C x P sign x P


    

  

(9) 

where dC  is the discharge coefficient,   is the spool valve 

area gradient, vix  is the displacement of spool valve,   is the 

hydraulic fluid density, and sP  is the supply pressure. The vix  

is controlled by the input to the servo-valve iv . The valve 

dynamics are approximated by a linear filter with time 

constant  : 

 
1

vi vi ix x v


                  (10) 

The nonlinear model of the hydraulic actuator is as follows: 

 1Lf f Lf cP Q P A z a z                 (11) 
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 
1
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

       (14) 

where 
4 e

tV


  , 

tpC  , dC 
 


  

If defined the state variable, X , the control input, V , the 

disturbance input, W  as: 
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610   is used to rescale the pressure drop, 
LiP  

(  ,i f r ), to improve numerical accuracy. The components 

of the input disturbance (the rate of change in the height of 

road irregularities) for front and rear roads are    1 01w t Z t   

and    2 1 dw t w t t  , where 
dt  represents the time delay 

between front and rear tire axis. When nonlinear equations 

and nonlinear model of the hydraulic actuator use, the 

nonlinear suspension system has the following from: 

X f BV DW                  (15) 
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III. CONTROL SYSTEM DESIGN 

In this section firstly the states of the system estimated by 

the Extended Kalman Filter (EKF). The Kalman Filter (KF) is 

one of the most widely used methods for tracking and 

estimation due to its simplicity, optimality, tractability and 

robustness [17]. However, the application of the KF to 

nonlinear systems can be difficult. The most common 

approach is to use the EKF which simply linearizes all 

nonlinear models so that the traditional linear Kalman Filter 

can be applied [18]. The EKF is a recursive predictive filter 

that is based on the use of state space techniques and recursive 

algorithms. This dynamic system can be disturbed by some 

noise, mostly assumed as white noise. To improve the 

estimated state the EKF uses measurements that are related to 

the state disturbed as well [19]. Thus the EKF consist of two 

steps: 

1) The prediction 

2) The correction 

In the first step the state is predicted with the dynamic 

model. In the second step it is corrected with the observation 

model, so that the error covariance of the estimator is 

minimized. In this sense it is an optimal estimator. The 

dynamic model represented by 

      ,X t f X t m t        (16) 

where  m t  is the noise vector. In the linear case this can 

easily be rewritten as 

     .X t F X t n t           (17) 

where F  is the dynamic matrix and is constant,  X t  is the 

state vector and  n t  is the dynamic noise which is usually 

assumed as white noise and has the covariance matrix  Q t . 

The observation model represents the relationship between the 

state and the measurements. Usually the observations are made 

at discrete time steps 
it  

      ,i i il t h X t v t        (18) 

where  iv t  is the noise of the measurement process at the 

epoch it . In the linear case the measurements can be described 

by a system of linear equations, which depend on the state 

variables. The vector from of this system is 

     .i i il t H X t w t           (19) 

where  il t  is the vector of the observations at the epoch it , 

H  is the observation matrix and  iw t  is the noise of the 

measurement process with the covariance matrix  iR t . Like 

the dynamic matrix, in a linear system the observation matrix 

H  is a constant matrix as well. 

Like mentioned before, the prediction is the first step of the 

EKF. The predicted state, or better the a priori state is 

calculated by neglecting the dynamic noise and solving the 

differential equation the describe the dynamic model 

    i iX t f X t            (20) 

By representing this equation by a Taylor series with 

respect to X  at the predicted state  iX t
 and assuming that 

the higher order terms can be neglected, Eq. (20) can be 

rewritten as 

     .i i iX t F t X t          (21) 

where 
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The state vector at time 
it  can be expressed by Taylor series 

with respect to an approximate state  0X t
. 
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by using Eq. (21) this can be rewritten as 
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Thus the solution  iX t
 of the differential equations, in 

other words the actual predicted state is a linear combination 

of the initial state  0X t
 

   0 0.it

iX t X t           (25) 

0
it  is called the state transition matrix, which transforms any 

initial state  0X t  to its corresponding state  iX t  at time 

it  

from the Eqs. (21) and (25) 
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and by using (26) again, one can see 
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by comparing (26) and (27) it follows that: 

   0 0.i it t

i

d
F t

dt
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with the initial matrix 0

0 I   , because    0 0.X t I X t . 

And now the covariance matrix  iP t
 of the predicted state 

vector is obtained with the law of error propagation 
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
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In the more generalized form, where also the covariance matrix 

of the noise Q  is a function of time, the covariance matrix is: 
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In the correction step the predicted state vector  iX t
 is 

improved with observations made at the epoch it , thus the a 

posteriori state has the form 

     i i iX t X t X t            (31) 

with the covariance matrix 

     i i iP t P t P t          (32) 

As said before the EKF is an optimal filter, this means that the 

state variances in the state covariance matrix P  are minimizd. 

