
International Journal of Engineering and Technology Vol. 1, No. 1, April, 2009 
1793-8236 

 

 

- 21 - 

  
Abstract—Grid computing is the next generation of 

distributed heterogeneous systems. It provides the highest 
productivity, utilizing the existing infrastructure. One of the 
most challenging issues in Grid computing is the efficiency of 
job scheduling in the distributed environment. Job scheduling 
in the grid environment is an NP complete problem. Heuristic 
approach is one of the best ways to solve the NP complete 
problem. The Scheduler considers the characteristics of 
resources such as geographic distribution, heterogeneity, 
different usage policies, non-uniform performance, varying 
loads and availability. The scheduler finds the suitable resource 
for each job. It leads to the effective utilization of grid resources. 
This paper proposes an adaptive scheduling algorithm, called 
Online Ant (OANT). The OANT uses the dynamic information 
of resources and jobs. The OANT algorithm uses the ant colony 
optimization heuristic technique. In this paper, performance of 
OANT is compared with other existing methods. It is found that 
the OANT algorithm can effectively and efficiently allocate jobs 
to proper resources 
 

Keywords—Grid Computing, Scheduling, Ant Colony 
Optimization, Job Scheduling. Computational grid, Scheduling 
Algorithm 

I. INTRODUCTION 
The grid computing technologies provide sharing of 

heterogeneous resources that are in geographically dispersed 
locations. So this type of technology is loosely coupled and 
has high computational capabilities and platform 
independent services across the entire internet. Because of 
these high computing capabilities, the computational grid 
easily solves the problems in science, engineering and 
commerce [1].To access the existing resources in grid 
computing, the users need a control and faultless access. It 
provides secure resource sharing in the distributed 
heterogeneous environment.So the researchers try to develop 
an intelligent computational grid environment instead of 
developing applications [2]. The Grid structure is changing 
almost all the time: some resources fail, some new resources 
enroll into the Grid and some resources resume working. 

Grid Scheduling and management are the important issues 
in Grid computing. The scheduler must consider the 
dynamism of the Grid. The dynamics exists in both the 
networks and computational resources. In network dynamism, 
many parties can share the same network. So the network 
cannot provide guaranteed bandwidth all the time. In 
Computational resource dynamism, the availability and 
 

Manuscript received February, 2009 
     K. Kousalya is with the Kongu Engineering College, Perundurai, India 
Phone 04294 226560  

Dr P. Balasubramanie is with the Kongu Engineering College, Perundurai, 
India 

capability of computational resources will also change 
depending upon time. It means new resources may join or 
some of the resources may be unavailable due to some 
reasons. Similarly the resources may be shared by many users. 
Therefore capability is also changed due to time. Whenever 
the scheduler starts scheduling, it automatically detects and 
adds new resources and removes the unavailable resources in 
the later scheduling. After scheduling, if any unexpected 
failure occurs, rescheduling must be used to guarantee the 
reliability of Grid System 

The scheduler in the grid collects the resource state 
information before the scheduling starts. The grid scheduling 
[3] is an optimal assignment of the set of tasks to the 
processing elements (resources) that are currently available 
in the grid environment and also improve the throughput of 
the entire system, but the resources are in multiple 
administrative domains. Good grid scheduling algorithm 
should be distributable, scalable, and fault tolerant. In general, 
the tasks are divided into two groups: Independent and 
dependent. The dependent tasks consider the results of 
predecessors. To evaluate the grid scheduling algorithms, 
makespan is one of the most important performance metrics. 
Makespan is the total time required to complete the metatask. 
The metatask is defined as the collection of independent tasks 
with no inter-task dependencies. Min-Min, Max-Min, 
Sufferage and XSuferage are the commonly used algorithms 
in the grid computing environment.  

Grid scheduling is an NP-Complete problem. Heuristic 
optimization techniques are the best approach to solve 
NP-complete problems. The four basic heuristic methods for 
grid scheduling are Genetic Algorithm (GA) [4], Simulated 
Annealing (SA) [5], Ant Colony Optimization (ACO) and 
Tabu search (TS) [6]. The main focus of this paper is to 
develop a high throughput scheduling algorithm based on 
ACO. 

