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Abstract - In this paper, a comparison between thetwo 

algorithms for tracking multiple maneuvering targets in heavy 
clutter is done. First one is by using Multiple Hypothesis 
Tracking (MHT) and nonlinear non-Gaussian Kalman filter 
and the second one is by   combining MHT and Real-Time 
Particle Filter (RTPF). The main difficulty in multiple 
maneuvering targets tracking is the nonlinearity associated 
with target states. The multiple target’s motion modes in highly 
non-linear states are detected by using Multiple Hypothesis 
Tracking (MHT). In MHT, hypothetical tracks are generated, 
so the computational burden increases exponentially with 
number of tracks.  So the 1-backscan MHT algorithm is a good 
alternative because its having good tracking performance and 
limitation of computation time.  The nonlinear non-Gaussian 
Kalman filter is used to track the target with high maneuver 
rate and also it gives less probability of missing the target. 
Tracking by Real-time particle filter (RTPF) uses all sensor 
information even when the filter update rate is below than that 
of sensors. In RTPF each posterior is represented as mixture of 
sample sets, where each mixture component integrates one 
observation arriving during a filter update. RTPF eliminate the 
problem of filter divergence due to an insufficient number of 
independent samples.   
 

Index Terms— Multiple Hypothesis Tracking, nonlinear 
non-Gaussian Kalman filter, RTPF, tracking of multiple 
maneuvering Targets. 

I. INTRODUCTION 
In multiple targets tracking (MTT) the main objective is to 

partition the sensor data into sets of observations, or tracks, 
produced by the same source.  Once tracks are formed and 
confirmed, the number of targets can be estimated and 
quantities, such as target velocity, future predicted position, 
and target classification characteristics, can be computed for 
each track.  An important distinction when comparing MTT 
processing methods is between batch and recursive methods.  
Batch processing  techniques represent the ideal situation 
where no information is lost due to preprocessing because all 
observations are processed together.  On the other hand, by  

using recursive methods, processing is done at each scan 
using data received on that scan to update the results of 
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previous processing [1].  The tracking of a maneuvering 
targets is a highly nonlinear and challenging problem that 
involves, at every time instant, the estimation not only of the 
unknown state (composed of position, velocity and 
acceleration of the target) in the dynamic model that 
describes the evolution of the target, but also the underlying 
model that accounts for the regime of movement [2]. 

If the standard sequential processing approach is taken, the 
most likely combination will be chosen after each data set is 
received. Using the Multiple Hypothesis Tracking (MHT) 
approach, a number of candidate hypotheses will be 
generated and evaluated later as more data are received.  
Thus, the capability of using later measurements to aid prior 
correlation decisions is allowed.  However, the method is 
recursive so that data sets only need be processed as they are 
received. The non-Gaussian Kalman filter proposed here 
seems to be optimal under the minimum-mean-square error 
(MMSE) criterion for non-Gaussian problem.  The 
non-Gaussian linear DSS model, in which the PDFs of the 
system initial state, system noise, and the posterior state 
PDFs are modeled by the Gaussian mixture model (GMM), 
was assumed.  Using the property that any PDF can be 
approximated by a mixture of finite number of Gaussians, a 
recursive method based on the MMSE estimator for 
GMM-distributed random vector was derived.  This 
algorithm estimates the posterior PDF of the system state by 
the GMM, and therefore it can be effectively used for 
maneuvering target tracking.         The main difficulty in 
real-time recursive estimation is the mismatch between 
incoming sensor data rate and the filter update rate. In usual 
case the filter will discard the sensor information which 
arrives during update process. In Real-time particle filter 
instead of discarding sensor readings, it distributes the 
samples among the different observations arriving during a 
filter update.[5].Hence, RTPF represents densities over the 
state space by mixtures of sample sets. Each mixture 
components are assigned with a weight corresponding to 
probability density function so as to minimize the 
approximation error introduced by the mixture 
representation.  