As P  is already known from the prediction step it follows 

that P  is minimized. 
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This condition is complied with 
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with 

              
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T T
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
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 iK t  is called the gain matrix. The difference 

    i il t l t  is called the measurement residual. It reflects 

the discrepancy between the predicted measurement 

   i il t HX t   and the actual measurement  il t . 

Finally the corrected state is obtained by 

          .i i i i iX t X t K t l t l t           (36) 

In this equation the estimated state and the measurements are 

weighted and combined to calculate the corrected state. That 

means, if the measurement covariance is much smaller than 

that of the predicted state, the measurements weight will be 

high and the predicted states will be low. And so the 

uncertainty can be reduced. The covariance matrix of the a 

posteriori state is given with the law of error propagation by 

                i i i i i i i iP t P t K t H t P t I K t H t P t        (37) 

In this paper distance of front and rear of automobile to surface 

of road are considered as a measurable output for numerical 

calculation. Now, we are ready for to design of the controller. 

The main goal of the control system is to make the estimated 

states 
nx  ( 1,2,...,12n  ) to follow the desired state 

ndx . 

Briefly, the estimated states for the next time interval, 

 nx t h , is first predicted by Taylor series expansion and 

then the current control 
mv  ( 1,2m ) will be found based on 

continuous minimization of predicted tracking error. Note that 

h denotes to the predictive period and is a real positive number. 

Let us first approximate  nx t h  by a k th-order Taylor 

series at t : 

           

            

2

1 1

...
2! !

, ,..., , ,...,

k
k

n n n n n

k k

n

h h
x t h x t hx t x t x t

k

x t h X t V t V t W t W t  

     

 

 

 
 (38) 

Now, the key issue is to choose the order k  in a way which is 

suitable for the purposes of controller design on the basis of 

predictions. The expansion order k  is determined as the 

lowest order of the derivative of state nx  in which the input 

V  first appears explicitly. Hence, state vector  X t h  is as 

follows: 

               1

1 2, , , ,..., ,kX t h L t X t W t W t W t L t X t V t   (39) 

Note that the arguments of functions may be frequently 

dropped through the rest of paper for simplicity of notations. 

Now, we consider a performance index that penalizes the next 

instant tracking error and the current control expenditure in 

the following form: 

               1 2

1 1
[ ]

2 2

T T

d dJ V t X t h X t h W X t h X t h V t W V t        (40) 

where 1W  and 2W  are symmetric positive semi-definite and 

symmetric positive definite weighting matrices, respectively. 

Minimization of the performance index must be sought in 

order to improve the tracking accuracy of states at the next 

instant and consequently obtain the optimum behavior of the 

vehicle. Now, the expanded performance index can be 

obtained as a function of control input by substituting Eq. (39) 

into (40) as: 

         1 2 1 1 2 2

1 1
[ ]

2 2

T T

d dJ V t L L V X W L L V X V t W V t       (41) 

The necessary condition for optimality is 
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 2 1 1 2 20 T

d

J
L W L L V X W V

V


    


     (42) 

which, leads to 

   
1

2 1 2 2 2 1 1

T T

dV L W L W L W L X


         (43) 

It is considered that the analytically defined predictive 

control law, Eq. (43), is a closed form which depends on the 

states of the estimated system and disturbance input. 

Generally, the proposed control law has two free parameters: 

the predictive time h and the weighting matrices 
1W  and 2W . 

The dynamic performance of the controller is extremely 

sensitive to the values of these parameters. In the derived 

control law, the predictive period h  is treated as a controller 

parameter rather than the integration step size. This feature is 

not shared by discrete-time systems [20]. Also, it can be 

established that a certain degree of robustness in the presence 

of some modeling uncertainties is achievable through small 

values of h . We see that the proposed tracking controller 

technique naturally leads to a special case of feedback 

linearization. But the current control law (43) has some 

important advantages over the input/output linearization 

control. It can be established that the predictive controller is 

robust in the presence of a class of modeling uncertainties and 

doesn’t need the exact knowledge of the system nonlinearity 

unlike the feedback linearization. Optimal property of the 

proposed control law is another important advantage that 

provides the possibility of limiting the control by regulation of 

weighting matrices. 