The rest of the paper is organized as follows: Related work 
is discussed in section 2, in section 3 the ant colony system 
and proposed Online ant (OANT) are discussed. Analysis of 
the proposed algorithm (OANT) is presented in section 4. 
Conclusion and discussion are given in section 5.If your 
paper is intended for a conference, please contact your 
conference editor concerning acceptable word processor 
formats for your particular conference.  

II. RELATED WORKS 
In the current grid environment, a lot of scheduling 

algorithms [7, 8] are designed by the research developer. The 
algorithm produces sub optimal solutions because grid 
scheduling is an NP complete problem [9]. The existing 
heuristic scheduling is divided into two categories. One is 
dynamic scheduling and the other is static scheduling. In 

Online Grid Scheduling Using Ant Algorithm 
 Kousalya K  and Balasubramanie P 



International Journal of Engineering and Technology Vol. 1, No. 1, April, 2009 
1793-8236 

 

 - 22 - 

dynamic scheduling, a task is scheduled to a resource 
whenever the job reaches the scheduler. 

A. Dynamic Algorithms 
Minimum execution time (MET)[6] is a dynamic 

scheduling algorithm. It assigns the task to the resource 
having the least amount of execution time. The algorithm 
does not consider whether the resource is currently available 
or not. So it serves load imbalance across the resources. This 
is one of the heuristic methods that are implemented in 
SmartNet [10]. Minimum Completion Time (MCT) [6] is 
also a dynamic scheduling algorithm. If the algorithm 
receives a job from the user, it immediately calculates the 
completion time of that job to all the machines that are 
currently available in the pool. Then the algorithm assigns 
that job to the resource having the earliest completion time. 
This algorithm may allocate a job to the resource that does 
not have minimum execution time. This heuristic method is 
also implemented in SmartNet [10]. 

B. Static Algorithms 
In this method, tasks are collected as a set. These sets are 

mapped at prescheduled times called mapping events.  
Min-Min is one of the popular algorithms. The Min-Min 

algorithm [6] has two phases. In the first phase, it calculates 
the minimum expected completion time for each task with 
respect to all machines in the set. In the second phase, it 
selects the task having the overall minimum expected 
completion time and assigns it to the corresponding resource. 
Then the currently scheduled task is removed from the set 
and repeats the above two phases until all the tasks in the set 
are completely scheduled [7]. So this method automatically 
minimizes the makespan and balances the load to an extent. 
At times, too many jobs are assigned to a single grid node and 
this will lead to system overloading and the response time of 
the job is not assured. This is the main disadvantage of 
Min-min method. Max-min [6] is very similar to Min-Min. 
The first phase of Max-Min and Min-Min are same but in the 
second phase the Max-Min selects the task that has the 
overall maximum expected completion time and assigns it to 
the corresponding resource. Min-min or Max-min will 
produce better results depending upon the expected 
execution time of unassigned tasks in the set. If minimum 
number of large tasks and too many short tasks are in the set, 
then the Max-min will produce better makespan, resource 
utilization rate and load balancing. 

The QoS Guided Min-Min method considers QoS, which 
will affect the effectiveness of the grid [11]. The bandwidth 
and network are the two QoS constraints to basic Min-Min 
heuristics. This algorithm first assigns high QoS tasks then 
the low QoS tasks. It will produce worst result if all the tasks 
are high QoS or low QoS. The Segmented Min-Min heuristic 
algorithm has three steps. In the first step, the tasks are 
ordered by their expected completion time. Then in the 
second step, segments are in the ordered sequence. Finally 
apply Min-Min to those segments. This algorithm produces 
better results than Min-Min when the expected execution 
time is dramatically different. 

In this paper [12], the grid simulation architecture using 
ACO is proposed. The response time and average utilization 

of resources are used as the evaluation indices. In this paper 
[13], the algorithm could improve the performance by 
increasing the job finishing ratio. 

