
International Journal of Engineering and Technology Vol. 1, No. 2, June, 2009
1793-8236

165

Abstract— Object-oriented software development has been

widely accepted for its seamless transition property between
development phases. In most of the object-oriented approaches
for software design, including the use of the standard Unified
Modeling Language, different specifications based on multiple
models are obtained for describing the different aspects of a
system. However, software industry still cannot provide
satisfactory solutions to fill the gap between high-level
modeling language and programming languages. The
emergence of UML as a standard for modelling systems has
encouraged the use of automated software tools that facilitate
the development process from analysis through coding. In this
paper, an approach is proposed to tackle this gap problem.
Through mapping between UML and Java, we are able to
generate low-level Java code directly from multiple UML
statecharts.

Index Terms— Unified Modeling Language, Statecharts,
code generation, Java.

I. INTRODUCTION
Object-oriented software development matured

significantly during the past ten years. The Unified
Modeling Language (UML) [1, 2, 3, 4] is an expressive
language that can be used for problem conceptualization,
software system specification as well as implementation.
The emergence of the UML as an industry standard for
modelling systems has encouraged the use of automated
software tools that facilitate the development process from
analysis through coding. It covers a wide range of issues from
use cases and scenarios to state behavior and operation
declarations.

In UML based object-oriented design, behavioral
modeling aims at describing the behavior of objects using
state machines. A state machine is a behavior that specifies
the sequence of states an object goes through during its
lifetime in response to events [1]. The UML statechart
diagram visualizes a state machine. It contains states,
transitions, events and actions. Statechart diagram addresses
the dynamic view of a system. It is especially important in
modeling the behavior of a class and emphasizes the
event-ordered behavior of an object, which is particularly
useful in modeling reactive systems. It focuses on changing
states of a class driven by events. The semantics and
notations used in UML statecharts mainly follow Harel’s
statecharts [5] with extensions to make them object-oriented
[4].

A. Jakimi, , M. Elkoutbi are with ENSIAS, Labo SI2M, university
Mohammed V, Rabat, Morrocco. Address: FPE, B..P 512, Boutalamine,
Errachidia, Morocco.

This paper suggests an approach for requirements
engineering that is based on the UML. In this paper, we
suggest to generate the code from the UML statecharts. We
have been working on implementing the dynamic behavior of
an object-oriented system. Some of the results of our research,
which includes a limited treatment of sequence diagrams,
have already been published [6]. The present study focuses on
implementing statecharts in general and addresses all the
important components of statecharts.

Our work proposes a new approach to narrow the gap
between UML behavior and an implemented system. The
narrowing of gap is achieved by generating low-level Java
code from statecharts. The code generation is achieved by
creating a mapping between UML statecharts and Java
programming language.

The remainder of this paper is organized as follows. In the
next section, we present a general idea of the UML Statecharts
relevant to our work. Section 3 provides background about
various approaches to implement UML behavior. In section 4,
we explain our automatic code generation approach to
implement statecharts. Section 5 gives an illustration of the
tools have been used in this work. Section 6 gives related work
and discussion of approach. Finally, in section 7, we
summarize and conclude.

II. STATECHARTS IN UML
Object oriented analysis and design methods offer a good

framework for behavior [5, 7, 8, 9]. In our work, we adopted
the UML, which is a unified notation for object oriented
analysis and design.

A UML statechart (state machine) describes the dynamics
of a model element as it changes its internal state as the
reaction of receiving some external stimuli. UML statecharts
can describe the behavior of a classifier (a class) or a
behavioral feature (a method of a class).

A state machine is a graph of states and transitions that
describes the response of an object to the receipts of events.
State machines are used for specifying the full dynamic
behavior of a single class of objects. The diagrammatic
presentation of a state machine is a statechart diagram. A
statechart attached to a class specifies all behavioral aspects of
the objects in that class. Figure 1 shows a sample statechart
diagram.

Automatic Code Generation FromUML
Statechart

Abdeslam Jakimi and Mohammed Elkoutbi

International Journal of Engineering and Technology Vol. 1, No. 2, June, 2009
1793-8236

 - 166 -

Figure 1. A statechart diagram

Each state models a period of time during the life of an
object during which it satisfies certain conditions, performs
some action, or waits for some event. A state becomes active
when it is entered as a result of some transition and becomes
inactive if it is exited as a result of a transition. A transition
is a directed relationship between a source state, and a target
state indicating that an instance in the source state will enter
the target state and performs certain actions when a specified
event occurs provided that certain specified conditions are
satisfied [1].