II. PROBLEM FORMATION  
Suppose that there are N targets and the target set is 

denoted by NT {1,2,...., N}= .  For the target r (r  NT ), its 
dynamic equation and measurement equation are denoted by 
the equations (1) and (2) respectively [3]. 
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Where,  r

kx  is the state vector of target r at time k and r
kz  

is the measurement vector of target r at time k. k 1F − and 

k 1G −  are the system transition matrix and the input matrix at 

time k−1 respectively.   kH  is the measurement matrix.  
r
k 1v −  is a non Gaussian driving noise for maneuvering target 

r  and r
kw  is a zero-mean white Gaussian measurement noise 

vector.  The initial state vector r
1x− , r

k 1v −  and r
kw  of target r 

are independent random process GMM distributed [4]. For 
all these targets, the transition process from model i to model 
j is governed by Markov chain whose transition probability P 
ij is known. 

 

 
 

    
                          (3) 

where m ym ymGMM( , , ;m 1,...,M)α µ Γ =  denotes an 

Mth-order complex Gaussian mixture distribution with 
weights, mean vectors, and covariance matrices.  The PDF of 
a GMM distributed random vector y is given by 

M

y ym ym
m 1

f (y) (y; )α θ
=

= Φ∑                                     (4) 

Where ym(y; )θΦ  is a complex Gaussian PDF and 

ymθ contains the mean vector, ymµ  and the covariance 

matrix, ymΓ .  The estimation of state vector for target r from 
measured data by using conditional expectation estimator,  
 r r r

k k kx E(x | z )= .   From the state estimated vector, the 
tracks of individual targets are separated and maintained by 
Multiple Hypothesis Tracking (MHT). 

III. NON-LINEAR NON-GAUSSIAN KALMAN FILTER 
ALGORITHM 

In this section, the basic steps of nonlinear non-Gaussian 
Kalman filtering and Multiple Hypothesis Tracking (MHT) 
arithmetic in one cycle is described as follows.  

The conditional probability that the data r[k]Χ  by the 

mixture component r
j [k]η  is r r

jp( [k] | [k])η Χ .  The state 

mixture parameters at instance k-1 for target r are the mean 
estimation of the jth component of the mixture is 

r
x j[k 1| k 1, [k 1]]µ η− − − , the prediction covariance 

matrix for the lth mixture component is 
r
x jM [k 1| k 1, [k 1]]η− − −  and weight of the jth 

component is r
xj[k 1]α − [4].  

The observation model in tracking systems is nonlinear 

because the observations are given in polar coordinates [8]. 
For nonlinear problems there is no general analytic 
expression for the posterior PDF and only approximated 
estimation algorithms are existed. The extended Kalman 
filter (EKF) is the most popular approach for recursive 
nonlinear estimation. The main idea of the EKF is first-order 
linearization of the estimation problem and the posterior PDF 
is assumed to be Gaussian. In nonlinear systems the PDF of 
the state may be multi-modal. The Gaussian approximation 
of this multi-modal distribution leads to poor tracking 
performance. 

The following Steps are involved in  Nonlinear 
non-Gaussian Kalman filtering 
• Prediction of the state mixture parameters: 

•  Prediction: 


Mr r r

k|k 1 xj x j
j 1

x [k] [k | k 1, [k]]α µ η−

=

= −∑  

• Kalman gain: 
r r r T r r r r T
j x j k w k x j kK[k] M [k|k 1, [k]]H ( [k] H M [k|k 1, [k]]H )η η= − ⋅ Γ + −

Estimation of mixture parameter: 
 rr r r r r

k|k 1x j x j j k k

r r r r
x j j k x j

[k | k, [k]] [k | k 1, [k]] K [k](z H x )

M [k | k, [k]] (I K [k]H )M [k | k 1, [k]]

µ η µ η

η η

−= − + −

= − −

The conditional probability that the data r[k]Χ  by the 

mixture component r
j [k]η  is calculated as follows 

r c r
xj xjr r

j N
r c r
xi xi

i 1
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• Estimation: 