Characteristics of Ant Algorithm  
Dorigo M. introduced the Ant algorithm in 1996, which is 

a new heuristic, predictive scheduling algorithm. It is based 
on the real ants. When an ant looks for food, ant deposits 
some amount of pheromone on the path, thus making a trail 
of this substance. If an ant tries to move from one place to 
another then it encounters a previously laid trail. The ant can 
detect the pheromone trail and decide with high probability to 
follow it. This ant also reinforces the trail with its own 
pheromone. When more ants are following the trail, then the 
pheromone on shorter path will be increased quickly. The 
quantity of pheromone on every path will affect the 
possibility of other ants to select that path. At last all the ants 
will choose the shortest path.  In this paper [12], the 
experimental results show that the ant algorithm has 
produced an optimum solution. The ACO algorithm has been 
used to solve many NP problems, such as TSP, assignment 
problem, job-shop scheduling and graph coloring 
successfully.  So the ant algorithm is suitable to be used in 
Grid computing task scheduling. In the grid environment, the 
algorithm can carry out a new task scheduling by experience, 
depending on the result in the previous task scheduling. In the 
grid computing environment, this type of scheduling is very 
much helpful. So, the ant algorithm for task scheduling in 
Grid Computing is proposed in this paper. 

III. PROBLEM DESCRIPTION 
This paper uses two types of schedulers. One is local 

scheduler and another one is grid scheduler (OANT). The 
local scheduler uses all the system information and the local 
scheduling of resources. The OANT is placed in all the nodes 
that are involved in the grid scheduling. The node consists of 
one or more local schedulers and one or more resources. 
OANT in one node interacts and coordinates to their 
neighbor grid schedulers and their local scheduler. One of the 
major differences between OANT and local scheduler is that 
the OANT does not own the resources directly. OANT has 
the details of jobs which have to enquire the neighboring 
OANT.  

In this method, each job is act like an Ant. After a job is 
successfully allocated to a particular node, the Ant will 
deposit a pheromone on the path it traveled. The pheromone 
is nothing but its numeric information about current ANT’s 
performance. Each job maintains a separate list from the 
starting node to the destination node. The destination node is 
having the enough resource to execute the job. All the 
OANTs also maintain the pheromone information. Using this 
information only the remaining job selects a successful path 
from the set of available paths. There is no centralized control 
on OANTs.  

In this method, a set of jobs can be scheduled parallely and 
asynchronously. When a job wants to use the grid, the job is 
submitted to one of the OANTs. The current OANT decides 
whether the current job is allocated to the local scheduler or 
moved to the neighboring OANT. If more than one 
neighboring OANTs are available, select the best OANT. 



International Journal of Engineering and Technology Vol. 1, No. 1, April, 2009 
1793-8236 

 

 

- 23 - 

 = 
Σ T ij. η ij                                                  

 (1) 
 T ij. η ij                                                  
 

=  

1 
 

NEi - 1 

⌂Tij  
 

 (5) 

=  

  1 
 
Lj 
 

To   
 

(3) 

These are all done using the job’s requirement, the set of 
OANTs that are already visited, the neighboring OANT’s 
functionality and the pheromone information of current 
OANT. When the job is successfully allocated to one of the 
Local Schedulers, the job evaluates the cost of the path and 
deposits the pheromone value to all the OANTs that 
participate on the path. During deposition in OANTs, some 
amount of previous pheromone value must be evaporated.  

In Grid computing, the resource can be added or removed, 
or the computational time may be changed from time to time. 
For that reason the pheromone evaporation must be 
considered over a period of time. Only then, the Ant (job) 
forgets the past and considers the current situation. The 
pheromone evaporation is used to prevent all the jobs being 
allotted to the same resource. This is the main advantage of 
pheromone evaporation. The main aim of grid scheduling is 
to reduce the makespan. Makespan is the total time needed to 
complete a group of jobs from the beginning of the first job to 
the completion of the last job. 