IV. SIMULATION AND DISCUSSION 

Computer simulations are carried out to verify the 

effectiveness of the designed nonlinear optimal control system. 

The vehicle parameters for a compact sedan that are used in 

simulation are listed in Table 1. Matrices 1W , 2W  and the 

predictive period h  of the Nonlinear Optimal control and 

other parameters are accurately regulate for the computer 

simulations. Let the set of typical road disturbance be in the 

form of 

 

  
  01

1 cos 8 0.5 0.75

1 cos 8 3 3.25

0

a t t

Z t b t t

other wise





   


   



      (44)
 

where a  and b  denote the bump amplitude (Fig. 2). This 

type of road disturbance has been used by [21], [22] in their 

studies. Furthermore, the maximum travel distance of the 

suspension travel is 8cm  as suggested in [22]. For 

comparison purposes, the performance of the designed 

nonlinear optimal control is compared to the proportional 

integral sliding mode control (PISMC) approach. For the  

system in Eq. (15), we utilized the PI sliding surface defined as 

follows:

 

       
0

t

t CX t CE X d          (45) 

where C  (dimension [ C ]= m n ) and E  (dimension 

[ E ]= n n ) are constant matrices. It is well known that if the 

system is able to enter the sliding mode, hence   0t  . 

Therefore the equivalent control,  eqV t can thus be obtained 

by letting   0t   [23]. 

Table 1: Parameters of half car model 

Symbol                 Value                       Symbol                 Value 

,M I     2580 ,910 .kg kg m  

,f rm m      40 ,30kg kg  

1 1,l nl

f fk k    10000 ,10000N M N M  

1 1,l nl

r rk k    10000 ,10000N M N M  

2 2,f rk k 100000 ,100000N M N M  

,dt       
1

0.25 ,
30

s s
 

,l nl

f fb b      1000 ,500Ns M Ns M  

,l nl

r rb b      1000 ,500Ns M Ns M  

,a b        1.25 ,1.45m m  

,       13 5 14.515.10 ,1N m s  

          9 5/2 1/21.545.10 N m kg  

A         4 23.35.10 m  

sP         10342500 pa  

 
Fig. 2  Typical road disturbance. 

We design the control scheme that drives the state 

trajectories of the system in Eq. (15) onto the sliding surface 

  0t   and the system remains in it thereafter. For the 

system in Eq. (15), the following control law is proposed: 

           

        

1 1

1 1
.

V t CB C f DW CB CE X t

CB t CB sign t  

 

 

   

 
  (46) 

where m m   is a positive symmetric design matrix and   

is the positive constant.  

In order to fulfill the objective of designing an active 

suspension system, i.e., to increase the ride comfort and road 

handling, there are two parameters to be observed in the 

simulations. The two parameters are the car body acceleration 

and the wheel deflection. 

Fig. 3 shows the suspension travels of both controllers for an 

active suspension system and a passive suspension system for 

comparison purposes. The result shows that the suspension 

travel within the travel limit, i.e., 8cm  and the result also 

shows that the active suspension utilizing the proposed 

controller, performs better as compared to the others. 

Fig. 4 illustrates clearly how the proposed controller, can 

effectively absorb the vehicle vibration in comparisons to the 

PISMC method and the passive system. The body acceleration 

in the proposed control design system is reduced significantly, 

which guarantee better ride comfort. 

In this paper, the peak values of the vertical acceleration are 

also presented. These values indicate the maximum 

magnitudes of the related acceleration experienced by the 

vehicle body or passenger. The peak values are calculated as: 

 max 1,...,iX x i n

            (47) 

Here, .


 is the  -norm. Peak values for the vertical 

acceleration are depicted in Fig. 5 and Fig. 6. As seen, the peak 

values are substantially decreased by the proposed controller. 

Fig. 7 shows that the wheel deflection is also smaller using the 

proposed controller. Therefore it is concluded that the active 

suspension system with the proposed control improves the 
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ride comfort while retaining the road handling characteristics, 

as compared to the PISMC and the passive suspension system. 

 

 
(a)           (b) 

 
(c)           (d) 

 
(e)           (f) 

Fig. 3  The suspension travels: (a) Front passive suspension, (b) Rear passive 

suspension, (c) Front suspension by the PISMC, (d) Rear suspension by the 

PISMC, (e) Front suspension by the nonlinear optimal controller and (f) Rear 

suspension by the nonlinear optimal controller. 

 
(a)            (b) 

 
(c)            (d) 

 
(e)           (f) 

Fig. 4  The body accelerations: (a) Front passive suspension, (b) Rear passive 

suspension, (c) Front suspension by the PISMC, (d) Rear suspension by the 

PISMC, (e) Front suspension by the nonlinear optimal controller and (f) Rear 

suspension by the nonlinear optimal controller. 