Mr r r r

k|k j x j
j 1

x p( [k] | [k]) [k | k, [k]]η µ η
=

= Χ∑  

These are the steps of nonlinear non-Gaussian Kalman 
filtering used to estimate the state vector of target r at 

instance k ( 
r
k|kx ). The residual and its covariance matrix are 

calculated as 
 rr r r

k k|k 1k k
r r r r T r
k k x j k w

z z H x

S H M [k | k 1, [k]]H [k]η

−= −

= − + Γ


  

IV. PATICLE   FILTER   ALGORITHM 
Particle Filter Algorithm involves the following steps 
5) Generate particles for first M random numbers.                                                                                      
6) Perform the weight computation and weight 

normalization 
7) Resambling is used to avoid the problem of degeneracy 

of     the algorithm, which is, avoiding the situation that 

r r r r
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all but one of the importance weights close to zero.The 
performance of the algorithm can also be affected by 
proper choice of resampling method. 

8) estimated values are computed. [4] 

 
Fig 1.Flow chart of Particle filter 

 
Particle filters represents the belief ( )tBel x   by a   set tS  

of pN  weighted samples  

( ) ( ){ ( , )| 1,.. }i it t t p
S x w i N= = Where each 

( )i
tx  is a state and the ( )i

tw  are nonnegative numerical 

factors called importance weights, which sum up to one. 

( ) 0 : 1 :

0 : 1 :

( | )
( | )

i
i k k

k i
k k

p x zw
q x z

α       

Where q (.) called an importance density. 

A. Real Time Particle Filter 
The general assumption underlying particle filter is that all 

samples can be updated whenever new sensor information 
arrives. Under real time condition, it is not possible to 
complete the update before the next sensor measurement 
arrives. This can be the case for computationally complex 
sensor models or whenever the underlying posterior requires 
large sample sets. The majority of filtering approaches deals 
with this problem solved by skipping sensor information that 
arrives during the update of the filter. While this approach 
works reasonably well in many situations, it is prone to miss 
valuable sensor information. 

   Let n be the number of samples required by the particle 
filter. The time interval ∆ between two observations is called 
observation interval. Assume that the resulting update cycle 
of the particle filter takes k ∆ and is called the estimation 
interval or estimation window. Accordingly, k observations 
arrive during one estimation interval and this number is 
called the window size of the filter, ie. The number of 
observations obtained during a filter update. 

      In Real time particle filter, samples are partitioned into 
subsets among sensor information over estimation windows. 
The size for the each partitioned subset is selected such that 
particle filter iteration can be performed before new sensor 
information is acquired. At the end of estimation window, 
each subset is assigned with weights using the measurement. 
Resample the particles from each subset according to their 
weights. The size of the resampled particle set is n/k where n 
is the number of particles in the estimation window; k is the 
number of observation in the estimation window or window 
size of the filter. This resampled particle set is used in the 
next estimation window as prior belief[5]. 

B. Mixture Representation 
  Let us consider one estimation window contains k 
observations.The optimal belief can be represented as 

1 1 0 0 1( )

1

... ( | ) ( | , ). ( ) .....i i i i i t tk

k

opt k t t t t t t x x
i

Bel x a p y x p x x u Bel x d d− − −

=
∏∫ ∫

          Where ( )tBel x denotes the belief generated in the 
previous estimation window. 
RTPF generates k such beliefs, one for each observation.  