In this paper, we focus on the decision about how to 
allocate a set of jobs to the resources optimally among the 
Super Schedulers. Problems like how to deal with the 
situation when a job does not find a solution or how the Super 
Schedulers communicate with each other are not discussed in 
the paper. Researches on those problems are being done on 
their way.  

IV. IMPLEMENTATION 
In this paper, the jobs are moved from one OANT to 

another OANT until the job finds a best local scheduler. The 
maximum numbers of OANTS in the grid have their own job 
queue. The users who want to execute their job in grid 
environment submit their jobs in the nearest OANT queue. 
All the OANTs collect their neighboring local schedulers 
load and the bandwidth available between the OANTS. The 
current OANT calculates the probability value of current 
OANT and their neighboring OANTs using the following 
probabilistic equation (1). 
 
 
 
 
where,  

Current OANT 
Current OANT’s neighboring OANTS 
 
In the equation (1) the η ij  is the heuristic information. 

 
where,  
 
    BWj  - Bandwidth of  current and neighboring OANTS 
    Lj      - Current Load of current and neighboring OANTS 
    ETij   - Expected Execution Time of current job in 

current    and neighboring OANTS 
The heuristic is an algorithm that gives up finding the 

optimal solution for the improvement of run time. In the 

equation (1), Tij is the pheromone trail update value. The 
initial pheromone value (T0) is  
 
 
 
 

After the job finds their local scheduler, the 
scheduled job deposits some pheromone value on pheromone 
trail update variable. During updation, some of the past 
pheromone values are automatically evaporated using the 
formula. The updation must be done only in the OANTS 
which are visited by this job. 
 
 
 
where 
        (1-ρ) –  the evaporation value between 0 to 1 
 
 
 
 
 
 

The proposed algorithm starts only if the OANTs queue 
has some set of jobs. The initialization part of the algorithm is 
as follows. The algorithm collects the details about available 
OANTs and their local schedulers and neighboring local 
schedulers load, bandwidth of available network, expected 
execution time of the queued jobs. The variable free is a one 
dimensional matrix of size m (no. of OANTs) and the initial 
value is current load of their local schedulers. 

 

 
 
Begin 
Calculate the initial pheromone value ( To) 
                        To = 1/Lj 
    For each OANTS queue not empty do   
        For each job in the OANT do 
            Marked current OANT is visited by jobj 
            While true 
             If job visited to all the OANTs 
                   Remove the jobj from the grid  
                 Exit from the while loop 
                 Endif 
               Calculate the heuristic information   (ηij)   
                        ηij = BWj/(Lj*ETij) 
       Calculates the probability value of Current OANT and  

           Neighboring OANT    

 
    If current OANT’s local scheduler has the highest   
                    probability 

     Add (jobi, resourcej, free[j], free[j]+ETij)  to 
the  

      output list. 

Pij = 

Σ T ij. η ij                                                

 T ij. η ij   
 

Algorithm 1 Algorithmic frame for a OANT 
Algorithm 
 

ηij=  
BWj 

Lj * ETij 

              
(2) 

 T ij  = T ij  + (1-ρ) ⌂Tij                                                   (4)                          

 ⌂T ij  is the additional pheromone value and it is 
            different for different ACO algorithms                         



International Journal of Engineering and Technology Vol. 1, No. 1, April, 2009 
1793-8236 

 

 - 24 - 

      Calculate ⌂T ij = 1/ NEi-1  
      Update the pheromone trail value using 
         T ij = T ij +(1- ρ) ⌂T ij 
 Else If one of the neighbored OANT has the highest  
  priority 
      Marked current OANT is visited by jobj 

       Move the current job to that neighboring node 
Endif 

             Endwhile 
           Endfor 
         Endfor 
From the output list find out the makspan 
End  

V. EXPERIMENTAL RESULTS  
In online methods, minimum execution time and minimum 

competition time [6] are the currently used technologies in 
grid scheduling. The above methods simply allocate the 
resources without knowing the current workload, CPU load 
and the bandwidth of the networks. In this case, some jobs 
cannot finish their execution. It may have to resubmit and 
reschedule the same job again and again.  