 

 
Fig. 5  The peak values for vertical accelerations of front suspension. 

 

 
Fig. 6  The peak values for vertical accelerations of rear suspension. 

 

 
(a)            (b) 

 
(c)            (d) 

 
(e)            (f) 

Fig. 7  The wheel deflections: (a) Front passive suspension, (b) Rear passive 

suspension, (c) Front suspension by the PISMC, (d) Rear suspension by the 

PISMC, (e) Front suspension by the nonlinear optimal controller and (f) Rear 

suspension by the nonlinear optimal controller. 

 

V. CONCLUSION 

Active suspension designs must resolve the inherent 

tradeoffs between ride quality, handling, suspension travel 

and power consumption. According to these aims, an 

optimization law is developed for suspension system control 
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based on the states estimation and states prediction of a 

non-linear half car model. The proposed control law 

minimized the states tracking errors and led to a special case of 

feedback linearization. The proposed optimal non-linear 

control law is given in an analytical closed form that is easy to 

solve and online optimization is not necessary. Our proposed 

controller applied on sedan half car model and compared with 

passive suspension system and active suspension system by 

the PISMC method. The obtained results demonstrated that 

the body acceleration and wheel deflection of our proposed 

controller was better than passive suspension system and 

active suspension system by the PISMC method. Also control 

signals of nonlinear optimal controller were less than the 

PISMC method. The results demonstrated that our controller 

indeed proved to be effective in the inherent tradeoff between 

ride quality and suspension travel as compared to the PISMC 

method and the passive suspension system. 

REFERENCES 

[1] H. S. Roh and Y. Park, “Stochastic Optimal Preview Control Of An 

Active Vehicle Suspension,” Journal of Sound and Vibration, vol. 220, 

no.2, 1999, pp. 313-330. 

[2] N. Yagiz, Y. Hacioglu and Y.Taskin, “Fuzzy Sliding-Mode Control of 

Active Suspensions,” IEEE Transactions on industrial electronics, Vol. 

55, no. 11, 2008, pp. 3883-3890. 

[3] A. Alleyne and J. K. Hedrick, “Nonlinear adaptive control of active 

suspension,” IEEE Transactions on Control Systems Technology, vol. 3, 

no.1, 1995, pp. 94-101. 

[4] R. Hampo, D Hrovat, “Optimal Active Suspension Design Using 

Constrained Optimization,” Journal of Sound and Vibration, vol. 207, 

no.3, 1997, pp. 351-364. 

[5] N.Yagiz and I.Yuksek, “Sliding Mode Control of Active Suspensions for 

a Full Vehicle Model,” International Journal of Vehicle Design, vol. 26, 

nos. 2-3, 2001, pp. 264-276. 

[6] H. Okuda, Y. Tsutaka, M. Oya, O. Wang and K. Okumura, “Robust 

active suspension controller achieving good ride comfort,” SICE Annual 

Conference 2007, vol. 13, 2007, pp. 17-20. 

[7] S. Chantranuwathana and H. Peng, “Practical Adaptive Robust 

controllers for Active suspensions,” Proceedings of the 2000 ASME 

International Congress and Exposition (IMECE), 2000. 

[8] Sh. J. Wu’ , H. H. Chiang, J. H. Chen , T. T. Lee, “Optimal Fuzzy Control 

Design for Half-Car Active Suspension Systems,” Proceedings of the 

IEEE, vol.1, 2004, pp. 583-588. 

[9] D. Hrovat, “Optimal Active Suspension Structures for Quarter Car 

Models,” Automatica, vol. 26, no 5, 1990, pp. 845-860. 

[10] H. Li, C. y. Tang, T. x. Zhang, “Controller of Vehicle Active Suspension 

Systems Using LQG Method,” Proceedings of the IEEE International 

Conference on Automation and Logistics, 2008, pp. 401-404. 

[11] W.H. Chen, D.J. Balanceand and P.J. Gawthrop, “Optimal Control of 

Non-linear Systems: A Predictive Control Approach,” Automatica, vol. 

39, no 4, 2003, pp. 633-641. 

[12] P. Lu, “Non-linear Predictive Controllers for Continuous Systems,” J. 

Guidance, Control and Dynamics, vol. 17, no 3, 1994, pp. 553-560. 

[13] P.J. Gawthop, H. Demircioglu and I. Siller-Alcala, “Multivariable 

Continuous-time Generalized Predictive Control: A State Space 

Approach to Linear and Non-linear Systems,” Control Theory and 

Applications, IEE Part D, vol. 145, no 3, 1998, pp. 241-250. 