C. Optimizing mixture weights 

 The mixture weights α is determined by minimizing 

Kullback-Leibler -divergence between mixBel and optBel  [8] 

argmin ( | ).log ( | ) / ( )k k k tkmix t mix t opt t xBel x Bel x Bel x dα α= ∫  

V. 1-BACKSCAN MULTIPLE HYPOTHESES TRACKING 
The 1-backscan MHT involves the following steps 

1: Hypotheses Construction 

It uses the structure branch algorithm for hypotheses tree 
construction. The main difference in 1-backscan MHT and 
zero backscan MHT is the hypotheses tree formed an 
modified in each observation.  
2:Bayesian Track Scoring 

A relatively simple sequential technique for track scoring 
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can be developed by applying Bayes’ rule. This technique 
goes beyond the method SPRT (Sequential Probability Ratio 
Test) because prior probabilities and track update residual 
information are readily included.  Also, the same method will 
be applied to track deletion [1]. Using Bayes’ rule, the 
probability of true track correlate with measurement data D is 

( ) ( ) 0 ( )

( )

Dp p TTTp D p D
=                                (5) 

where, ( )Dp T is the probability of receiving measurement 

data D given that a true target is present.  Also, 0 ( )p T  is the 
priori probability if a true target appearing within the scan 
volume.  The term p(D) is the probability of receiving the 
data D and is given by  

( ) ( )0 0( ) ( ) ( )D Dp D p p T p p FT F= +         (6) 

where ( )Dp F and 0 ( )p F  are defined for false target in 

the same manner that ( )Dp T  and 0 ( )p T  were defined 

for true targets.  Noting that 0 ( )p T =1 - 0 ( )p F , combining 
(5) and (6), and dividing numerator and denominator by 

( )Dp F
 gives  

( ) 0

0 0

( ) ( )
( ) ( ) 1 ( )

L D p TTp D L D p T p T
=

+ −
                  (7) 

where L(D) is the likelihood ratio for the data as defined  

( )
( )

( )
Dp TL D
Dp F

=  

Equation (7) can be modified in convenient form for 
recursive computation as Lk to be the likelihood ratio for the 
data received at kth scan to be correlated with the true track.  
Likelihood Lk associated with data set Dk must be determined 

by first defining
k

Tp D
  
 

 and kDp F
  
 

.  Dropping 

subscript k, for a true target ( )Dp T is taken to be the 

product of the probability of detection PD and the Gaussian 
likelihood function defined as 

2

/ 2

exp( / 2)

(2 )
ij

ij M

d
g

Sπ

−
=  

It is likelihood function associated with the assignment of 
observation j to track i by assuming the Gaussian distribution 
for the residual.  Similarly, ( )Dp F  is taken to be the 

probability of a false target return times the likelihood 
function (1/VG) associated with the assumed uniform 
distribution of false returns within the volume VG of the gated 
region.  Thus,  

2 /2

/2(2 )

d
D G

k M
F

P e VL
P Sπ

−

=                                          (8) 

Where d2 is the normalized distance function and  is 
determinant of the residual covariance matrix.  Equation (8) 
can be simplified by noting that F FT GP Vβ= , where FTβ is 
the false target density.  Thus (8) becomes  

2 /2

/2(2 )

d
D

k M
FT

P eL
Sβ π

−

=                                (9) 

Taking log of equation (9) we get log likelihood score of 
hypotheses and given as  

2

/2
ln

2(2 )
D

k M
FT

P dL
Sβ π

  = − 
  

                (10) 

The new target probability can be defined in terms of new 
target density and false target density as  

0 ( ) NT

NT FT

p T β
β β

=
+

                                      (11) 

Equation (6) to (11) provides a convenient sequential 
scoring scheme that can be adjusted to the environment 

 
3: Track and Hypothesis Scoring 
 Each track has a score which is essentially the log 

likelihood of the hypothesis that the set of observations in 
the track are from the same source. The track is a 
collection of false alarms.  The score is initially set to zero 
at the time of the first observation.  Thereafter, upon the 
receipt of data on scan k, the score for track i is updated 
according to the relationship. 