In the paper [14], communication delay is the only 
parameter to find the heuristic information. The paper [14] 
does not consider the neighboring local scheduler’s workload 
and current CPU speed. Here the results are compared with 
the Super scheduler [14]. 

To simulate the various heterogeneous problems, different 
types of ET matrix using benchmark simulation model [6] are 
defined.  

The ET matrix considers three factors: task heterogeneity, 
machine heterogeneity and consistency. The task 
heterogeneity depends upon the various execution times of 
the jobs. The two possible values are defined high and low. 
Similarly the machine heterogeneity depends on the running 
time of a particular job across all the processors and again has 
two values: high and low. In real scheduling, three different 
ET consistencies are possible.  

They are consistent, inconsistent, and semi consistent. The 
instances of bench mark problems are classified into twelve 
different types of ET matrices. Each consists of 100 instances. 
The instances depend upon the above three factors as task 
heterogeneity, machine heterogeneity and consistency.  
Instances are labeled as u_x_yyzz.k where  
u  - is a uniform distribution, used to generate the matrix. 
x – is a type of consistency 
        c- consistent 
        s-semi consistent 
        i-inconsistent 

 An ET matrix is said to be consistent if a resource Ri 
executes a task Ti faster than the resource Rk, and Ri executes 
all other jobs faster than Rk. An ET matrix is said to be 
in-consistent if a resource Ri executes some jobs faster than 
Rj and some slower. A semi consistent ETC matrix is an 
inconsistent matrix which has a sub matrix of a predefined 
size. 
yy- is used to indicate the heterogeneity of the jobs(hi – high, 
lo-low) 

zz-is used to indicate the heterogeneity of the resources 
(hi-high, lo-low) 

All the instances consist of 512 jobs and 16 machines. For 
each method the makespan is computed. It allows a fair 
comparison of the presented methods 

VI. PERFORMANCE EVALUATION  
The makespan of the OANT and Super scheduler’s are 

stacked in area chart and is given in Fig.1 and the 
corresponding table is given in table 1. 

 
 OANT SSCHEDULE 
CHTHM 150714824.73 179539649.04 
CHTLM 1584786.75 1854560.26 
CLTHM 4757394.12 6088846.44 
CLTLM 45622.43 62785.82 

ICHTHM 20927117.36 155220213.87 
ICHTLM 252364.70 1489698.69 
ICLTHM 685712.55 4951086.54 
ICLTLM 7823.16 54146.63 
PCHTHM 56484374.76 171144747.28 
PCHTLM 512879.33 1721587.59 
PCLTHM 1706585.50 5590235.08 
PCLTLM 18550.81 58555.03 

 

0%

20%

40%

60%

80%

100%

CHTHM

CHTLM

CLTH
M

CLTL
M

IC
HTHM

IC
HTLM

IC
LTHM

IC
LTLM

PCHTHM

PCHTLM

PCLTHM

PCLTLM

DANT SSCHEDULE

 
Fig 1.  Graphical representation of makespan values (arbitrary time units) 

 
The above Figure shows that the relative size of OANT 

algorithm is very low as compared with Super Scheduling. 
The OANT algorithm produces excellent results for 
inconsistent matrices. It also produces the best result for the 
semi consistency type problems 



International Journal of Engineering and Technology Vol. 1, No. 1, April, 2009 
1793-8236 

 

 

- 25 - 

0

50000000

100000000

150000000

200000000m
a
k
e
s
p
a
n

CHTHM ICHTHM PCHTHM

DANT Sschedule

 
Fig 2.  Graphical representation of makespan values of   High Task High 

Machine (arbitrary time units) 

Because of task and job’s heterogeneity, this paper has 
four different sets. They are High Task High Machine, Low 
Task High Machine, High Task Low Machine, and Low Task 
Low Machine. The comparisons between OANT and super 
scheduler [14]  is shown in Figure 2, 3, 4, 5 of High Task 
High Machine, Low Task High Machine, High Task Low 
Machine, Low Task Low Machine respectively. The 
hardware/software configuration used is irrelevant because 
the execution times are given in their time complexity. 