III. MAPPING UML BEHAVIOR

Model-system gap is inevitable. This is so because it is
normal for one to model from high abstraction level to low
abstraction level. In order to narrow the gap, it is necessary
to add more detailed information to the UML diagrams.
Another reason to the gap existence is that one tends to take
the forward engineering approach that is, starting from the
problem perspective towards that of implementation

The emergence of UML as a standard for modeling
systems has encouraged the use of automated software tools
[10, 11, 12, 13] that facilitate the development process from
analysis through coding.

There are two major approaches used for object-oriented
model based code generation, namely structural and
behavioral. The structural approach is based on using
models of object structure (static relationships). It generates
code frames (such as class interface specifications) from
models of static relationships among objects. Class diagrams
concepts can be implemented in a programming language
supporting concepts like classes and objects, composition
and inheritance.

In contrast to the static structural diagram, the main
problems in generating Java [14] code covering system
behavior are that UML does not have a unified behavioral
diagram and many concepts from these diagrams are not
supported by Java. As a result, the mapping from the
behaviour diagrams to Java code is not as smooth or direct as
that in static structural diagram. We will tackle these
problems by using each diagram to generate part of the code.

Based on the partial models of object dynamics,
developers then explicitly program object behavior and
communications in the target language. Many works [15, 16,
17, 18] generate limited skeleton code from such models.
The main drawback of this approach is that there is no code
generation for object behavior and thus the code generated is
not complete.

The pricipal goal of this research is to automatically
generate implementation code from the UML statecharts in
an object-oriented programming language such as Java. Our

code generation approach and tool will help in bridging the
gap between the design and development phase and will
support the developers in the software development process.

IV. CODE GENERATION FROM STATECHARTS
The generation of Java code from UML models has been

met with some degree of success. In addition to the generation
of skeleton class code from class diagram, Java codes have
been generated from the statechart, the sequence diagram and
the component diagram. However, generation of Java source
code from all UML diagrams is not yet achievable. And only
the first level of UML behavior is handled in the code
generation, based on a set of derived behavior translation rules

The UML behavior diagrams include many concepts that
are not present in most popular programming languages, like
C++ or Java. This means there is not a one-to-one mapping
between a UML behavior and its implementation.

A model enables the modeler to work at a higher level of
abstraction. The progression from the model to an
implemented system is not truly a seamless transition, mainly
due to a gap. A model-system gap exists primarily due to the
different levels of abstraction.

UML is a modeling language, which consists of semantics
and graphical notation. For every element of its graphical
notation there is a specification that provides a textual
statement of syntax and semantics. Implementing the
semantics correctly is a challenging task, as the programming
languages do not directly support them. The object-oriented
programming languages do not deal with abstract behavior.

This section describes how to generate code from the state
diagram. The mapping from the behavior diagrams to Java
code is not as smooth or direct as that in static structural
diagram.

A. Main Ideas
The following steps will generate code from statechart of

an object, including how each element in a statechart will be
transformed into source code.

Our approach uses the pre- and post-conditions of the
underlying class diagram to generate state names [7]. Given
an unlabeled StateD, its state names are identified via the
post-conditions of outgoing and the preconditions of incoming
events. Note that the events in a StateD correspond to the
methods of its underlying class.

Table 1 summarizes the transformation rules for
statecharts.

TABLE I: UML TO JAVA TRANSFORMATION

UML Java code
Class Class

Attribute Attribute
Operation Method

State Scalar variable
Event Method
Action Method

Entry/ Exit Actions Method

Event Constraint

Anniversary [age=18]
(Stat 1)
(Minor)

(State2)
Major

Final State

Initial State

International Journal of Engineering and Technology Vol. 1, No. 2, June, 2009
1793-8236

- 167 -

B. Code Generation
The UML behavior diagrams include many concepts that

are not present in most popular programming languages, like
C++ or Java, e.g. events, states, history states etc. This
means there is not a one-to-one mapping between a
statechart and its implementation.