 

i iL (k) L (k 1) L(k)= − +∆                                     

Where, 

ΔL (k) = Dln(1 P )− ; no track update 

=      GL∆    ; track updated 

             
r2

D
G M/2 r

F k

P dL ln
2(2 ) Sβ π

  ∆ = − 
  

                   (12) 

DP      = estimated probability of detection  

Fβ      = false target density  
M       = measurement dimensionality. 

r
kS          = residual covariance matrix 

P, R    = Kalman filter predication, measurement 
covariance matrices 

H = measurement matrix 
r2d         = normalized statistical distance function  

              =
r T rr 1
k kkz S z−   

r
kz          = measurement residual vector of target r at time k. 

4: Track Management 
  Hypotheses are constructed from sets of compatible tracks.  

The hypothesis score is the sum of the scores of the tracks 
contained in the hypothesis.  Given hypothesis scores, 
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jHL , the probability, the jP(H )  of hypothesis j can be 

computed, using all J hypotheses, from  

j

j

H
j J

H
j 1

exp(L )
P (H )

[1 exp(L )]
=

=
+ ∑

                           (13) 

 Note that a given track can be contained in more than one 
hypothesis.  Thus, the probability of a track is the sum of 
all hypotheses that contain the track.  The number of tracks 
must be controlled by standard track and hypothesis 
pruning methods are utilized.  Also, similar tracks are 
merged. The end result is that a number of tracks that were 
formed are deleted.  Thus, a reduced set of tracks is 
maintained until the next scan of data, where the process is 
continued. 

A. Pruning Hypotheses  
The manner in which branches are eliminated (or pruned) 

from the hypothesis tree is, like many issues in MTT, highly 
dependent upon the application.  One technique is to remove 
hypotheses with probabilities that fall below some fixed 
predetermined threshold.  A disadvantage of this type of 
pruning is that it does not take into consideration the 
computational resources. 

Another approach to pruning, called the breadth approach, 
is to allow only a predetermined fixed number (M) of 
hypotheses to be maintained.  This technique involves 
ranking the hypotheses and choosing only the M most likely, 
as measured either by the probabilities or the score functions. 
A similar method is to rank and sum the probabilities of the 
most likely hypotheses.  When this sum exceeds a threshold 
the remaining hypotheses are then deleted. 
B. Combining Hypotheses 

As data are accumulated certain hypotheses may tend to 
become similar.  For example, two hypotheses might differ 
only with regard to correlation uncertainties that occurs 
several scans ago.  Then, if the tracks involved in the 
previous correlation uncertainties have received the same 
recent updates, the past associations may no longer be 
important and the hypotheses can be combined.  This is 
accomplished by first determining which hypotheses have the 
same number of tracks. Then, it must be determined if each 
track in one hypothesis has a corresponding track that is 
similar to it in the other hypothesis.  

C. Hypothesis Clustering  
A cluster is a group of hypotheses, and associated tracks 

that do not interact with any other group of hypotheses 
(contained within other clusters).  The hypotheses within a 
cluster will not share observations with the hypotheses within 
any other cluster.  The basic purpose of clustering is to divide 
the large tracking problem into a number of smaller ones that 
can be solved independently.  This can greatly reduce the 
number of hypotheses that must be determined.  

A new cluster is initiated any time an observation is 
received that does not fall within the gates of any track 
contained in an existing cluster.  The cluster is initiated on the 
observation using the alternatives (true target or false alarm) 
associated with its source.  A new cluster is initiated on a 
track that is contained in all hypotheses of a previous cluster.  

The track is then removed from the old cluster.  In order that 
clusters remain distinct, the gates of the tracks within the 
cluster must not overlap.  Thus, when an observation falls 
within the gates of two or more tracks from different clusters, 
the clusters are merged.[1][2] 

VI. MHT WITH NONLINEAR NON-GAUSSIAN KALMAN FILTER 
ALGORITHM 

In fig.2, the flow diagram of  MHT with nonlinear 
non-Gaussian Kalman filter for multiple maneuvering targets 
is shown.  