0

500000

1000000

1500000

2000000
m
a
k
e
s
p
a
n

CHTLM ICHTLM PCHTLM

DANT Sschedule

 
Fig. 3.  Graphical representation of makespan values of   High Task Low 

Machine (arbitrary time units) 

TABLE 2: PERCENTAGE DECREASE IN MAKESPAN VALUE BY AC IN 
COMPARISON WITH AWEOC AND AE (VALUES IN %) 

   
        Problem Type 
 

Decreases of Makespan   
% 
 

CHTHM 16.05% 
CHTLM 14.55% 
CLTHM 21.87% 
CLTLM 27.34% 

ICHTHM 86.52% 
ICHTLM 83.06% 
ICLTHM 86.15% 
ICLTLM 85.55% 
PCHTHM 67.00% 
PCHTLM 70.21% 
PCLTHM 69.47% 
PCLTLM 68.32% 

 

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000
m
a
k
e
s
p
a
n

CLTHM ICLTHM PCLTHM

DANT Sschedule

 
Fig. 4.  Graphical representation of makespan values of Low Task High 

Machine (arbitrary time units) 

As compared to OANT and Super Scheduler there is, a 
major difference in the reported makespan values, yields 
better results for 12 out of 12 considered instances (Table 2). 

0

10000

20000

30000

40000

50000

60000

70000
m
a
k
e
s
p
a
n

CLTLM ICLTLM PCLTLM

DANT Sschedule

 
Fig 5. Graphical representation of makespan values of Low Task Low 

Machine 

The heuristic techniques seen above, the OANT Ant 
algorithm performs above sixty percentage better than the 
Super scheduling [14] ant algorithm in all possible cases on 
an average. Thus, addition of ETij in the calculation of 
probability matrix, that is inclusion of completion time of the 
ith job by the jth machine (predicted), has shown a positive 
result in performance improvement. This improvement is in 
terms of decrease in makespan time. 

VII. CONCLUSION AND FUTURE WORK 
Using the Ant Algorithm, this paper tries to allocate all the 

submitted jobs to the available resources successfully. In this 
method, each and every job knows the current grid 
environment and takes decision using the environment 
information. The jobs are also responsible for changing the 
gird environment, because each job tries to deposit some 
amount of pheromone on their successful path. The job uses 
the previous job’s pheromone information during its 
allocation. So, this ACO method can allocate the jobs to the 
resources effectively in the dynamic environment. 

These methods consider bandwidth and CPU Load. But 
Cost and memory space are not considered. In future research, 
bandwidth, CPU Load, Cost and memory spaces can be 
considered.  Try to modify the heuristic information in the 



International Journal of Engineering and Technology Vol. 1, No. 1, April, 2009 
1793-8236 

 

 - 26 - 

probably matrix to get further minimized makespan. If the 
job does not match all the resources in that path then simply 
remove that job from the grid. In future, put that job to 
another queue and find solution for that job. In this paper the 
job may be submitted to the nearest queue. But in future, 
advanced reservation, the job reserved the required resource 
in advance and uses that resource in the allocated time period. 

REFERENCES   
[1] Foster. I Kesselman C.Tuecke S, The anatomy of the Grid: Enabling 

Scalable Virtual Organizations. International Journal of 
Supercomputer, April 2001, 15(3):pp 200-22 

[2] Xin Bai, Han Yu, GuoQiang Wang, Youngchang Ji, Gabriela.M. 
Marinescu, . Coordination in Intelligent Grid Environments. 
Proceedings of the IEEE, VOL 93, No. 3, 2005 

[3] [3] Luo Hong, Mu De-jun, Deng Zhi-qum and Wang Xiao-dong, A 
Review of Job scheduling for Grid Computing, Application Research 
of Computers, 2005, 22(5), pp. 16-19 

[4] Aggarwal, M.; Kent, R.D.; Ngom, A, “ Genetic algorithm based 
scheduler for computational grids” International Symposium on  High 
Performance Computing Systems and Applications, 2005.. Volume15, 
No.18 pp: 209 – 215 

[5] Fidanova.S, “ Simulated Annealing for Grid Scheduling Problem”, 
International IEEE Symposium on Modern Computing, 2006.  