[14] M. Mirzaei, G. Alizadeh, M. Eslamian and S. Azadi, “An optimal 

approach to non-linear control of vehicle yaw dynamics,” Journal of 

Systems and Control Engineering, Part 1, vol. 222, no 4, 2008, pp. 

217-229. 

[15] M. Eslamian, M. Mirzaei and G. Alizadeh, “Enhancement of Vehicle 

Lateral Stability by Non-linear Optimal Control of Yaw Dynamics,” 

Mech. & Aerospace Eng. J. vol. 2, no 3, 2007, pp. 97-106. 

[16] H.E. Merritt, “Hydraulic control systems,” Wiley and Sons, 1967. 

[17] M. Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp, 

“A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian 

Bayesian Tracking,” IEEE Transactions on signal processing, vol. 50, no 

2, 2002, pp. 174-188. 

[18] M. Boutayeb, H. Rafaralahy, and M. Darouach, “Convergence Analysis 

of the Extended Kalman Filter Used as an Observer for Nonlinear 

Deterministic Discrete-Time Systems,” IEEE Transactions on Automatic 

Control, vol. 42, no 4, 1997, pp. 581-586. 

[19] H. Weiss and J. B. Moore, “Improved Extended Kalman Filter Design for 

Passive Tracking,” IEEE Transactions on Automatic Control, vol. AC-25, 

no 4, 1980, pp. 807-811. 

[20] P. Lu, “Optimal predictive control of continuous nonlinear systems,” Int. 

J. Control, vol. 62, no 3, 1995, pp. 633-649. 

[21] D’Amato, F.J., and D.E. Viasallo, “Fuzzy Control for Active 

Suspensions,” Mechatronics, vol. 10, no 8, 2000, pp. 897-920. 

[22] J.S. Lin and I. Kanellakopoulos, “Nonlinear Design of Active 

Suspension,” IEEE Control System Megezine, vol. 17, no 3, 1997, pp. 

45-59. 

[23] U. Itkis, “Control System of Variable Structure,” Wiley, New York. 

1976. 

 

 

 

 

 
Iraj Hassanzadeh  received his Ph.D. in Electrical 

Engineering, Control, Robotics, from University of Tabriz, 

Iran in conjunction with the University of Western Ontario, 

London, Canada and M.Sc. degrees from the University of 

Tabriz, in 2002 and 1994, respectively. He received his B.Sc. 

degree from the University of Tehran, Iran in 1991. He has 

been working as a Postdoctoral fellow in Mechatronics and 

Robotics fields at Ryerson University, Toronto, Canada for almost 2 years 

during 2004-2005. Since 2002, he has been with the faculty of Electrical and 

computer Engineering, University of Tabriz, Iran. Currently, he is director of 

the robotics research lab. As a team leader, he directed two robotic teams won 

four trophies in two international and national robotic competitions (RDC2002 

and ROBOFIRE 2006). His research interests include robotics, visual servo, 

tele-robotics, control theory, applications and power system. He has published 

more than 35 international conference and journal papers in these areas.  He is 

a member of IEEE and serves as a member of program committee of several 

international conferences (SPIE2005, IEEECCA2005 and IEEE Thailand2006) 

and several national conferences as well. 

 

Ghasem Alizadeh  received his Ph.D. in Control 

Engineering from Tarbiat Modares University in 1998, 

M.Sc. degree in Power engineering from Khajeh Nasir 

Toosi University of technology in 1993 and B.Sc. degree in 

Control engineering from Sharif University of technology in 

1990. Now he is associate professor in the faculty of 

Electrical and computer Engineering, University of Tabriz, 

Iran. His research interests include Robust Control, Optimal Control, Nonlinear 

Control and Navigation. 

 

Naser Pourqorban Shirjoposht  received his B.Sc. and 

M.Sc degrees in Electronics and control, from Azad 

University of Lahijan and Tabriz University in 2006 and 

2009. He has just completed his M.Sc. working on Optimal 

Control and Nonlinear Control. 

 

 

 

Farzad Hashemzadeh received the B.Sc. degree in 

Biomedical engineering from Amirkabir University of 

Technology, Tehran, Iran in 2003, and the M.S degree in 

Control engineering from University of Tehran, Iran, in 

2006. Now he is Ph.D student in Control engineering in 

Tabriz University. His research interests include Nonlinear 

Control, Robotics, Robust Control, Intelligent Control and 

Pattern recognition. 