We illustrate our approach (Mapping statechart to Java
code) using an example for simple statechart (Figure 2) with
the declarations.

*Attributes of the initial state (state A): a1=0, a2 = 1, a3

= 2 and a4= 3;

 * Attributes of the state finale (state B): a1=1 et a2= 2,
a3=3 and a4=4.

Figure 2. Statecharts of Class N

Consequently, after execution of the transition (E1) since
state A towards B, we see a change on the level of the
attributes.

Following is the part of Java code for the statechart of
Figure 2.
class N { // context class
 private
 final static int a1, a2, a3, a4; // object attributes
 N () {
 a1=0; // initial state (State A)
 a2=1;
 a3=2;
 a4=3;
 }
 public void E1() {
 a1=1; // (State B)
 a2=2;
 a3=3;
 a4=4;
 }
}

V. TOOL SUPPORT
In this section we are going to present briefly the tool we

have developed. This tool reads a UML model, stored in
XMI format, and generates Java code. To generate the code
from UML behavior and explain our automatic code
generating system, we have used the Eclipse environment,
the TogetherJ [19] plug-in for UML modeling and the
application programming interface (API) JDOM for XML

manipulation. Figure 3 gives a picture of how these tools have
been used in this work.

Figure 3. Tool support for code generation from UML behavior

Eclipse has been chosen because of its modular integrated
environment of development (IDE). Many modules (plug-ins)
are provided by Eclipse and it is very easy to add others
developed either by the Eclipse community or by software
companies. We used the plug-in for UML diagrams (from
Together) which makes it possible for us to create use case,
sequence and statecharts diagrams.

statecharts are first acquired throw the UML diagram
plug-in, and then there are transformed in form XML files.
This XML file can also be imported via the UML diagram
plug-in for purposes of visualization and annotation. Finally
we develop a code generator for automatic Java code
generation from UML statecharts.

VI. RELATED WORK
In this section, we first review some related work in the

area of code generation from UML statechart.
Code generation from UML is supported by a variety of

methods and tools. Metz et al [20] proposed an approach to
implement statechart diagrams based on switch statement [21].
States are represented as constant attributes, events and
actions as methods. Douglass [21] proposed the State Table
Pattern to implement the statechart diagrams. States and
transitions are modeled as classes. Pinter [18] proposed an
extension to QHsm called Extended Quantum Hierarchical
state machine (EQHsm). They proposed support for actions on
transition, concurrency and history state. Kohler et al. [22]
presented an approach for code generation from statecharts.
Their approach adapts the idea generic array based state-table
but uses object structure to represent state-table at runtime.
They use objects to represent states of a statechart and
attributes to hold the entry and exit actions. Knapp and Merz
[23] described a set of tools called Hugo for the code
generation of UML statecharts. A generic set of Java classes
provides a standard runtime component state for UML
statecharts. Every state of a statechart is represented by a
separate object, which provides methods for activation,
deactivation, initialization and event handling. Events, guards
and actions are also implemented as classes.

StD.xml

StD.Java

TogetherEC.exe

Clas
s{ if

XMI

Code
Generator

Statecharts (StD.xml)

a1: integer
a2: integer
a3: integer
a4: integer

E1()
pre: pre-condition of a1,
a2, a3 and a4
post: post-conditions of a1,
a2, a3 and a4

Class

Legend:
 A: a1=0, a2 = 1, a3 = 2, and a4= 3
 B: a1=1 et a2= 2, a3=3, and a4=4

A B

E1()

StateD

International Journal of Engineering and Technology Vol. 1, No. 2, June, 2009
1793-8236

 - 168 -

VII. CONCLUSIONS
A new method has been proposed to implement the

dynamic behaviour of an application. We have proposed in
this paper an UML-based code generation approach. This
approach helps developers to transit from the design to
implementation phase and to shorten the software
development cycle.

Our approach is an object-oriented approach and in the
present study we have used Java as the target language.
However our approach is general so it can be used to
generate the low level code in other object-oriented
languages. And the future works of this research include the
following areas: optimize generated code, develop an
efficient approach to use UML to model the internal
working algorithm of the method of objects and the reverse
engineering.