 
Fig. 2. Flow diagram of MHT with nonlinear non-Gaussian Kalman filter 

VII. SIMULATION RESULTS 
The simulation results show the tracking of two 

maneuvering targets.  Both the targets are in coordinated turn 
and also have sudden steering from their coordinated turns.  
The state vectors of two targets are having its position, 
velocity and acceleration in 2D as [x y x1 y1 x2 y2].  In this 
algorithm the tracking system is designed based on Singer’s 
acceleration model [6].  The transition matrix (a ) and input 
matrix (b ) of the system are considered by defining α to be 
the inverse of maneuver time constant and the matrices are 
defined as follows, 

 

  

1 0 T 0 a1 0
0 1 0 T 0 a1
0 0 1 0 b1 0
0 0 0 1 0 b1
0 0 0 0 c1 0
0 0 0 0 0 c1

 
 
 
 

Φ =  
 
 
 
 

                                    (14) 
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d1 0
0 d1
a1 0

B
0 a1
b1 0
0 b1

 
 
 
 

=  
 
 
 
 

                                                            (15)          

 
 

where T
2

1a1 [ 1 T e ]αα
α

−= − + + T1b1 [1 e ]α

α
−= − , 

Tc1 e α−= , 
2 2

2

1 Td1 [b1 T]
2
α

α
= + −   

 The maneuvering excitation covariance matrix Q(k) is 
given as 
 

q11 q12 q13 0 0 0
q12 q22 q23 0 0 0
q13 q23 q33 0 0 0

Q(k)
0 0 0 q11 q12 q13
0 0 0 q12 q22 q23
0 0 0 q13 q23 q33

 
 
 
 

=  
 
 
 
 

                 (16)   

 
 
Where 

T 2 2 T
3 3

2
5

1 2 Tq11 [1 e 2 T 2 T 4 Te ]
2 3

α αα
α α α

α
− −= − + + − −

2 2 2 T TT
4

1q12 [1 e 2 T T 2 Te 2e ]
2

α α αα α α
α

− − −= + − + + −

T2 T
3

1q13 [1 e 2 Te ]
2

α αα
α

− −= − −

2 T T
3

1q22 [ e 2 T 3 4e ]
2

α αα
α

− −= − + − +

2 T
2

T1q23 [1 e 2e ]
2

α α

α
− −= + − ,  2 T1q33 [1 e ]

2
α

α
−= −  

 σm is the maneuver standard deviation [6 ]. 
 

The constants used for calculating the score of tracks in 
hypothesis are 

P =0.9, estimated probability of detection 
β =0.5, false target density 
M = 2, measurement dimensionality 
The Comparison of MHT with nonlinear non-Gaussian 

Kalman filter and MHT with Real-Time particle filter is 
shown in fig 1. 

 
 

Fig. 3. Comparison of MHT with nonlinear non-Gaussian Kalman filter and 
MHT with Real-Time particle filter 

 
In Fig. 4  & 5, error estimation for both methods are given. 

Root Mean Square Error (RSME) for MHT with Real-Time 
particle filter is less than 0.3,but that for nonlinear non 
Gaussian kalman filter is approximately equal to 1. 
 

 
Fig 4. RMSE of MHT with Real-Time particle filter 

Fig 5. RMSE of MHT with nonlinear non Gaussian kalman     filter 
 Hence for tracking multiple maneuvering targets, MHT 

with RTPF is an optimum choice when compared to already 
existing methods like JPDA, MHT with non-linear non 
Gaussian Kalman filter, etc., since RTPF eliminates the 
problem of filter divergence and very low estimation error  
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VIII. CONCLUSION 
In this paper, a comparison of two target tracking 

algorithms is done. The existing technique for tracking 
targets is done by kalman filter. Since in real-time 
applications the state of the targets is nonlinear in nature, it 
won’t give good results. The disadvantages are overcome by 
1-backscan MHT with real-time particle filter. The 
computational burden of MHT was reduced by using 
1-backscan (for calculation one step previous scan data are 
used). From simulation results, we concluded that the 
performance of 1-backscan MHT with real-time particle filter 
was better than MHT with nonlinear nonGaussian Kalman 
filter. 
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