[6]  R. Braun, H. Siegel, N. Beck, L. Boloni, M. Maheswaran, A. Reuther, 
J. Robertson, M. Theys, B. Yao, D. Hensgen and R. Freund, 2001, “A 
Comparison of Eleven Static Heuristics for Mapping a Class of 
Independent Tasks onto Heterogeneous Distributed Computing 
Systems”, Journal of Parallel and Distributed Computing, Vol.61, No.6, 
pp. 810- 837, 2001. 

[7] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. Freund, 
“Dynamic mapping of a class of independent tasks onto heterogeneous 
computing systems, ” 8th IEEE Heterogeneous Computing Workshop 
(HCW '99), pp. 30-44, San Juan, Puerto Rico, April 1999. 

[8] F. Dong and S. G. Akl, “Scheduling Algorithms for Grid Computing: 
State of the Art and Open Problems, ” Technical Report of the Open 
Issues in Grid Scheduling Workshop, School of Computing, University 
Kingston, Ontario, January 2006. 

[9] D. Fernández-Baca, “Allocating modules to processors in a distributed 
system, ” IEEE Transactions on Software Engineering, pp. 1427-1436, 
November 1989. 

[10] R. F. Freund, M. Gherrity, S. Ambrosius, M. Camp-bell, M. Halderman, 
D. Hensgen, E. Keith, T. Kidd, M. Kussow, J. D. Lima, F. Mirabile, L. 
Moore, B. Rust, and H. J. Siegel, “Scheduling resources in multi-user, 
heterogeneous, computing environments with SmartNet, ” 7th IEEE 
Heterogeneous Computing Workshop (HCW’98), pp. 184–199, March 
1998. 

[11] X. He, X. Sun and G. Laszewski, “A QoS Guided Min-Min Heuristic 
for Grid Task Scheduling, ” Journal of Computer Science and 
Technology, Special Issue on Grid Computing, pp. 349-363, Cancun, 
Mexico, May 2000. 

[12] Zhihong XU, Xiangdan HOU, Jizhou SUN, “ Ant- Algorithm-Based 
Task scheduling in Grid Computing”, Montreal, In Proceeding of the 
IEEE Conference on Electrical and Computer Engineering, pp. 
1107-1110, 2003. 

[13] H. Yan, X. Shen, X. Li and M. Wu, “An Improved Ant Algorithm for 
Job Scheduling in Grid Computing”, In Proceedings of the IEEE 
International Conference on Machine Learning and Cybernetics, pp. 
2957-2961, 2005. 

[14] Li Liu, Yi Yang, Lian Li and Wanbin Shi, “ Using Ant Optimization for 
super scheduling in Computational Grid, IEEE proceedings of the 2006 
IEEE Asia-pasific Conference on Services Computing (APSCC’ 06) 

 
Kousalya.K received the B.E. and M.E. degrees in Computer Science and 
Engineering from Bharathiar University, Coimabatore, India, in 1993 and 
2001, respectively. She is currently doing her PhD degree in Anna 
University, Chennai, India. Currently she is an Assistant Professor in the 
department of Computer Science and Engineering, Perundurai, Tamilnadu. 
Her areas of interest are Grid Computing, Compiler Design and Theory of 
Computation. She has published papers in National, International 
Conferences and in International Journal. 
 
Dr.P.Balasubramanie has obtained his PhD degree in theoretical computer 
science in the year 1996 from Anna University, Chennai. He was awarded 
junior research fellow by CSIR in the year 1990. Currently he is a professor 
in the Department of Computer Science and Engineering, Kongu 

Engineering College, Perundurai, Tamilnadu. He has published more than 50 
research articles in International/National Journals. He has also authored six 
books. He has guided 3 PhD scholars and guiding 15 research scholars. His 
areas of interest include theoretical computer science, data mining, image 
processing and optimization Techniques. 