REFERENCES
[1] G. Booch, J. Rumbaugh and I. Jacobson. Unified Modeling Language

User Guide. Addison Wesley, 1999.
[2] J. Rumbaugh, I. Jacobson and G. Booch. Unified Modeling Language

Reference Manual. Addison Wesley, 1999.
[3] I. Jacobson, G. Booch and J. Rumbaugh. The Unified Software

Development Process, Addison-Wesley, 1999.
[4] Object Management OMG. Uinified modeling language specification

version 2.0: Infrastructure. Technical Report ptc/03-09-15, OMG,
2003.

[5] D. Harel, “Statecharts: A visual formalism for complex systems”,
Science of Computer Programming, vol. 8, no. 3, pp 231-274, Jun.
1987.

[6] A. Jakimi, M. El Koutbi, “ An Object-Oriented Approach to UML
Scenarios Engineering and Code Generation” International Journal of
Computer Theory and Engineering (IJCTE), VOL.1 No 1 April 2009,
p38-45

[7] M. Elkoutbi; I. Khriss; and R.K. Keller. “Automated Prototyping of
User Interfaces Based on UML Scenarios”. Journal of Automated
Software Engineering, 13, 5-40, January 2006.

[8] K. Jensen., Coloured Petri Nets, Basic concepts, Analysis methods
and Pratical Use, Springer, 1995.

[9] designCPN: version 4, Meta Software Corp.
<http://www.daimi.aau.dk/designCPN>.

[10] Gentleware AG, Poseidon for UML, http://www.gentleware.com

[11] MicroTOOL, objectiF, http://www.microtool.de /objectif
[12] No Magic Inc. MagicDraw, http://www.magicdraw.com
[13] I-Logix Inc., Rhapsody, ttp://www.ilogix.com.
[14] Sun Microsystems Inc., Java Technology, http://java.sun.com
[15] J. Ali, and J. Tanaka, “Converting Statecharts into Java Code”, Proc.

Fourth World Conf.on Integrated Design and Process Technology
(IDPT’99), Dallas, Texas, USA, 2000.

[16] I. A. Niaz and Jiro Tanaka, An Object-Oriented Approach To Generate
Java Code From UML Statecharts, International Journal of Computer &
Information Science, Vol. 6, No. 2, June 2005

[17] I. Majzik, – J. Javorsky –, A. Patricza., Concurrent Error Detection of
Program Execution Based on Statechart Specification, Proc. 10th
European Workshop on Dependable Computing, 1999.

[18] G.Pintèr, “Code genration based on Statecharts”, Oct. 1, 2003, Budapest,
Hungary, Vol. 47, No. 3–4, PP. 187–204.

[19] Borland, “Together”, www.borland.com /together
[20] P. Metz, J. O’Brien and W. Weber, “Code Generation Concepts for

Statechart Diagrams of the UML v1.1”, Object Technology Group
Conference, Vienna, Austria, June 1999.

[21] B. P. Douglass, “Real Time UML – Developing Efficient Objects for
Embedded Systems”, Massachusetts: Addison-Wesley, 1998.

[22] H. J. Köhler, U. Nickel, J. Niere, and A. Zündorf, “Integrating UML
Diagrams for Production Control Systems”, in Proc. 22nd International
Conf. on Software Engineering (ICSE 2000), Limerick, Ireland, 2000,
pp. 241-251.

[23] A. Knapp and S. Merz, “Model Checking and Code Generation for

UML State Machines and Collaborations”, in Proc. 5th Workshop on
Tools for System Design and Verification, Reisenburg, Germany, 2002,
pp. 59-64.

Abdeslam Jakimi, received his Masters degree in software engineering in
2004. His current research interests include requirements engineering, user
interface prototyping, design transformations, scenario engineering and code
generation.
Phone: (00212)667250395.

Mohammed Elkoutbi is a professor at École Nationale Supérieure
d’Informatique et d’Analyse des Systèmes in Agdal, Rabat, Morocco. His
current research interests include requirements engineering, user interface
prototyping and design, and formal methods in analysis and design. He earned
a PhD in Computer Science from University of Montreal in 2000.

http://www.daimi.aau.dk/designCPN
http://www.gentleware.com
http://www.microtool.de
http://www.magicdraw.com
http://www.ilogix.com
http://java.sun.com
http://www.borland.com

